Zupan Hajna, N. Dinaric karst: Geography and geology in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 195–203 (Academic Press, 2012).Jug-Dujaković, M., Ninčević, T., Liber, Z., Grdiša, M. & Šatović, Z. Salvia officinalis survived in situ Pleistocene glaciation in ‘refugia within refugia’ as inferred from AFLP markers. Plant Syst. Evol. 306, 1–12 (2020).Article
Google Scholar
Bănărescu, P. M. Distribution pattern of the aquatic fauna of the Balkan Peninsula in Balkan Biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B. & Reed J. M.) 203–217 (Kluwer Academic Publishers, 2004).Sket, B. Diversity patterns in the Dinaric Karst in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 228–238 (Academic Press, 2012).Griffiths, H. I., Kryštufek, B., & Reed, J. M. Balkan biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B., & Reed, J. M.) 1–332 (Kluwer Academic Publishers, 2004).Culver, D. C., Pipan, T. & Schneider, K. Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions. Freshw. Biol. 54, 918–929 (2009).Article
Google Scholar
Gottstein Matočec, S. et al. An overview of the cave and interstitial biota of Croatia. Nat. Croat. 11, 1–112 (2002).
Google Scholar
Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article
ADS
Google Scholar
Bilandžija, H., Morton, B., Podnar, M. & Ćetković, H. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): Unearthing the subterranean biodiversity of the Dinaric Karst. Front. Zool. 10, 1–18 (2013).Article
Google Scholar
Bedek, J., Taiti, S., Bilandžija, H., Ristori, E. & Baratti, M. Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae). Zool. J. Linn. Soc. 187, 539–584 (2019).Article
Google Scholar
Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945. https://doi.org/10.1371/journal.pone.0170945 (2017).Article
Google Scholar
Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).Article
Google Scholar
Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).Article
Google Scholar
Delić, T., Stoch, F., Borko, Š., Flot, J. F. & Fišer, C. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. J. Biogeogr. 47, 1875–1887 (2020).Article
Google Scholar
Podnar, M., Grbac, I., Tvrtković, N., Hörweg, C. & Haring, E. Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region. J. Zool. Syst. Evol. Res. 59, 1824–1849 (2021).Article
Google Scholar
Beron, P. Zoogeography of Arachnida (ed. Beron, P.) Meth. Ecol. Evol. 1–987 (Springer Cham, 2018).Ćurčić, B. P. M. Cave-dwelling pseudoscorpions of the Dinaric karst (ed. Ćurčić, B. P. M.) 1–192 (Slovenska Akademija Znanosti in Umetnosti, 1988).Harms, D., Roberts, J. D. & Harvey, M. S. Climate variability impacts on diversification processes in a biodiversity hotspot: A phylogeography of ancient pseudoscorpions in south-western Australia. Zool. J. Linn. Soc. 186, 934–949 (2019).Article
Google Scholar
Muster, C., Schmarda, T. & Blick, T. Vicariance in a cryptic species pair of European pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae). Zool. Anz. 242, 299–311 (2004).Article
Google Scholar
Ozimec, R. List of Croatian pseudoscorpion fauna (Arachnida, Pseudoscorpiones). Nat. Croat. 13, 381–394 (2004).
Google Scholar
World Pseudoscorpiones Catalog. Natural History Museum Bern. https://wac.nmbe.ch (2022).Ćurčić, B. P. M., Dimitrijević, R. N., Rađa, T., Makarov, S. E. & Ilić, B. S. Archaeoroncus, a new genus of pseudoscorpions from Croatia (Pseudoscorpiones, Neobisiidae), with descriptions of two new species. Acta Zool. Bulg. 64, 333–340 (2012).
Google Scholar
Ćurčić, B. P. M. et al. On two new cave species of pseudoscorpions (Neobisiidae, Pseudoscorpiones) from Herzegovina and Dalmatia. Arch. Biol. Sci. 66, 377–384 (2014).Article
Google Scholar
Ćurčić, B. P. M. et al. Roncus sutikvae sp. n. (Pseudoscorpiones: Neobisiidae), a new epigean pseudoscorpion from central Dalmatia (Croatia). Arthropoda Sel. 30, 205–215 (2021).Article
Google Scholar
Ćurčić, B. P. M., Rađa, T., Dimitrijević, R., Ćurčić, N. B. & Ćurčić, S. Roncus ladestani sp. n. and Roncus pecmliniensis sp. n., two new Pseudoscorpions (Pseudoscorpiones, Neobisiidae) from Croatia and Bosnia and Herzegovina, respectively. Zool. Zhurnal. 100, 159–169 (2021).
Google Scholar
Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. Royal Soc. B. 270, 313–321 (2003).Article
Google Scholar
Page, R. D. DNA barcoding and taxonomy: Dark taxa and dark texts. Philos. Trans. R. Soc. Lond., B. Biol. Sci. 371, 20150334. https://doi.org/10.1098/rstb.2015.0334 (2016).Article
Google Scholar
Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).Article
ADS
Google Scholar
Kekkonen, M. & Hebert, P. D. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Res. 14, 706–715 (2014).Article
Google Scholar
Christophoryová, J., Šťáhlavský, F. & Fedor, P. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa 2876, 35–48 (2011).Article
Google Scholar
Gardini, G. A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. Zootaxa 3655, 1–151 (2013).Article
Google Scholar
Gardini, G. The species of the Chthonius heterodactylus group (Arachnida, Pseudoscorpiones, Chthoniidae) from the eastern Alps and the Carpathians. Zootaxa 3887, 101–137 (2014).Article
Google Scholar
Gardini, G. The Italian species of the Chthonius ischnocheles group (Arachnida, Pseudoscorpiones, Chthoniidae), with reference to neighbouring countries. Zootaxa 4987, 1–131 (2021).Article
Google Scholar
Zaragoza, J. A. Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). Zootaxa 4246, 1–221 (2017).Article
Google Scholar
Gams, I. Kras v Sloveniji v prostoru in času. (ed. Gams, I.) 1–516 (Postojna: Inštitut za raziskovanje Krasa, 2004).European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu (2016).Maddison, W. P., & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org (2019).Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).Article
Google Scholar
Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 7, 965–968 (2007).Article
Google Scholar
Felsenstein, J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Biol. 22, 240–249 (1973).Article
Google Scholar
Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article
Google Scholar
Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article
Google Scholar
Muster, C. et al. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol. Evol. 11, 13815–13829 (2021).Article
Google Scholar
Ontano, A. Z. et al. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 38, 2446–2467 (2021).Article
Google Scholar
Rambaut A. FigTree v1.4.3 http://tree.bio.ed.ac.uk/software/figtree/ (2016).Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article
Google Scholar
Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).Article
Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article
Google Scholar
Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article
Google Scholar
Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
Google Scholar
Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article
Google Scholar
Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129 (2010).Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).Article
ADS
Google Scholar
Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2020).Brown, S. D. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).Article
Google Scholar
Meier, R., Shiyang, K., Vaidya, G. & Ng, P. K. L. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728 (2006).Article
Google Scholar
Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. J. M. E. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).Article
Google Scholar
Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).Article
Google Scholar
Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).Article
Google Scholar
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article
Google Scholar
Karney, C. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).Article
ADS
Google Scholar
Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Meth. Ecol. Evol. 6, 1110–1116 (2015).Article
Google Scholar
Bregović, P., Fišer, C. & Zagmajster, M. Contribution of rare and common species to subterranean species richness patterns. Ecol. Evol. 9, 11606–11618 (2019).Article
Google Scholar
Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article
Google Scholar
Young, M. R. & Hebert, P. D. Patterns of protein evolution in cytochrome c oxidase 1 (COI) from the class Arachnida. PLoS ONE 10, e0135053. https://doi.org/10.1371/journal.pone.0135053 (2015).Article
Google Scholar
Yin, Y. et al. DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea). Mol. Ecol. Resour. 22, 1986–1998 (2022).Article
Google Scholar
Doña, J. et al. DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Mol. Ecol. Resour. 15, 1216–1225 (2015).Article
Google Scholar
Blagoev, G. A. et al. Untangling taxonomy: A DNA barcode reference library for Canadian spiders. Mol. Ecol. Resour. 16, 325–341 (2016).Article
Google Scholar
Aliabadian, M., Kaboli, M., Nijman, V. & Vences, M. Molecular identification of birds: Performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4, e4119. https://doi.org/10.1371/journal.pone.0004119 (2009).Article
ADS
Google Scholar
Moritz, C. & Cicero, C. DNA barcoding: promise and pitfalls. PLoS Biol. 2, e354. https://doi.org/10.1371/journal.pbio.0020354 (2004).Article
Google Scholar
Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).Article
Google Scholar
Polak, S., Delić, T., Kostanjšek, R. & Trontelj, P. Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro. Arthropod Syst. 74, 241–254 (2016).
Google Scholar
Lukić, M., Delić, T., Pavlek, M., Deharveng, L. & Zagmajster, M. Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae). Zool. Scr. 49, 86–100 (2019).Article
Google Scholar
Casale, A., Jalžić, B., Lohaj, R. & Mlejnek, R. Two new highly specialised subterranean beetles from the Velebit massif (Croatia): Velebitaphaenops (new genus) giganteus Casale & Jalžić, new species (Coleoptera: Carabidae: Trechini) and Velebitodromus ozrenlukici Lohaj, Mlejnek & Jalžić, new species (Coleoptera: Cholevidae: Leptodirini). Nat. Croat. 21, 129–153 (2012).
Google Scholar
Andersen, T. et al. Blind flight? A new troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama-Trojama Cave in Croatia. PLoS ONE 11, e0152884. https://doi.org/10.1371/journal.pone.0152884 (2016).Article
Google Scholar
Velić, J. et al. A geological overview of glacial accumulation and erosional occurrences at the Velebit and the Biokovo Mts., Croatia. The Min. Geol. Petrol. Eng. Bull. 32, 77–96 (2017).
Google Scholar
Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).Article
Google Scholar
Trontelj, P. Adaptation and natural selection in caves in Encyclopedia of Caves (eds. White, W. B., Culver, D. B. & Pipan, T.) 40–46 (Academic Press, 2019).Beier, M. Die Höhlenpseudoscorpione der Balkanhalbinsel. Studien aus dem Gebiete der Allgemeinen Karstforschung, der Wissenschaftlichen Höhlenkunde, der Eiszeitforschung und den Nachbargebieten. 4, 1–83 (1939).
Google Scholar
Antić, D., Dražina, T., Rađa, T., Tomić, V. T. & Makarov, S. E. Review of the family Anthogonidae (Diplopoda, Chordeumatida), with descriptions of three new species from the Balkan Peninsula. Zootaxa 3948, 151–181 (2015).Article
Google Scholar
Pretner, E. Koleopterološka fauna pećina i jama Hrvatske s historijskim pregledom istraživanja. Krš Jugoslavije. 8, 101–239 (1973).
Google Scholar
Zaragoza, J. A. & Šťáhlavský, F. A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa 1693, 27–40 (2008).Article
Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article
ADS
Google Scholar
Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article
Google Scholar
Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 12, 1–12 (2021).Article
Google Scholar
Fišer, C. et al. The European green deal misses Europe’s subterranean biodiversity hotspots. Nat. Ecol. Evol. 6, 1403–1404 (2022).Article
Google Scholar
Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).Article
Google Scholar More