More stories

  • in

    Geomagnetic disturbance associated with increased vagrancy in migratory landbirds

    To investigate whether vagrancy is associated with geomagnetic disturbance and solar activity, we developed a method for quantifying the relative vagrancy of spatiotemporal records for 152 North American landbird species (nfall = 150, nspring = 124). While vagrancy is often treated as a binary classification (i.e., an individual is either a vagrant or not) and then used as a discrete variable (i.e., a count of total vagrants in an area)16,18, here we calculated it as a continuous variable by combining two large-scale ornithological datasets—captures and encounters of individually marked birds from the USGS Bird Banding Lab (BBL)49 and weekly, species-specific abundance maps for the continental United States from the eBird Status and Trends (hereafter, eBird S&T; via the R package ‘ebirdst’, version 2.1.0)69. Banding records have the advantage over other potential databases of vagrancy records (such as eBird or rare bird lists) in that efforts are long-term, continent-wide, have limited false positives, and have only one record per individual. Additionally, eBird S&T has the advantage over static range maps in that they provide weekly predictions and incorporate relative abundance. With these two data sources, we constructed a species-specific vagrancy value (Fig. S1), that measures the spatiotemporal rarity for every banding record. Inclusion of all banding records rather than just rare records allowed for the analysis of the dispersion of whole species populations, mitigating the potential bias of effort in banding operations (i.e., more vagrant records with greater effort). We then used hierarchical Bayesian random-effects models to estimate the strength of the association between geomagnetic disturbance, solar activity, and avian vagrancy.Species data and inclusionWe considered all full—or partial-migrant landbird species with a breeding, non-breeding, or migratory range in the United States or Canada. To do this, we used species distribution maps accessed through Birds of the World70. Landbird species likely to be caught through banding efforts (excluding species like raptors, nightjars, and swifts) that regularly occur in  > 3 but  10 km. Each banding record included the date, latitude and longitude (and precision), species, and age (if known;71). Banding records were filtered to those captures that occurred during the species-specific migration period as defined by eBird S&T69. eBird S&T approximates stationary and migratory periods by determining when the distribution of whole species population is moving69. Our use of banding records within species-specific eBird S&T migratory periods was designed to maximize the proportion of migrant birds in the analysis, but likely excludes some early and late records of migrating individuals.Banding records of species that underwent taxonomic divisions or aggregations during the study period were eliminated if the date occurred during a period in which the species identity according to modern taxonomy is indeterminate (see Supplement 2). Taxonomic reclassifications were not considered when species divisions/aggregations would only affect records from outside North America, such as the split of a Southern American taxon, Chestnut-collared Swallow (Petrochelidon rufocollaris) from its North American counterpart, Cave Swallow (Petrochelidon fulva). In these cases, we assumed all banding records during the study period were of the North American species. For a full list of periods where species records were excluded, see Supplement 2. Species with  More

  • in

    Arbuscular mycorrhizal fungi in oat-pea intercropping

    Biomass yield and WUEBiomass increased with precipitation, as expected and reported in Lee3. There was less water uptake in intercropping compared to sole oat and pea. In general, intercropping represented the median of the two sole cropping treatments, where oat had the highest biomass and WUE while pea had the lowest, and where pea had the highest mineral content and oat had the lowest3. Intercropping resulted in advantages in forage yield stability and was not associated with changes to the AMF community.Alpha diversityWe found differences in AMF species richness estimates in the roots across treatment combinations (i.e., intercropping systems × N fertilizer rate) in 2019 (Chao1, p  More

  • in

    Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces

    Griggs, D. et al. Sustainable development goals for people and planet. Nature 495, 305–307 (2013).Article 
    CAS 

    Google Scholar 
    Charlop-Powers, Z. et al. Urban park soil microbiomes are a rich reservoir of natural product biosynthetic diversity. Proc. Natl Acad. Sci. USA 113, 14811 (2016).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Global homogenization of the structure and function in the soil microbiome of urban greenspaces. Sci. Adv. 7, eabg5809 (2021).Article 
    CAS 

    Google Scholar 
    Martínez, J. L. Antibiotics and antibiotic resistance genes in natural environments. Science 321, 365–367 (2008).Article 

    Google Scholar 
    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).Article 
    CAS 

    Google Scholar 
    Byrnes, J. E. K. et al. Investigating the relationship between biodiversity and ecosystem multifunctionality: challenges and solutions. Methods Ecol. Evolution 5, 111–124 (2014).Article 

    Google Scholar 
    Gamfeldt, L. & Roger, F. Revisiting the biodiversity–ecosystem multifunctionality relationship. Nat. Ecol. Evolution 1, 0168 (2017).Article 

    Google Scholar 
    Lefcheck, J. S. et al. Biodiversity enhances ecosystem multifunctionality across trophic levels and habitats. Nat. Commun. 6, 6936 (2015).Article 
    CAS 

    Google Scholar 
    Zavaleta, E. S. et al. Sustaining multiple ecosystem functions in grassland communities requires higher biodiversity. Proc. Natl Acad. Sci. USA 107, 1443 (2010).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7, 10541 (2016).Article 
    CAS 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl Acad. Sci. USA 111, 5266 (2014).Article 
    CAS 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).Article 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. R. Soc. B 281, 20141988 (2014).Article 

    Google Scholar 
    Schittko, C. et al. Biodiversity maintains soil multifunctionality and soil organic carbon in novel urban ecosystems. J. Ecol. https://doi.org/10.1111/1365-2745.13852 (2022).Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science 335, 214–218 (2012).Article 
    CAS 

    Google Scholar 
    Jing, X. et al. The links between ecosystem multifunctionality and above-and belowground biodiversity are mediated by climate. Nat. Commun. 6, 1–8 (2015).Article 

    Google Scholar 
    Kadowaki, K. et al. Mycorrhizal fungi mediate the direction and strength of plant–soil feedbacks differently between arbuscular mycorrhizal and ectomycorrhizal communities. Commun. Biol. 1, 196 (2018).Article 

    Google Scholar 
    Soliveres, S. et al. Biodiversity at multiple trophic levels is needed for ecosystem multifunctionality. Nature 536, 456–459 (2016).Article 
    CAS 

    Google Scholar 
    Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 37–47 (Academic Press, 2012).Berman, J. J. in Taxonomic Guide to Infectious Diseases (ed. Berman, J. J.) 25–31 (Academic Press, 2012).Busse, H.-J. in Methods in Microbiology (eds Rainey, F. & Oren. A.) Vol. 38, 239–259 (Academic Press, 2011).van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    van Bergeijk, D. A. et al. Ecology and genomics of Actinobacteria: new concepts for natural product discovery. Nat. Rev. Microbiol. 18, 546–558 (2020).Article 

    Google Scholar 
    Orellana, L. H. et al. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 16, 630–641 (2022).Article 
    CAS 

    Google Scholar 
    Fincker, M. et al. Metabolic strategies of marine subseafloor Chloroflexi inferred from genome reconstructions. Environ. Microbiol. 22, 3188–3204 (2020).Article 
    CAS 

    Google Scholar 
    Stralis-Pavese, N. et al. Analysis of methanotroph community composition using a pmoA-based microbial diagnostic microarray. Nat. Protoc. 6, 609–624 (2011).Article 
    CAS 

    Google Scholar 
    Berube, P. M. et al. Physiology and evolution of nitrate acquisition in Prochlorococcus. ISME J. 9, 1195–1207 (2015).Article 
    CAS 

    Google Scholar 
    Liang, J.-L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).Article 
    CAS 

    Google Scholar 
    Hättenschwiler, S. & Gasser, P. Soil animals alter plant litter diversity effects on decomposition. Proc. Natl Acad. Sci. USA 102, 1519 (2005).Article 

    Google Scholar 
    Erktan, A. et al. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).Article 
    CAS 

    Google Scholar 
    Grime, J. P. Benefits of plant diversity to ecosystems: immediate, filter and founder effects. J. Ecol. 86, 902–910 (1998).Article 

    Google Scholar 
    Barberán, A. et al. Why are some microbes more ubiquitous than others? Predicting the habitat breadth of soil bacteria. Ecol. Lett. 17, 794–802 (2014).Article 

    Google Scholar 
    Chen, Q. L. et al. Rare microbial taxa as the major drivers of ecosystem multifunctionality in long-term fertilized soils. Soil Biol. Biochem. 141, 107686 (2020).Article 
    CAS 

    Google Scholar 
    Zhang, Z. et al. Rare species-driven diversity-ecosystem multifunctionality relationships are promoted by stochastic community assembly. mBio. mBio. 13, e00449–22 (2022).Article 

    Google Scholar 
    Domínguez-García, V. et al. Unveiling dimensions of stability in complex ecological networks. Proc. Natl Acad. Sci. USA 116, 25714 (2019).Article 

    Google Scholar 
    Zhang, L. et al. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 12, 2339–2351 (2018).Article 
    CAS 

    Google Scholar 
    Couturier, M. et al. Lytic xylan oxidases from wood-decay fungi unlock biomass degradation. Nat. Chem. Biol. 14, 306–310 (2018).Article 
    CAS 

    Google Scholar 
    Steinberg, G. et al. A lipophilic cation protects crops against fungal pathogens by multiple modes of action. Nat. Commun. 11, 1608 (2020).Article 
    CAS 

    Google Scholar 
    Johnston, A. S. A. & Sibly, R. M. The influence of soil communities on the temperature sensitivity of soil respiration. Nat. Ecol. Evol. 2, 1597–1602 (2018).Article 

    Google Scholar 
    Watson, C. J. et al. Ecological and economic benefits of low-intensity urban lawn management. J. Appl. Ecol. 57, 436–446 (2020).Article 

    Google Scholar 
    Williams, N. S. G. et al. A conceptual framework for predicting the effects of urban environments on floras. J. Ecol. 97, 4–9 (2009).Article 

    Google Scholar 
    Trabucco, A. & Zomer, R. Global Aridity Index and Potential Evapotranspiration (ET0) Climate Database v2 (figshare, 2019); https://doi.org/10.6084/m9.figshare.7504448.v3Kettler, T. A. et al. Simplifed method for soil particle-size determination to accompany soil-quality analyses. Soil Sci. Soc. Am. J. 65, 849–852 (2001).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Changes in belowground biodiversity during ecosystem development. Proc. Natl Acad. Sci. USA 116, 6891 (2019).Article 
    CAS 

    Google Scholar 
    Ramirez, K. S. et al. Biogeographic patterns in below-ground diversity in New York City’s Central Park are similar to those observed globally. Proc. Biol. Sci. 281, 22 (2014).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 

    Google Scholar 
    Tedersoo, L. et al. Regional-scale in-depth analysis of soil fungal diversity reveals strong pH and plant species effects in Northern Europe. Front. Microbiol. 11, 1953 (2020).Article 

    Google Scholar 
    Bastida, F. et al. Microbiological degradation index of soils in a semiarid climate. Soil Biol. Biochem. 38, 3463–3473 (2006).Article 
    CAS 

    Google Scholar 
    Lugato, E. et al. Different climate sensitivity of particulate and mineral-associated soil organic matter. Nat. Geosci. 14, 295–300 (2021).Article 
    CAS 

    Google Scholar 
    Delgado-Baquerizo, M. et al. The influence of soil age on ecosystem structure and function across biomes. Nat. Commun. 11, 4721 (2020).Article 
    CAS 

    Google Scholar 
    Frostegård, Å. et al. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 43, 1621–1625 (2011).Article 

    Google Scholar 
    Olsson, P. A. et al. The use of phospholipid and neutral lipid fatty acids to estimate biomass of arbuscular mycorrhizal fungi in soil. Mycol. Res. 99, 623–629 (1995).Article 
    CAS 

    Google Scholar 
    Campbell, C. D. et al. A rapid microtiter plate method to measure carbon dioxide evolved from carbon substrate amendments so as to determine the physiological profiles of soil microbial communities by using whole soil. Appl. Environ. Microbiol. 69, 3593–3599 (2003).Article 
    CAS 

    Google Scholar 
    Bell, C. W. et al. High-throughput fluorometric measurement of potential soil extracellular enzyme activities. J. Vis. Exp. 15, e50961 (2013).
    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Fierer, N. et al. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proc. Natl Acad. Sci. USA 109, 21390–21395 (2012).Article 
    CAS 

    Google Scholar 
    Fierer, N. et al. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 342, 621–624 (2013).Article 
    CAS 

    Google Scholar 
    Buchfink, B., Reuter, K. & Drost, H. G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 18, 366–368 (2021).Article 
    CAS 

    Google Scholar 
    Manning, P. et al. Redefining ecosystem multifunctionality. Nat. Ecol. Evolution 2, 427–436 (2018).Article 

    Google Scholar 
    Legendre, P. & Legendre, L. Interpretation of Ecological Structures Numerical Ecology 3rd English edn (Elsevier Science BV, 2012).Grace, J. B. Structural Equation Modeling and Natural Systems (Cambridge University Press, 2006).Subramanian, S. et al. Persistent gut microbiota immaturity in malnourished Bangladeshi children. Nature 510, 417 (2014).Article 
    CAS 

    Google Scholar 
    Fan, K. et al. Soil biodiversity supports the delivery of multiple ecosystem functions in urban greenspaces. figshare https://doi.org/10.6084/m9.figshare.21175492.v3 (2022). More

  • in

    Coral reefs and coastal tourism in Hawaii

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).Article 
    CAS 

    Google Scholar 
    Arkema, K. K., Fisher, D. M., Wyatt, K., Wood, S. A. & Payne, H. J. Advancing sustainable development and protected area mManagement with social media-based tourism data. Sustainability 13, 2427 (2021).Article 

    Google Scholar 
    Tourism in the 2030 Agenda (UNWTO, 2015); https://www.unwto.org/tourism-in-2030-agendaCowburn, B., Moritz, C., Birrell, C., Grimsditch, G. & Abdulla, A. Can luxury and environmental sustainability co-exist? Assessing the environmental impact of resort tourism on coral reefs in the Maldives. Ocean Coast. Manag. 158, 120–127 (2018).Article 

    Google Scholar 
    Lin, B. Close encounters of the worst kind: reforms needed to curb coral reef damage by recreational divers. Coral Reefs 40, 1429–1435 (2021).Article 

    Google Scholar 
    Asner, G. P. et al. Large-scale mapping of live corals to guide reef conservation. Proc. Natl Acad. Sci. USA 117, 33711–33718 (2020).Article 
    CAS 

    Google Scholar 
    Wood, S. A., Guerry, A. D., Silver, J. M. & Lacayo, M. Using social media to quantify nature-based tourism and recreation. Sci. Rep. 3, 2976 (2013).Article 

    Google Scholar 
    Wood, S. A. et al. Next-generation visitation models using social media to estimate recreation on public lands. Sci. Rep. 10, 15419 (2020).Article 
    CAS 

    Google Scholar 
    Hausmann, A. et al. Social media data can be used to understand tourists’ preferences for nature-based experiences in protected areas. Conserv. Lett. 11, e12343 (2018).Article 

    Google Scholar 
    Tenkanen, H. et al. Instagram, Flickr, or Twitter: assessing the usability of social media data for visitor monitoring in protected areas. Sci. Rep. 7, 17615 (2017).Article 

    Google Scholar 
    Sessions, C., Wood, S. A., Rabotyagov, S. & Fisher, D. M. Measuring recreational visitation at U.S. National Parks with crowd-sourced photographs. J. Environ. Manag. 183, 703–711 (2016).Article 

    Google Scholar 
    Mancini, F., Coghill, G. M. & Lusseau, D. Using social media to quantify spatial and temporal dynamics of nature-based recreational activities. PLoS One 13, e0200565 (2018).Article 

    Google Scholar 
    Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).Article 

    Google Scholar 
    van Zanten, B. T. et al. Continental-scale quantification of landscape values using social media data. Proc. Natl Acad. Sci. USA 113, 12974–12979 (2016).Article 

    Google Scholar 
    Department of Land and Natural Resources. Beach Access (Office of Conservation and Coastal Lands, 2013); https://dlnr.hawaii.gov/occl/beach-access/Mobile LTE Coverage Map (Federal Communications Commission, 2021).Arkema, K. K. et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl Acad. Sci. USA 112, 7390–7395 (2015).Article 
    CAS 

    Google Scholar 
    Neuvonen, M., Pouta, E., Puustinen, J. & Sievänen, T. Visits to national parks: effects of park characteristics and spatial demand. J. Nat. Conserv. 18, 224–229 (2010).Article 

    Google Scholar 
    Rodgers, K., Cox, E. & Newtson, C. Effects of mechanical fracturing and experimental trampling on hawaiian corals. Environ. Manag. 31, 0377–0384 (2003).Article 

    Google Scholar 
    Downs, C. A. et al. Toxicopathological effects of the sunscreen UV filter, oxybenzone (benzophenone-3), on coral planulae and cultured primary cells and its environmental contamination in Hawaii and the U.S. Virgin Islands. Arch. Environ. Contam. Toxicol. 70, 265–288 (2016).Article 
    CAS 

    Google Scholar 
    Côté, I. M., Darling, E. S. & Brown, C. J. Interactions among ecosystem stressors and their importance in conservation. Proc. R. Soc. B. 283, 20152592 (2016).Article 

    Google Scholar 
    Bruno, J. F. & Valdivia, A. Coral reef degradation is not correlated with local human population density. Sci. Rep. 6, 29778 (2016).Article 
    CAS 

    Google Scholar 
    Johnson, J. V., Dick, J. T. A. & Pincheira-Donoso, D. Local anthropogenic stress does not exacerbate coral bleaching under global climate change. Glob. Ecol. Biogeogr. (2022).Darling, E. S., McClanahan, T. R. & Côté, I. M. Combined effects of two stressors on Kenyan coral reefs are additive or antagonistic, not synergistic. Conserv. Lett. 3, 122–130 (2010).Article 

    Google Scholar 
    Severino, S. J. L., Rodgers, K. S., Stender, Y. & Stefanak, M. Hanauma Bay Biological Carrying Capacity Survey 2019–20 2nd Annual Report https://www.honolulu.gov/rep/site/dpr/hanaumabay_docs/Hanauma_Bay_Carrying_Capacity_Report_August_2020.pdf (City and County of Honolulu Parks and Recreation Department, 2020).Selenium WebDriver (Software Freedom Conservancy, 2022); https://www.selenium.dev/documentation/en/webdriver/Geospatial Data Portal. Hawaii Statewide GIS Program (Hawaii State Office of Planning, 2017); https://geoportal.hawaii.gov/Wedding, L. M. et al. Advancing the integration of spatial data to map human and natural drivers on coral reefs. PLoS One 13, e0189792 (2018).Article 

    Google Scholar 
    Nguyen, T., Liquet, B., Mengersen, K. & Sous, D. Mapping of coral reefs with multispectral satellites: a review of recent papers. Remote Sens. 13, 4470 (2021).Article 

    Google Scholar 
    Wicaksono, P., Aryaguna, P. A. & Lazuardi, W. Benthic habitat mapping model and cross validation using machine-learning classification algorithms. Remote Sens. 11, 1279 (2019).Article 

    Google Scholar  More

  • in

    Molecular analyses of pseudoscorpions in a subterranean biodiversity hotspot reveal cryptic diversity and microendemism

    Zupan Hajna, N. Dinaric karst: Geography and geology in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 195–203 (Academic Press, 2012).Jug-Dujaković, M., Ninčević, T., Liber, Z., Grdiša, M. & Šatović, Z. Salvia officinalis survived in situ Pleistocene glaciation in ‘refugia within refugia’ as inferred from AFLP markers. Plant Syst. Evol. 306, 1–12 (2020).Article 

    Google Scholar 
    Bănărescu, P. M. Distribution pattern of the aquatic fauna of the Balkan Peninsula in Balkan Biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B. & Reed J. M.) 203–217 (Kluwer Academic Publishers, 2004).Sket, B. Diversity patterns in the Dinaric Karst in Encyclopedia of Caves (eds. White, W. B. & Culver, D. C.) 228–238 (Academic Press, 2012).Griffiths, H. I., Kryštufek, B., & Reed, J. M. Balkan biodiversity. Pattern and Process in the European Hotspot (eds. Griffiths, H. I., Kryštufek, B., & Reed, J. M.) 1–332 (Kluwer Academic Publishers, 2004).Culver, D. C., Pipan, T. & Schneider, K. Vicariance, dispersal and scale in the aquatic subterranean fauna of karst regions. Freshw. Biol. 54, 918–929 (2009).Article 

    Google Scholar 
    Gottstein Matočec, S. et al. An overview of the cave and interstitial biota of Croatia. Nat. Croat. 11, 1–112 (2002).
    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).Article 
    ADS 

    Google Scholar 
    Bilandžija, H., Morton, B., Podnar, M. & Ćetković, H. Evolutionary history of relict Congeria (Bivalvia: Dreissenidae): Unearthing the subterranean biodiversity of the Dinaric Karst. Front. Zool. 10, 1–18 (2013).Article 

    Google Scholar 
    Bedek, J., Taiti, S., Bilandžija, H., Ristori, E. & Baratti, M. Molecular and taxonomic analyses in troglobiotic Alpioniscus (Illyrionethes) species from the Dinaric Karst (Isopoda: Trichoniscidae). Zool. J. Linn. Soc. 187, 539–584 (2019).Article 

    Google Scholar 
    Vörös, J., Márton, O., Schmidt, B. R., Gál, J. T. & Jelić, D. Surveying Europe’s only cave-dwelling chordate species (Proteus anguinus) using environmental DNA. PLoS ONE 12, e0170945. https://doi.org/10.1371/journal.pone.0170945 (2017).Article 

    Google Scholar 
    Delić, T., Švara, V., Coleman, C. O., Trontelj, P. & Fišer, C. The giant cryptic amphipod species of the subterranean genus Niphargus (Crustacea, Amphipoda). Zool. Scr. 46, 740–752 (2017).Article 

    Google Scholar 
    Delić, T., Trontelj, P., Rendoš, M. & Fišer, C. The importance of naming cryptic species and the conservation of endemic subterranean amphipods. Sci. Rep. 7, 1–12 (2017).Article 

    Google Scholar 
    Delić, T., Stoch, F., Borko, Š., Flot, J. F. & Fišer, C. How did subterranean amphipods cross the Adriatic Sea? Phylogenetic evidence for dispersal–vicariance interplay mediated by marine regression–transgression cycles. J. Biogeogr. 47, 1875–1887 (2020).Article 

    Google Scholar 
    Podnar, M., Grbac, I., Tvrtković, N., Hörweg, C. & Haring, E. Hidden diversity, ancient divergences, and tentative Pleistocene microrefugia of European scorpions (Euscorpiidae: Euscorpiinae) in the eastern Adriatic region. J. Zool. Syst. Evol. Res. 59, 1824–1849 (2021).Article 

    Google Scholar 
    Beron, P. Zoogeography of Arachnida (ed. Beron, P.) Meth. Ecol. Evol. 1–987 (Springer Cham, 2018).Ćurčić, B. P. M. Cave-dwelling pseudoscorpions of the Dinaric karst (ed. Ćurčić, B. P. M.) 1–192 (Slovenska Akademija Znanosti in Umetnosti, 1988).Harms, D., Roberts, J. D. & Harvey, M. S. Climate variability impacts on diversification processes in a biodiversity hotspot: A phylogeography of ancient pseudoscorpions in south-western Australia. Zool. J. Linn. Soc. 186, 934–949 (2019).Article 

    Google Scholar 
    Muster, C., Schmarda, T. & Blick, T. Vicariance in a cryptic species pair of European pseudoscorpions (Arachnida, Pseudoscorpiones, Chthoniidae). Zool. Anz. 242, 299–311 (2004).Article 

    Google Scholar 
    Ozimec, R. List of Croatian pseudoscorpion fauna (Arachnida, Pseudoscorpiones). Nat. Croat. 13, 381–394 (2004).
    Google Scholar 
    World Pseudoscorpiones Catalog. Natural History Museum Bern. https://wac.nmbe.ch (2022).Ćurčić, B. P. M., Dimitrijević, R. N., Rađa, T., Makarov, S. E. & Ilić, B. S. Archaeoroncus, a new genus of pseudoscorpions from Croatia (Pseudoscorpiones, Neobisiidae), with descriptions of two new species. Acta Zool. Bulg. 64, 333–340 (2012).
    Google Scholar 
    Ćurčić, B. P. M. et al. On two new cave species of pseudoscorpions (Neobisiidae, Pseudoscorpiones) from Herzegovina and Dalmatia. Arch. Biol. Sci. 66, 377–384 (2014).Article 

    Google Scholar 
    Ćurčić, B. P. M. et al. Roncus sutikvae sp. n. (Pseudoscorpiones: Neobisiidae), a new epigean pseudoscorpion from central Dalmatia (Croatia). Arthropoda Sel. 30, 205–215 (2021).Article 

    Google Scholar 
    Ćurčić, B. P. M., Rađa, T., Dimitrijević, R., Ćurčić, N. B. & Ćurčić, S. Roncus ladestani sp. n. and Roncus pecmliniensis sp. n., two new Pseudoscorpions (Pseudoscorpiones, Neobisiidae) from Croatia and Bosnia and Herzegovina, respectively. Zool. Zhurnal. 100, 159–169 (2021).
    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & DeWaard, J. R. Biological identifications through DNA barcodes. Proc. Royal Soc. B. 270, 313–321 (2003).Article 

    Google Scholar 
    Page, R. D. DNA barcoding and taxonomy: Dark taxa and dark texts. Philos. Trans. R. Soc. Lond., B. Biol. Sci. 371, 20150334. https://doi.org/10.1098/rstb.2015.0334 (2016).Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. A DNA-based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8, e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).Article 
    ADS 

    Google Scholar 
    Kekkonen, M. & Hebert, P. D. DNA barcode-based delineation of putative species: Efficient start for taxonomic workflows. Mol. Ecol. Res. 14, 706–715 (2014).Article 

    Google Scholar 
    Christophoryová, J., Šťáhlavský, F. & Fedor, P. An updated identification key to the pseudoscorpions (Arachnida: Pseudoscorpiones) of the Czech Republic and Slovakia. Zootaxa 2876, 35–48 (2011).Article 

    Google Scholar 
    Gardini, G. A revision of the species of the pseudoscorpion subgenus Chthonius (Ephippiochthonius) (Arachnida, Pseudoscorpiones, Chthoniidae) from Italy and neighbouring areas. Zootaxa 3655, 1–151 (2013).Article 

    Google Scholar 
    Gardini, G. The species of the Chthonius heterodactylus group (Arachnida, Pseudoscorpiones, Chthoniidae) from the eastern Alps and the Carpathians. Zootaxa 3887, 101–137 (2014).Article 

    Google Scholar 
    Gardini, G. The Italian species of the Chthonius ischnocheles group (Arachnida, Pseudoscorpiones, Chthoniidae), with reference to neighbouring countries. Zootaxa 4987, 1–131 (2021).Article 

    Google Scholar 
    Zaragoza, J. A. Revision of the Ephippiochthonius complex in the Iberian Peninsula, Balearic Islands and Macaronesia, with proposed changes to the status of the Chthonius subgenera (Pseudoscorpiones, Chthoniidae). Zootaxa 4246, 1–221 (2017).Article 

    Google Scholar 
    Gams, I. Kras v Sloveniji v prostoru in času. (ed. Gams, I.) 1–516 (Postojna: Inštitut za raziskovanje Krasa, 2004).European Union, Copernicus Land Monitoring Service. https://land.copernicus.eu (2016).Maddison, W. P., & Maddison, D. R. Mesquite: a modular system for evolutionary analysis. http://mesquiteproject.org (2019).Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).Article 

    Google Scholar 
    Villesen, P. FaBox: An online toolbox for fasta sequences. Mol. Ecol. Notes. 7, 965–968 (2007).Article 

    Google Scholar 
    Felsenstein, J. Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. Syst. Biol. 22, 240–249 (1973).Article 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: New models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).Article 

    Google Scholar 
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol. 35, 518–522 (2018).Article 

    Google Scholar 
    Muster, C. et al. The dark side of pseudoscorpion diversity: The German Barcode of Life campaign reveals high levels of undocumented diversity in European false scorpions. Ecol. Evol. 11, 13815–13829 (2021).Article 

    Google Scholar 
    Ontano, A. Z. et al. Taxonomic sampling and rare genomic changes overcome long-branch attraction in the phylogenetic placement of pseudoscorpions. Mol. Biol. Evol. 38, 2446–2467 (2021).Article 

    Google Scholar 
    Rambaut A. FigTree v1.4.3 http://tree.bio.ed.ac.uk/software/figtree/ (2016).Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49, W293–W296 (2021).Article 

    Google Scholar 
    Talavera, G. & Castresana, J. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst. Biol. 56, 564–577 (2007).Article 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).Article 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).Article 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. PartitionFinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).
    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).Article 

    Google Scholar 
    Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees in Proceedings of the Gateway Computing Environments Workshop (GCE). https://doi.org/10.1109/GCE.2010.5676129 (2010).Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).Article 
    ADS 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2020).Brown, S. D. et al. Spider: an R package for the analysis of species identity and evolution, with particular reference to DNA barcoding. Mol. Ecol. Resour. 12, 562–565 (2012).Article 

    Google Scholar 
    Meier, R., Shiyang, K., Vaidya, G. & Ng, P. K. L. DNA barcoding and taxonomy in Diptera: A tale of high intraspecific variability and low identification success. Syst. Biol. 55, 715–728 (2006).Article 

    Google Scholar 
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. J. M. E. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 21, 1864–1877 (2012).Article 

    Google Scholar 
    Puillandre, N., Brouillet, S. & Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 21, 609–620 (2020).Article 

    Google Scholar 
    Zhang, J., Kapli, P., Pavlidis, P. & Stamatakis, A. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29, 2869–2876 (2013).Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549 (2018).Article 

    Google Scholar 
    Karney, C. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).Article 
    ADS 

    Google Scholar 
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Meth. Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Bregović, P., Fišer, C. & Zagmajster, M. Contribution of rare and common species to subterranean species richness patterns. Ecol. Evol. 9, 11606–11618 (2019).Article 

    Google Scholar 
    Hunter, J. D. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9, 90–95 (2007).Article 

    Google Scholar 
    Young, M. R. & Hebert, P. D. Patterns of protein evolution in cytochrome c oxidase 1 (COI) from the class Arachnida. PLoS ONE 10, e0135053. https://doi.org/10.1371/journal.pone.0135053 (2015).Article 

    Google Scholar 
    Yin, Y. et al. DNA barcoding uncovers cryptic diversity in minute herbivorous mites (Acari, Eriophyoidea). Mol. Ecol. Resour. 22, 1986–1998 (2022).Article 

    Google Scholar 
    Doña, J. et al. DNA barcoding and minibarcoding as a powerful tool for feather mite studies. Mol. Ecol. Resour. 15, 1216–1225 (2015).Article 

    Google Scholar 
    Blagoev, G. A. et al. Untangling taxonomy: A DNA barcode reference library for Canadian spiders. Mol. Ecol. Resour. 16, 325–341 (2016).Article 

    Google Scholar 
    Aliabadian, M., Kaboli, M., Nijman, V. & Vences, M. Molecular identification of birds: Performance of distance-based DNA barcoding in three genes to delimit parapatric species. PLoS ONE 4, e4119. https://doi.org/10.1371/journal.pone.0004119 (2009).Article 
    ADS 

    Google Scholar 
    Moritz, C. & Cicero, C. DNA barcoding: promise and pitfalls. PLoS Biol. 2, e354. https://doi.org/10.1371/journal.pbio.0020354 (2004).Article 

    Google Scholar 
    Dellicour, S. & Flot, J. F. The hitchhiker’s guide to single-locus species delimitation. Mol. Ecol. Resour. 18, 1234–1246 (2018).Article 

    Google Scholar 
    Polak, S., Delić, T., Kostanjšek, R. & Trontelj, P. Molecular phylogeny of the cave beetle genus Hadesia (Coleoptera: Leiodidae: Cholevinae: Leptodirini), with a description of a new species from Montenegro. Arthropod Syst. 74, 241–254 (2016).
    Google Scholar 
    Lukić, M., Delić, T., Pavlek, M., Deharveng, L. & Zagmajster, M. Distribution pattern and radiation of the European subterranean genus Verhoeffiella (Collembola, Entomobryidae). Zool. Scr. 49, 86–100 (2019).Article 

    Google Scholar 
    Casale, A., Jalžić, B., Lohaj, R. & Mlejnek, R. Two new highly specialised subterranean beetles from the Velebit massif (Croatia): Velebitaphaenops (new genus) giganteus Casale & Jalžić, new species (Coleoptera: Carabidae: Trechini) and Velebitodromus ozrenlukici Lohaj, Mlejnek & Jalžić, new species (Coleoptera: Cholevidae: Leptodirini). Nat. Croat. 21, 129–153 (2012).
    Google Scholar 
    Andersen, T. et al. Blind flight? A new troglobiotic Orthoclad (Diptera, Chironomidae) from the Lukina Jama-Trojama Cave in Croatia. PLoS ONE 11, e0152884. https://doi.org/10.1371/journal.pone.0152884 (2016).Article 

    Google Scholar 
    Velić, J. et al. A geological overview of glacial accumulation and erosional occurrences at the Velebit and the Biokovo Mts., Croatia. The Min. Geol. Petrol. Eng. Bull. 32, 77–96 (2017).
    Google Scholar 
    Bickford, D. et al. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22, 148–155 (2007).Article 

    Google Scholar 
    Trontelj, P. Adaptation and natural selection in caves in Encyclopedia of Caves (eds. White, W. B., Culver, D. B. & Pipan, T.) 40–46 (Academic Press, 2019).Beier, M. Die Höhlenpseudoscorpione der Balkanhalbinsel. Studien aus dem Gebiete der Allgemeinen Karstforschung, der Wissenschaftlichen Höhlenkunde, der Eiszeitforschung und den Nachbargebieten. 4, 1–83 (1939).
    Google Scholar 
    Antić, D., Dražina, T., Rađa, T., Tomić, V. T. & Makarov, S. E. Review of the family Anthogonidae (Diplopoda, Chordeumatida), with descriptions of three new species from the Balkan Peninsula. Zootaxa 3948, 151–181 (2015).Article 

    Google Scholar 
    Pretner, E. Koleopterološka fauna pećina i jama Hrvatske s historijskim pregledom istraživanja. Krš Jugoslavije. 8, 101–239 (1973).
    Google Scholar 
    Zaragoza, J. A. & Šťáhlavský, F. A new Roncus species (Pseudoscorpiones: Neobisiidae) from Montseny Natural Park (Catalonia, Spain), with remarks on karyology. Zootaxa 1693, 27–40 (2008).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).Article 
    ADS 

    Google Scholar 
    Médail, F. & Diadema, K. Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J. Biogeogr. 36, 1333–1345 (2009).Article 

    Google Scholar 
    Borko, Š., Trontelj, P., Seehausen, O., Moškrič, A. & Fišer, C. A subterranean adaptive radiation of amphipods in Europe. Nat. Commun. 12, 1–12 (2021).Article 

    Google Scholar 
    Fišer, C. et al. The European green deal misses Europe’s subterranean biodiversity hotspots. Nat. Ecol. Evol. 6, 1403–1404 (2022).Article 

    Google Scholar 
    Moritz, C. Defining ‘evolutionarily significant units’ for conservation. Trends Ecol. Evol. 9, 373–375 (1994).Article 

    Google Scholar  More

  • in

    Resolving the intricate role of climate in litter decomposition

    Swift, M. J., Heal, O. W. & Anderson, J. M. Decomposition in Terrestrial Ecosystems. Vol. 5.5 (Blackwell, 1979).Aerts, R. Climate, leaf litter chemistry and leaf litter decomposition in terrestrial ecosystems: a triangular relationship. Oikos 79, 439 (1997).Article 

    Google Scholar 
    Makkonen, M. et al. Highly consistent effects of plant litter identity and functional traits on decomposition across a latitudinal gradient. Ecol. Lett. 15, 1033–1041 (2012).Article 

    Google Scholar 
    Coûteaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and liter quality. Trends Ecol. Evol. 10, 63–66 (1995).Article 

    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).Article 

    Google Scholar 
    Bradford, M. A. et al. Climate fails to predict wood decomposition at regional scales. Nat. Clim. Change 4, 625–630 (2014).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Berg, B., Maynard, D. S., Wieder, W. R. & Wood, S. A. Understanding the dominant controls on litter decomposition. J. Ecol. 104, 229–238 (2016).Article 
    CAS 

    Google Scholar 
    Joly, F.-X. et al. Tree species diversity affects decomposition through modified micro-environmental conditions across European forests. New Phytol. 214, 1281–1293 (2017).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. A test of the hierarchical model of litter decomposition. Nat. Ecol. Evol. 1, 1836–1845 (2017).Article 

    Google Scholar 
    Berg, B. et al. Litter mass loss rates in pine forests of Europe and Eastern United States: some relationships with climate and litter quality. Biogeochemistry 20, 127–159 (1993).Article 

    Google Scholar 
    Powers, J. S. et al. Decomposition in tropical forests: a pan-tropical study of the effects of litter type, litter placement and mesofaunal exclusion across a precipitation gradient. J. Ecol. 97, 801–811 (2009).Article 
    CAS 

    Google Scholar 
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).Article 

    Google Scholar 
    Cornelissen, J. H. C. & Thompson, K. Functional leaf attributes predict litter decomposition rate in herbaceous plants. New Phytol. 135, 109–114 (1997).Article 
    CAS 

    Google Scholar 
    Coq, S., Souquet, J.-M., Meudec, E., Cheynier, V. & Hättenschwiler, S. Interspecific variation in leaf litter tannins drives decomposition in a tropical rain forest of French Guiana. Ecology 91, 2080–2091 (2010).Article 

    Google Scholar 
    Sun, T. et al. Contrasting dynamics and trait controls in first-order root compared with leaf litter decomposition. Proc. Natl Acad. Sci. USA 115, 10392–10397 (2018).Article 
    CAS 

    Google Scholar 
    Baeten, L. et al. A novel comparative research platform designed to determine the functional significance of tree species diversity in European forests. Perspect. Plant Ecol. Evol. Syst. 15, 281–291 (2013).Article 

    Google Scholar 
    Hobbie, S. E. et al. Tree species effects on decomposition and forest floor dynamics in a common garden. Ecology 87, 2288–2297 (2006).Article 

    Google Scholar 
    von Arx, G., Graf Pannatier, E., Thimonier, A. & Rebetez, M. Microclimate in forests with varying leaf area index and soil moisture: potential implications for seedling establishment in a changing climate. J. Ecol. 101, 1201–1213 (2013).Article 

    Google Scholar 
    Ayres, E. et al. Home-field advantage accelerates leaf litter decomposition in forests. Soil Biol. Biochem. 41, 606–610 (2009).Article 
    CAS 

    Google Scholar 
    Freschet, G. T., Aerts, R. & Cornelissen, J. H. C. Multiple mechanisms for trait effects on litter decomposition: moving beyond home-field advantage with a new hypothesis. J. Ecol. 100, 619–630 (2012).Article 

    Google Scholar 
    Meentemeyer, V. Macroclimate and lignin control of litter decomposition rates. Ecology 59, 465–472 (1978).Article 
    CAS 

    Google Scholar 
    Currie, W. S. et al. Cross-biome transplants of plant litter show decomposition models extend to a broader climatic range but lose predictability at the decadal time scale. Glob. Change Biol. 16, 1744–1761 (2010).Article 

    Google Scholar 
    Canessa, R. et al. Relative effects of climate and litter traits on decomposition change with time, climate and trait variability. J. Ecol. 109, 447–458 (2021).Article 

    Google Scholar 
    García-Palacios, P., Shaw, E. A., Wall, D. H. & Hättenschwiler, S. Temporal dynamics of biotic and abiotic drivers of litter decomposition. Ecol. Lett. 19, 554–563 (2016).Article 

    Google Scholar 
    Prescott, C. E. Litter decomposition: what controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).Article 
    CAS 

    Google Scholar 
    Prescott, C. E. & Vesterdal, L. Decomposition and transformations along the continuum from litter to soil organic matter in forest soils. For. Ecol. Manage. 498, 119522 (2021).Article 

    Google Scholar 
    Stadler, S. J. in Encyclopedia of World Climatology 89–94 (Springer, 2005).Moore, T. R., Bubier, J. L. & Bledzki, L. Litter decomposition in temperate peatland ecosystems: the effect of substrate and site. Ecosystems 10, 949–963 (2007).Article 

    Google Scholar 
    Austin, A. T. Has water limited our imagination for aridland biogeochemistry. Trends Ecol. Evol. 26, 229–235 (2011).Article 

    Google Scholar 
    Joly, F.-X., Kurupas, K. & Throop, H. Pulse frequency and soil-litter mixing alter the control of cumulative precipitation over litter decomposition. Ecology 98, 2255–2260 (2017).Article 

    Google Scholar 
    Scherer-Lorenzen, M., Bonilla, J. L. & Potvin, C. Tree species richness affects litter production and decomposition rates in a tropical biodiversity experiment. Oikos 116, 2108–2124 (2007).Article 

    Google Scholar 
    Vivanco, L. & Austin, A. T. Tree species identity alters forest litter decomposition through long-term plant and soil interactions in Patagonia, Argentina. J. Ecol. 96, 727–736 (2008).Article 
    CAS 

    Google Scholar 
    Fanin, N. et al. Home‐field advantage of litter decomposition: from the phyllosphere to the soil. New Phytol. 231, 1353–1358 (2021).Article 

    Google Scholar 
    Hättenschwiler, S., Tiunov, A. V. & Scheu, S. Biodiversity and litter decomposition in terrestrial ecosystems. Annu. Rev. Ecol. Evol. Syst. 36, 191–218 (2005).Article 

    Google Scholar 
    Keuskamp, J. A., Dingemans, B. J. J., Lehtinen, T., Sarneel, J. M. & Hefting, M. M. Tea Bag Index: a novel approach to collect uniform decomposition data across ecosystems. Methods Ecol. Evol. 4, 1070–1075 (2013).Article 

    Google Scholar 
    Thakur, M. P. et al. Reduced feeding activity of soil detritivores under warmer and drier conditions. Nat. Clim. Change 8, 75–78 (2018).Article 

    Google Scholar 
    Harrison, A. F., Latter, P. M. & Walton, D. W. H. (eds) Cotton Strip Assay: An Index of Decomposition in Soils (Institute of Terrestrial Ecology, 1988).García-Palacios, P., Maestre, F. T., Kattge, J. & Wall, D. H. Climate and litter quality differently modulate the effects of soil fauna on litter decomposition across biomes. Ecol. Lett. 16, 1045–1053 (2013).Article 

    Google Scholar 
    Garnier, E. et al. Plant functional markers capture ecosystem properties during secondary succession. Ecology 85, 2630–2637 (2004).Article 

    Google Scholar 
    Dawud, S. M. et al. Tree species functional group is a more important driver of soil properties than tree species diversity across major European forest types. Funct. Ecol. 31, 1153–1162 (2017).Article 

    Google Scholar 
    Pollastrini, M. et al. Taxonomic and ecological relevance of the chlorophyll a fluorescence signature of tree species in mixed European forests. New Phytol. 212, 51–65 (2016).Article 
    CAS 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2013).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modelling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar  More

  • in

    Male cooperation improves their own and kin-group productivity in a group-foraging spider

    Study species and spider collectionAustralomisidia ergandros is a subsocial spider inhabiting South-Eastern Australia. They live in communal kin-groups in nests usually built with leaves from Eucalyptus trees bound by silk threads. Group size usually ranges from 5 to 45 spiderlings. Groups are comprised of the offspring of a single female who provides maternal care until her death28. Offspring continue to live in groups for 5 to 7 months after the mother’s death29,30. One of the females inherit the natal nest while the remaining females disperse to found new nests. It is not entirely clear if A. ergandros inbreed with natal kin or if spiders show a mandatory pre-mating dispersal.We collected 29 A. ergandros nests from a population along Yass River Road in New South Wales, Australia (34° 55′ 20.50′′ S, 149° 6′ 15.53′′ E) in February 2016. At this time of year, the spiderlings are very young and the presence of immigrants, who might influence the extent of social foraging, is improbable9,31. For our experiments, we transferred the original nests to the laboratory at Macquarie University in Sydney.Group composition effectsOur experiments spanned a duration of 56 days. To investigate group composition (cooperators vs. defectors) effects, we first assessed the hunting types of individuals within ‘initial’ groups (phase 1) and subsequently composed and tested ‘sorted’ groups of cooperators or defectors only (phase 2). The formation of initial groups was dictated by special requirements. Basically, we randomly selected up to 30 individuals per original nest and split these individuals into two to three initial groups of ten (Nnests = 10, N groups = 25). Each selected individual received a unique color mark (©Plaka-Farbe) and was weighed to the nearest 0.01 mg on an electronic balance (Mettler Toledo New Classic MS). Each group was then transferred to a petri dish (100 mm in diameter) which served as the test arena for the hunting type assessment. An acclimatization period of four days ensured that the spiders weaved silk threads which amplify vibrations by prey32.Phase 1We assessed hunting types with a modified version of the ‘communal feeding experiment’ originally used by Dumke et al.16 to establish hunting specialization in A. ergandros. For each initial group, we completed 7 feeding trials over 24 days (1 trial every 4 days), during which we offered living Musca domestica flies and observed the foraging behaviour of all group members (Fig. 1). Each fly was weighed before being placed into the petri dish and either removed after two hours if not captured, or after two hours post capture. For each trial, we documented the attack latency, the attacker IDs and the IDs of the feeding individuals in 10-min intervals over two hours. From these data, we determined the feeding frequency of each individual (i.e. the number of trials it was feeding) and calculated the proportions to which it cooperated vs. defected. We thus obtained comparable quantifications of hunting types16. All individuals except those that died during the assessment (56 of 250 spiders) were weighed two days after the last trial to assess weight gain1 (= log (end weight1/start weight133).Phase 2Following phase 1, we regrouped individuals into ‘sorted’ groups of cooperators or defectors only, and this time gave three days acclimatization time since the re-grouping took one day. We formed experimental cooperator groups by selecting nine to ten individuals with the highest cooperating tendencies from the original colony. Next, we formed experimental defector groups analogously from that same pool (Fig. 1). Thus, we achieved paired relatedness between cooperator groups and defector groups, to control for nest origin and nest experience (matched pairs design). We further ensured comparability of cooperator groups and defector groups in the individuals’ physical state (details in Supplementary Methods). Owing to mortality in three nests and restricted possibilities to realize balanced conditions between groups in two nests, we could establish five cooperator-defector group pairs with nine individuals per group.To explore group composition effects on social foraging behaviour and individual fitness payoffs, we tested each sorted group over another seven feeding trials over 24 days. The trials were conducted in exactly the same manner as for the feeding type assessment (phase 1). From the recorded data (attack latency, IDs of attackers, IDs of feeding individuals), we calculated a set of variables that quantified social foraging behaviour (data points per trial and group). To examine individual fitness payoffs, we checked the petri dishes for dead individuals and noted their IDs prior to every trial. As an additional fitness payoff measure for those individuals still alive at the end of phase 2, we determined individual weight gain2 (= log (end weight2/start weight2)).The role of sex in cooperator vs. defector typesTo examine the role of sex in cooperation-defection scenarios, we collected another eight nests from Yass River Road in June 2016. Around this time, A. ergandros individuals reached the subadult stage, at which sex can be visually determined17. Three nests contained subadult males and females in sufficient numbers, so that we formed three groups, each with ten males and ten females from the same nest (in total: N males = 30, N females = 30). All group members were weighed and color marked before they were tested in another, extended feeding type assessment over ten trials.Based on the IDs of attackers and individuals that hunted in these trials, we generated social network graphs and visualized the foraging interactions within groups31,34,35. Individuals were represented by ‘nodes’; a directed line (‘edge’) was drawn from one node to another if the specific individual had cooperated by sharing prey with the other. The lines received weights reflecting the frequency of the respective interaction. We quantified individual prey sharing tendencies using the node-level metric out-strength: the weight sum of all outgoing edges from a particular node35. This metric comprehensively reflects an individual’s prey sharing tendency, as it incorporates the frequency and the spread of prey sharing behaviour. To visualize social networks and calculate the individuals’ out-strengths, we used the software UCINET 636.Statistical analysesAll model analyses were performed in R version 3.2.2, whereas all social network analyses were conducted in UCINET 636.Group composition effectsWe modelled the effect of group composition on social foraging behaviour separately for each response variable with binomial or gamma GEEs (generalized estimation equations). GEEs are adequate to analyse data from repeated measurements over time within same groups because they allow adjustment for the dependence of these measurements37. Defining the dependence structure of our data, we set sorted-group ID as a grouping variable and specified the temporal correlation AR-1. Group composition constituted the explanatory variable of interest, fly weight and group size were included as additional variables to control for prey mass and mortality. An exception was the model for the scrounging degree, in which group size was controlled by the variable itself. We assessed the significance of group composition effects by dropping each explanatory variable in turn and then comparing the full model to its nested models based on Wald test statistics. The least significant variable was removed, and model comparisons were repeated until all remaining variables were significant.Mortality was compared between cooperator groups and defector groups using a Chi-squared test. The difference between group compositions in individual weight gain2 was analysed in a GLS (generalized least squares) model that incorporated an exchangeable correlation structure with sorted-group ID as the grouping variable.Sex differencesWe conducted a node-based Monte Carlo randomization test to determine whether the observed difference in mean out-strength between sexes deviated significantly from the difference expected if producing associations occurred randomly and hence independent of sex. The observed data were shuffled in 10,000 node-label randomizations that preserved group membership. The sum of the differences between mean male out-strength (σm) and mean female out-strength (σf) within groups was used as the test statistic A (A = sumnolimits_{(i = 1)}^{3} {left( {sigma_{{(m_{i} )}} – sigma_{{left( {f_{i} } right)}} } right)}^{ – }), where i denotes group identity. To produce a probability value, we compared the observed test statistic to the distribution of random test statistics drawn from the 10,000 Monte Carlo simulations34. More

  • in

    Bacterial response to glucose addition: growth and community structure in seawater microcosms from North Pacific Ocean

    Environmental parametersSampling locations, air temperature, water temperature, water depth, salinity, nutrient concentrations (NO3-N, NO2-N, NH4-N, SiO4, PO4-P), and incubation temperatures are shown in Table 1. The air and water temperatures of the studied locations were 11 and 16.6 °C, 3.1 and 3.8 °C, 3.1 and 3.7 °C, 24.5 and 25.9 °C, 24.5 and 18.8 °C, respectively in the Kuroshio Current, SPG surface layer, SPG chlorophyll maximum zone, STG surface layer, and STG chlorophyll maximum zone. At SPG, the values of different parameters were quite similar (p = 0.62, two-tail t-Test; at 5% level of significance) between surface (5 m) and chlorophyll maximum (37 m), indicating the vertical mixing in the upper water column. At STG, the values were relatively different (p = 0.39, two-tail t-Test; at 5% level of significance) between surface (5 m) and chlorophyll maximum (125 m), suggesting the vertical stratification of the water column. The in-situ (water) temperatures (6.4 °C, 0.2 °C, 0.3 °C and 4.2 °C) were lower than the incubation temperatures compared to those of Kuroshio Current, SPG surface layer, SPG chlorophyll maximum zone, and STG chlorophyll maximum zone, while 2.9 °C higher than the incubation temperature of the STG surface layer. Nutrient assays revealed a big difference in nutrient concentrations between SPG and STG; the waters from the station STG were nutrient-poor. The incubation temperatures of the onboard microcosms were 23 ± 1 °C, ~ 4 °C, and 23 ± 1 °C in the case of Kuroshio Current, SPG, and STG, respectively (Table 1).Table 1 Environmental properties of three water samples used in microcosm experiments. Microcosm experiments were conducted on board during the KH-14-2 cruise in May–June 2014.Full size tableBacterial cell densities and cell volumesAt initial incubation periods (12 h to 24 h), the cell densities between the glucose-amended and non-treated microcosms were similar (p = 0.74, two-tail t-Test; at 5% level of significance). Highly significant differences (p  More