More stories

  • in

    The vulnerability of global forests to human and climate impacts

    Duke, N. C. et al. Mar. Freshw. Res. 68, 1816–1829 (2017).Article 

    Google Scholar 
    Li, W. et al. Nat. Sustain. https://doi.org/10.1038/s41893-022-01020-5 (2023).Article 

    Google Scholar 
    Potapov, P. et al. Ecol. Soc. 13, 51 (2008).Article 

    Google Scholar 
    Hancock, S. et al. Earth Space Sci. 6, 294–310 (2019).Article 

    Google Scholar 
    Wade, C. M. et al. Forests 11, 539 (2020).Article 

    Google Scholar 
    Abhilash, P. C. Land 10, 201 (2021).Article 

    Google Scholar 
    Biermann, F., Kanie, N. & Kim, R. E. Curr. Opin. Environ. Sustain. 26–27, 26–31 (2017).Article 

    Google Scholar 
    den Elzen, M. et al. Energy Policy 126, 238–250 (2019).Article 

    Google Scholar 
    Betts, M. G. et al. Nature 547, 441–444 (2017).Article 
    CAS 

    Google Scholar 
    Watson, J. E. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-018-0490-x (2018).Article 

    Google Scholar  More

  • in

    Spring phenology alters vegetation drought recovery

    Mishra, A. K. & Singh, V. P. J. Hydrol. 391, 202–216 (2010).Article 

    Google Scholar 
    Jiao, W. et al. Nat. Commun. 12, 3777 (2021).Article 
    CAS 

    Google Scholar 
    Gampe, D. et al. Nat. Clim. Change 11, 772–779 (2021).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Schwalm, C. R. et al. Nature 548, 202–205 (2017).Article 
    CAS 

    Google Scholar 
    Li, Y. et al. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01584-2 (2023).Fourth National Climate Assessment: Volume II—Impacts, Risks, and Adaptation in the United States (US Global Change Research Program, 2018).Daryanto, S., Wang, L. & Jacinthe, P. A. PLoS ONE 11, e0156362 (2016).Article 

    Google Scholar 
    Jiao, W. et al. J. Geophys. Res. Biogeosci. 127, e2021JG006431 (2022).Augspurger, C. K. Oecologia 156, 281–286 (2008).Article 

    Google Scholar 
    Lian, X. et al. Nat. Commun. 12, 983 (2021).Article 
    CAS 

    Google Scholar 
    Buermann, W. et al. Nature 562, 110–114 (2018).Article 
    CAS 

    Google Scholar 
    Lian, X. et al. Sci. Adv. 6, eaax0255 (2020).Article 

    Google Scholar 
    Jiao, W., Wang, L. & McCabe, M. F. Rem. Sens. Environ. 256, 112313 (2021).Article 

    Google Scholar  More

  • in

    Synthesis of heat-resistant and water/oil-repellent aromatic polyketones bearing tetrakis(nonafluorobutyl)-p-terphenylene units

    Hou J, Sun J, Fang Q. A fluorinated low dielectric polymer at high frequency derived from allylphenol and benzocyclobutene by a facile route. Eur Polym J. 2022;163:110943–9.Article 
    CAS 

    Google Scholar 
    Qiu Z, Wu S, Li Z, Zhang S, Xing W, Liu S. Sulfonated Poly(arylene-co-naphthalimide)s Synthesized by Copolymerization of Primarily Sulfonated Monomer and Fluorinated Naphthalimide Dichlorides as Novel Polymers for Proton Exchange Membranes. Macromolecules 2006;39:6425–32.Article 
    CAS 

    Google Scholar 
    Schönberger F, Chromik A, Kerres J. Synthesis and characterization of novel (sulfonated) poly(arylene ether)s with pendent trifluoromethyl groups. Polymer 2009;50:2010–24.Article 

    Google Scholar 
    Chen JC, Liu YC, Ju JJ, Chiang CJ, Chern YT. Synthesis, characterization and hydrolysis of aromatic polyazomethines containing non-coplanar biphenyl structures. Polymer 2011;52:954–64.Article 
    CAS 

    Google Scholar 
    Liaw DJ, Huang CC, Chen WH. Color lightness and highly organosoluble fluorinated polyamides, polyimides and poly(amide–imide)s based on noncoplanar 2,2’-dimethyl-4,4’-biphenylene units. Polymer 2006;47:2337–48.Article 
    CAS 

    Google Scholar 
    Shohbuke E, Kobayashi Y, Okubayashi S. Effects of acrylate monomers containing alkyl groups on water and oil repellent treatments of polyester fabrics. Colloids. Surf. A: Physicochem Eng Asp. 2021;631:127632–9.Article 
    CAS 

    Google Scholar 
    Sun Y, Zhao X, Liu R, Chen G, Zhou X. Synthesis and characterization of fluorinated polyacrylate as water and oil repellent and soil release finishing agent for polyester fabric. Prog Org Coat. 2018;123:306–13.Article 
    CAS 

    Google Scholar 
    Tang W, Huang Y, Qing FL. Synthesis and characterization of fluorinated polyacrylate graft copolymers capable as water and oil repellent finishing agents. J Appl Polym Sci. 2011;119:84–92.Article 
    CAS 

    Google Scholar 
    Jiang J, Zhang G, Wang Q, Zhang Q, Zhan X, Chen F. Novel Fluorinated Polymers Containing Short Perfluorobutyl Side Chains and Their Super Wetting Performance on Diverse Substrates. ACS Appl Mater Interfaces. 2016;8:10513–23.Article 
    CAS 

    Google Scholar 
    Honda K, Morita M, Otsuka H, Takahara A. Molecular Aggregation Structure and Surface Properties of Poly(fluoroalkyl acrylate) Thin Films. Macromolecules 2005;38:5699–705.Article 
    CAS 

    Google Scholar 
    Shaver AT, Yin K, Borjigin H, Zhang W, Choudhury SR, Baer E, Mecham SJ, Riffle JS, McGrath JE. Fluorinated poly(arylene ether ketone)s for high temperature dielectrics. Polymer 2016;83:199–204.Article 
    CAS 

    Google Scholar 
    Attwood TE, Dawson PC, Freeman JL, Hoy LRJ, Rose JB, Staniland PA. Synthesis and properties of polyaryletherketones. Polymer. 1981;22:1096–103.Article 
    CAS 

    Google Scholar 
    Yonezawa N, Okamoto A. Synthesis of Wholly Aromatic Polyketones. Polym J. 2009;41:899–928.Article 
    CAS 

    Google Scholar 
    Maeyama K, Ito S. Synthesis of aromatic poly(ether ketone)s bearing 9,9-dialkylfuorene-2,7-diyl units through nucleophilic aromatic substitution polymerization. Polym Bull.2018;75:5763–76.Article 
    CAS 

    Google Scholar 
    Blundell DJ, Osborn BN. The morphology of poly(aryl-ether-ether ketone). Polymer 1983;24:953–8.Article 
    CAS 

    Google Scholar 
    Maeyama K, Hikiji I, Ogura K, Okamoto A, Ogino K, Saito H, Yonezawa N. Synthesis of Optically Active Aromatic Poly(ether ketone)s via Nucleophilic Aromatic Substitution Polymerization. Polym J. 2005;37:707–10.Article 
    CAS 

    Google Scholar 
    Liu Q, Zhang S, Wang Z, Chen Y, Jian X. Effect of pendent phenyl and bis-phthalazinone moieties on the properties of N-heterocyclic poly(aryl ether ketone ketone)s. Polymer 2020;198:122525–34.Article 
    CAS 

    Google Scholar 
    Eaton PE, Carlson GR, Lee JT. Phosphorus Pentoxide-Methanesulfonic Acid. A Convenient Alternative to Polyphosphoric Acid. J Org Chem. 1973;38:4071–3.Article 
    CAS 

    Google Scholar 
    Nowacki B, Iamazaki E, Cirpan A, Karasz F, Atvars TDZ, Akcelrud L. Highly efficient polymer blends from a polyfluorene derivative and PVK for LEDs. Polymer 2009;50:6057–64.Article 
    CAS 

    Google Scholar 
    Wang TQ, Zhao SL, Zhang WM, Lin HX, Cui YM. Synthesis, X-ray crystal structure, and optical properties of novel 9,9-diethyl-1,2-diaryl-1,9-dihydrofluoreno[2,3-d]imidazoles. Monatsh Chem. 2016;147:1991–9.Article 
    CAS 

    Google Scholar 
    Chen J, Onogi S, Hsieh YC, Hsiao CC, Higashibayashi S, Sakurai H, Wu YT. Palladium-Catalyzed Arylation of Methylene-Bridged Polyarenes: Synthesis and Structures of 9-Arylfluorene Derivatives. Adv Synth Catal. 2012;354:1551–8.Article 
    CAS 

    Google Scholar 
    Manuel S, Anne S, Larissa AC, Stefan M. Uniform shape monodisperse single chain nanocrystals by living aqueous catalytic polymerization. Nat Commun.2019;10:2592.Article 

    Google Scholar 
    Lee KS, Lee JS. Synthesis of Highly Fluorinated Poly(arylene ether sulfide) for Polymeric Optical Waveguides. Chem Mater. 2006;18:4519–25.Article 
    CAS 

    Google Scholar 
    Natarajan P, Vagicherla VD, Vijayan MT. A mild oxidation of deactivated naphthalenes and anthracenes to corresponding para-quinones by N-bromosuccinimide. Tetrahedron Lett. 2014;55:3511–5.Article 
    CAS 

    Google Scholar 
    Faury T, Dumur F, Clair S, Abel M, Porte L, Gigmes D. Side functionalization of diboronic acid precursors for covalent organic frameworks. Cryst Eng Comm. 2013;15:2067–75.Article 
    CAS 

    Google Scholar 
    Shaposhnikova VV, Tkachenko AS, Zvukova ND, Peregudov AS, Klemenkova ZS, Ponomarev AF, Il´yasov VK, Lachinov AN, Salazkin SN. New possibilities for the effective influence on the charge transport in poly(arylene ether ketones) without using phthalide-containing fragments in the polymer chains. Rus Chem Bull Int Ed. 2016;65:502–6.Article 
    CAS 

    Google Scholar 
    Owens DK, Wendt RC. Estimation of the Surface Free Energy of Polymers. J Appl Polym Sci. 1969;13:1741–7.Article 
    CAS 

    Google Scholar 
    Fox HW, Zisman WA. The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J Colloid Sci. 1950;5:514–31.Article 
    CAS 

    Google Scholar  More

  • in

    Diel niche variation in mammalian declines in the Anthropocene

    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).Article 

    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signalled by vertebrate population losses and declines. PNAS 114, E6089–E6096 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Almond, R. E. A. et al. (eds) Living Planet Report 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).
    Google Scholar 
    Murali, G., de Oliveira Caetano, G. H., Barki, G., Meiri, S. & Roll, U. Emphasizing declining populations in the Living Planet Report. Nature 601, E20–E24 (2022).Article 
    CAS 

    Google Scholar 
    Pianka, E. R., Vitt, L. J., Pelegrin, N., Fitzgerald, D. B. & Winemiller, K. O. Toward a periodic table of niches, for exploring the lizard niche hypervolume. Am. Nat. 190, 601–616 (2017).Article 

    Google Scholar 
    Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Diel niche variation in mammals associated with expanded trait space. Nat. Commun. 12, 1753 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Cox, D. T. C., Baker, D. J., Gardner, A. S. & Gaston, K. J. Global variation in unique and redundant mammal functional diversity across the daily cycle. J. Biogeogr. In PressChichorro, F., Juslén, A. & Cardoso, P. A review of the relation between species traits and extinction risk. Biol. Conserv. 237, 220–229 (2019).Article 

    Google Scholar 
    Cox, D. T. C., Gardner, A. S. & Gaston, K. J. Global and regional erosion of mammalian functional diversity across the diel cycle. Sci. Adv. 8, adb6008 (2022).Article 

    Google Scholar 
    Levy, O., Dayan, T., Porter, W. P. & Kronfeld-Schor, N. Time and ecological resilience: Can diurnal animals compensate for climate change by shifting to nocturnal activity?. Ecol. Monogr. 89, e01334 (2019).Article 

    Google Scholar 
    Bonebrake, T. C., Rezende, E. L. & Bozinovic, F. Climate change and thermoregulatory consequences of activity time in mammals. Am. Nat. 196, 45–56 (2020).Article 

    Google Scholar 
    Cox, D. T. C., Maclean, I. M. D., Gardner, A. S. & Gaston, K. J. Global variation in diurnal asymmetry in temperature, cloud cover, specific humidity and precipitation and its association with leaf area index. Glob. Change Biol. 26, 7099–7111 (2020).Article 
    ADS 

    Google Scholar 
    Fritts, T. H. & Rodda, G. H. The role of introduced species in the degradation of island ecosystems: A case history of Guam. Annu. Rev. Ecol. Evol. Syst. 29, 113–140 (1998).Article 

    Google Scholar 
    Su, J.-Q., Han, X. & Chen, B.-M. Do day and night warming exert different effects on growth and competitive interaction between invasive and native plants?. Biol. Invasions 23, 157–166 (2021).Article 

    Google Scholar 
    Peres, C. A. Synergistic effects of subsistence hunting and habitat fragmentation on Amazonian forest vertebrates. Conserv. Biol. 15, 1490–1505 (2001).Article 

    Google Scholar 
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 

    Google Scholar 
    Brodie, J. F. Synergistic effects of climate change and agricultural land use on mammals. Front. Ecol. Environ. 14, 20–26 (2016).Article 

    Google Scholar 
    Brodie, J. F., Williams, S. & Garner, B. The decline of mammal functional and evolutionary diversity worldwide. PNAS https://doi.org/10.1073/pnas.1921849118 (2021).Article 

    Google Scholar 
    IUCN. The IUCN Red List of threatened species. Version 2021-3. https://www.iucnredlist.org. Downloaded on [21stt March 2022] (2021).Faurby, S. et al. PHYLACINE 1.2.1: The phylogenetic atlas of mammal macroecology. Ecology. 99, 2626–2626 (2018).Article 

    Google Scholar 
    Ripple, W. J. et al. Bushmeat hunting and extinction risk to the world’s mammals. R. Soc. Open Sci. 3, 160498 (2016).Article 
    ADS 

    Google Scholar 
    Ripple, W. J. et al. Are we eating the world’s megafauna to extinction? Conserv. Lett. 12, e12627 (2019).Article 

    Google Scholar 
    Nasi, R., Taber, A. & Van Vliet, N. Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. Int. For. Rev. 13, 355–368 (2011).
    Google Scholar 
    Woinarski, J. C. Z., Burbidge, A. A. & Harrison, P. L. Ongoing unravelling of a continental fauna: decline and extinction of Australian mammals since European settlement. PNAS 112, 4531–4540 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Welbergen, J. A., Klose, S. M., Markus, N. & Eby, P. Climate change and the effects of the temperature extremes on Australian flying-foxes. Proc. R. Soc. B. 275, 419–425 (2008).Article 

    Google Scholar 
    Ramesh, T., Kalle, R., Sankar, K. & Qureshi, Q. Role of body size in activity budget of mammals in the Western ghats of India. J. Trop. Biol. 31, 315–323 (2015).
    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Bennie, J. J., Duffy, J. P., Inger, R. & Gaston, K. J. Biogeography of time partitioning in mammals. PNAS 111, 13727–13732 (2014).Article 
    ADS 
    CAS 

    Google Scholar 
    Forbes, B. C. et al. Sea ice, rain-on-snow and tundra reindeer nomadism in Arctic Russia. Biol. Lett. 12, 20160466 (2016).Article 

    Google Scholar 
    Safronov, V. M. Climate change and mammals of Yakutia. Biol. Bull Russ. Acad. Sci. 43, 1256–1270 (2016).Article 

    Google Scholar 
    Galán-Acedo, C. et al. The conservation value of human-modified landscapes for the world’s primates. Nat. Commun. 10, 152 (2019).Article 
    ADS 

    Google Scholar 
    Gaston, K. J. Nighttime ecology: the “nocturnal problem” revisited. Am. Nat. 193, 481–502 (2019).Article 

    Google Scholar 
    Mittermeier, R., Rylands, A., Lacher, T. & Wilson, D. Handbook of the Mammals of the World Vol. 1–3 & 5–9 (Lynx Edicions, Cham, 2001-2019).
    Google Scholar 
    Ives, A. R. & Garland, T. Jr. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010).Article 

    Google Scholar 
    Ho, T. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar 
    Penone, C. et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 5, 961–970 (2014).Article 

    Google Scholar 
    Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012).Article 

    Google Scholar  More

  • in

    An integrated approach of remote sensing and geospatial analysis for modeling and predicting the impacts of climate change on food security

    Ortiz-Bobea, A., Ault, T. R., Carrillo, C. M., Chambers, R. G. & Lobell, D. B. Anthropogenic climate change has slowed global agricultural productivity growth. Nat. Clim. Chang. 11, 306–312 (2021).Article 
    ADS 

    Google Scholar 
    Garajeh, M. K. & Feizizadeh, B. A comparative approach of data-driven split-window algorithms and MODIS products for land surface temperature retrieval. Appl. Geomat. 13, 715–733 (2021).Article 

    Google Scholar 
    Alizadeh-Choobari, O., Ahmadi-Givi, F., Mirzaei, N. & Owlad, E. Climate change and anthropogenic impacts on the rapid shrinkage of Lake Urmia. Int. J. Climatol. 36, 4276–4286 (2016).Article 

    Google Scholar 
    Rembold, F., Kerdiles, H., Lemoine, G. & Perez-Hoyos, A. Impact of El Niño on agriculture in Southern Africa for the 2015/2016 main season. Joint Research Centre (JRC) MARS Bulletin–Global Outlook Series. European Commission, Brussels (2016).Zampieri, M., Ceglar, A., Dentener, F. & Toreti, A. Wheat yield loss attributable to heat waves, drought and water excess at the global, national and subnational scales. Environ. Res. Lett. 12, 064008 (2017).Article 
    ADS 

    Google Scholar 
    Toté, C. et al. Evaluation of the SPOT/VEGETATION Collection 3 reprocessed dataset: Surface reflectances and NDVI. Remote Sens. Environ. 201, 219–233 (2017).Article 
    ADS 

    Google Scholar 
    Solomon, N. et al. Environmental impacts and causes of conflict in the Horn of Africa: A review. Earth Sci. Rev. 177, 284–290 (2018).Article 
    ADS 

    Google Scholar 
    Dresse, A., Fischhendler, I., Nielsen, J. Ø. & Zikos, D. Environmental peacebuilding: Towards a theoretical framework. Coop. Confl. 54, 99–119 (2019).Article 

    Google Scholar 
    Vos, R., Jackson, J., James, S. & Sánchez, M. V. Refugees and Conflict-Affected People: Integrating Displaced Communities into Food Systems. 2020 Global Food Policy Report, 46–53 (2020).Zulfiqar, F., Navarro, M., Ashraf, M., Akram, N. A. & Munné-Bosch, S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci. 289, 110270 (2019).Article 
    CAS 

    Google Scholar 
    Viana, C. M. & Rocha, J. Evaluating dominant land use/land cover changes and predicting future scenario in a rural region using a memoryless stochastic method. Sustainability 12, 4332 (2020).Article 

    Google Scholar 
    Vasile, A. J., Popescu, C., Ion, R. A. & Dobre, I. From conventional to organic in Romanian agriculture—Impact assessment of a land use changing paradigm. Land Use Policy 46, 258–266 (2015).Article 

    Google Scholar 
    Veloso, A. et al. Understanding the temporal behavior of crops using Sentinel-1 and Sentinel-2-like data for agricultural applications. Remote Sens. Environ. 199, 415–426 (2017).Article 
    ADS 

    Google Scholar 
    Samasse, K., Hanan, N. P., Tappan, G. & Diallo, Y. Assessing cropland area in West Africa for agricultural yield analysis. Remote Sens. 10, 1785 (2018).Article 
    ADS 

    Google Scholar 
    Van Esse, H. P., Reuber, T. L. & van der Does, D. Genetic modification to improve disease resistance in crops. New Phytol. 225, 70–86 (2020).Article 

    Google Scholar 
    FAO. The Future of Food and Agriculture—Trends and Challenges (FAO, 2017).
    Google Scholar 
    Müller, B. et al. Modelling food security: Bridging the gap between the micro and the macro scale. Glob. Environ. Chang. 63, 102085 (2020).Article 

    Google Scholar 
    Food and Agriculture Organization of the United Nations. Forest Management and Conservation Agriculture: Experiences of Smallholder Farmers in the Eastern Region of Paraguay (FAO, 2013).
    Google Scholar 
    FAO Food Price Index. World Food Situation (FAO, 2021).
    Google Scholar 
    Sishodia, R. P., Ray, R. L. & Singh, S. K. Applications of remote sensing in precision agriculture: A review. Remote Sens. 12, 3136 (2020).Article 
    ADS 

    Google Scholar 
    Weiss, M., Jacob, F. & Duveiller, G. Remote sensing for agricultural applications: A meta-review. Remote Sens. Environ. 236, 111402 (2020).Article 
    ADS 

    Google Scholar 
    Feizizadeh, B., Garajeh, M. K., Blaschke, T. & Lakes, T. An object based image analysis applied for volcanic and glacial landforms mapping in Sahand Mountain, Iran. CATENA 198, 105073 (2021).Article 

    Google Scholar 
    Wen, W., Timmermans, J., Chen, Q. & van Bodegom, P. M. A review of remote sensing challenges for food security with respect to salinity and drought threats. Remote Sens. 13, 6 (2020).Article 
    ADS 

    Google Scholar 
    Feizizadeh, B., Omarzadeh, D., Kazemi Garajeh, M., Lakes, T. & Blaschke, T. Machine learning data-driven approaches for land use/cover mapping and trend analysis using Google Earth Engine. J. Environ. Plan. Manag. https://doi.org/10.1080/09640568.2021.2001317 (2021).Article 

    Google Scholar 
    Westerveld, J. J. et al. Forecasting transitions in the state of food security with machine learning using transferable features. Sci. Total Environ. 786, 147366 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Anderson, R., Bayer, P. E. & Edwards, D. Climate change and the need for agricultural adaptation. Curr. Opin. Plant Biol. 56, 197–202 (2020).Article 

    Google Scholar 
    Baniya, B., Tang, Q., Xu, X., Haile, G. G. & Chhipi-Shrestha, G. Spatial and temporal variation of drought based on satellite derived vegetation condition index in Nepal from 1982–2015. Sensors 19, 430 (2019).Article 
    ADS 

    Google Scholar 
    Kubitza, C., Krishna, V. V., Schulthess, U. & Jain, M. Estimating adoption and impacts of agricultural management practices in developing countries using satellite data. A scoping review. Agron. Sustain. Dev. 40, 1–21 (2020).Article 

    Google Scholar 
    Lees, T., Tseng, G., Atzberger, C., Reece, S. & Dadson, S. Deep learning for vegetation health forecasting: a case study in Kenya. Remote Sens. 14, 698 (2022).Article 
    ADS 

    Google Scholar 
    Khanian, M., Serpoush, B. & Gheitarani, N. Balance between place attachment and migration based on subjective adaptive capacity in response to climate change: The case of Famenin County in Western Iran. Clim. Dev. 11, 69–82 (2019).Article 

    Google Scholar 
    Khanian, M., Marshall, N., Zakerhaghighi, K., Salimi, M. & Naghdi, A. Transforming agriculture to climate change in Famenin County, West Iran through a focus on environmental, economic and social factors. Weather Clim. Extremes 21, 52–64 (2018).Article 

    Google Scholar 
    Leroux, L. et al. Crop monitoring using vegetation and thermal indices for yield estimates: Case study of a rainfed cereal in semi-arid West Africa. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 9, 347–362 (2015).Article 
    ADS 

    Google Scholar 
    Sun, J. et al. Multilevel deep learning network for county-level corn yield estimation in the us corn belt. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 13, 5048–5060 (2020).Article 
    ADS 

    Google Scholar 
    Tian, H. et al. An LSTM neural network for improving wheat yield estimates by integrating remote sensing data and meteorological data in the Guanzhong Plain, PR China. Agric. Forest Meteorol. 310, 108629 (2021).Article 
    ADS 

    Google Scholar 
    Weng, Y., Chang, S., Cai, W. & Wang, C. Exploring the impacts of biofuel expansion on land use change and food security based on a land explicit CGE model: A case study of China. Appl. Energy 236, 514–525 (2019).Article 
    ADS 

    Google Scholar 
    Rojas, O., Rembold, F., Royer, A. & Negre, T. Real-time agrometeorological crop yield monitoring in Eastern Africa. Agron. Sustain. Dev. 25, 63–77 (2005).Article 

    Google Scholar 
    Rembold, F. et al. ASAP: A new global early warning system to detect anomaly hot spots of agricultural production for food security analysis. Agric. Syst. 168, 247–257 (2019).Article 

    Google Scholar 
    Gohar, A. A., Cashman, A. & El-bardisy, H. A. H. Modeling the impacts of water-land allocation alternatives on food security and agricultural livelihoods in Egypt: Welfare analysis approach. Environ. Dev. 39, 100650 (2021).Article 

    Google Scholar 
    Mekonnen, A., Tessema, A., Ganewo, Z. & Haile, A. Climate change impacts on household food security and farmers adaptation strategies. J. Agric. Food Res. 6, 100197 (2021).Article 

    Google Scholar 
    Hervas, A. Mapping oil palm-related land use change in Guatemala, 2003–2019: Implications for food security. Land Use Policy 109, 105657 (2021).Article 

    Google Scholar 
    Viana, C. M., Freire, D., Abrantes, P., Rocha, J. & Pereira, P. Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Sci. Total Environ. 806, 150718 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Bazzana, D., Foltz, J. & Zhang, Y. Impact of climate smart agriculture on food security: An agent-based analysis. Food Policy 111, 102304 (2022).Article 

    Google Scholar 
    Parven, A. et al. Impacts of disaster and land-use change on food security and adaptation: Evidence from the delta community in Bangladesh. Int. J. Disaster Risk Reduct. 78, 103119 (2022).Article 

    Google Scholar 
    Mohajane, M. et al. Land use/land cover (LULC) using landsat data series (MSS, TM, ETM+ and OLI) in Azrou Forest, in the Central Middle Atlas of Morocco. Environments 5, 131 (2018).Article 

    Google Scholar 
    Duarte, L., Teodoro, A. C., Sousa, J. J. & Pádua, L. QVigourMap: A GIS open source application for the creation of canopy vigour maps. Agronomy 11, 952 (2021).Article 

    Google Scholar 
    Tavares, P. A., Beltrão, N. E. S., Guimarães, U. S. & Teodoro, A. C. Integration of sentinel-1 and sentinel-2 for classification and LULC mapping in the urban area of Belém, eastern Brazilian Amazon. Sensors 19, 1140 (2019).Article 
    ADS 

    Google Scholar 
    Atuoye, K. N., Luginaah, I., Hambati, H. & Campbell, G. Who are the losers? Gendered-migration, climate change, and the impact of large scale land acquisitions on food security in coastal Tanzania. Land Use Policy 101, 105154 (2021).Article 

    Google Scholar 
    Yang, S., Gu, L., Li, X., Jiang, T. & Ren, R. Crop classification method based on optimal feature selection and hybrid CNN-RF networks for multi-temporal remote sensing imagery. Remote Sens. 12, 3119 (2020).Article 
    ADS 

    Google Scholar 
    Milojevic-Dupont, N. & Creutzig, F. Machine learning for geographically differentiated climate change mitigation in urban areas. Sustain. Cities Soc. 64, 102526 (2021).Article 

    Google Scholar 
    Santos, D. et al. Spectral analysis to improve inputs to random forest and other boosted ensemble tree-based algorithms for detecting NYF Pegmatites in Tysfjord, Norway. Remote Sens. 14, 3532 (2022).Article 
    ADS 

    Google Scholar 
    Hitouri, S. et al. Hybrid machine learning approach for gully erosion mapping susceptibility at a watershed scale. ISPRS Int. J. Geo Inf. 11, 401 (2022).Article 

    Google Scholar 
    Alvarez-Mendoza, C. I., Teodoro, A., Freitas, A. & Fonseca, J. Spatial estimation of chronic respiratory diseases based on machine learning procedures—An approach using remote sensing data and environmental variables in quito, Ecuador. Appl. Geogr. 123, 102273 (2020).Article 

    Google Scholar 
    Teodoro, A., Pais-Barbosa, J., Gonçalves, H., Veloso-Gomes, F. & Taveira-Pinto, F. Identification of beach features/patterns through image classification techniques applied to remotely sensed data. Int. J. Remote Sens. 32, 7399–7422 (2011).Article 

    Google Scholar 
    Saleem, M. H., Potgieter, J. & Arif, K. M. Automation in agriculture by machine and deep learning techniques: A review of recent developments. Precis. Agric. 22, 2053–2091 (2021).Article 

    Google Scholar 
    Carrasco, L., O’Neil, A. W., Morton, R. D. & Rowland, C. S. Evaluating combinations of temporally aggregated Sentinel-1, Sentinel-2 and Landsat 8 for land cover mapping with Google Earth Engine. Remote Sens. 11, 288 (2019).Article 
    ADS 

    Google Scholar 
    Kumar, L. & Mutanga, O. Google Earth Engine applications since inception: Usage, trends, and potential. Remote Sens. 10, 1509 (2018).Article 
    ADS 

    Google Scholar 
    Kakooei, M., Nascetti, A. & Ban, Y. in IGARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium 6836–6839 (IEEE).Castillo, E., Iglesias, A. & Ruiz-Cobo, R. Functional Equations in Applied Sciences (Elsevier, 2004).MATH 

    Google Scholar 
    Zhao, G., Gao, H. & Cai, X. Estimating lake temperature profile and evaporation losses by leveraging MODIS LST data. Remote Sens. Environ. 251, 112104 (2020).Article 
    ADS 

    Google Scholar 
    Mu, Q., Zhao, M. & Running, S. W. Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ. 115, 1781–1800 (2011).Article 
    ADS 

    Google Scholar 
    Monteith, J. L. in Symposia of the society for experimental biology 205–234 (Cambridge University Press (CUP) Cambridge).Kidd, C. et al. So, how much of the Earth’s surface is covered by rain gauges?. Bull. Am. Meteorol. Soc. 98, 69–78 (2017).Article 
    ADS 

    Google Scholar 
    Huffman, G. J. et al. NASA global precipitation measurement (GPM) integrated multi-satellite retrievals for GPM (IMERG). In Algorithm Theoretical Basis Document (ATBD) Version 4 (2015).Zhang, W., Cao, H. & Liang, Y. Plant uptake and soil fractionation of five ether-PFAS in plant-soil systems. Sci. Total Environ. 771, 144805 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Jiang, S. et al. Effects of clouds and aerosols on ecosystem exchange, water and light use efficiency in a humid region orchard. Sci. Total Environ. 811, 152377 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Ghimire, C., Bruijnzeel, L., Lubczynski, M. & Bonell, M. Negative trade-off between changes in vegetation water use and infiltration recovery after reforesting degraded pasture land in the Nepalese Lesser Himalaya. Hydrol. Earth Syst. Sci. 18, 4933–4949 (2014).Article 
    ADS 

    Google Scholar 
    Zhang, J., Chen, H., Fu, Z. & Wang, K. Effects of vegetation restoration on soil properties along an elevation gradient in the karst region of southwest China. Agric. Ecosyst. Environ. 320, 107572 (2021).Article 
    CAS 

    Google Scholar 
    Yan, W. Y., Shaker, A. & El-Ashmawy, N. Urban land cover classification using airborne LiDAR data: A review. Remote Sens. Environ. 158, 295–310 (2015).Article 
    ADS 

    Google Scholar 
    LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Zhang, C. et al. Joint deep learning for land cover and land use classification. Remote Sens. Environ. 221, 173–187 (2019).Article 
    ADS 

    Google Scholar 
    Interdonato, R., Ienco, D., Gaetano, R. & Ose, K. DuPLO: A DUal view Point deep Learning architecture for time series classificatiOn. ISPRS J. Photogramm. Remote. Sens. 149, 91–104 (2019).Article 
    ADS 

    Google Scholar 
    Nyamekye, C., Ghansah, B., Agyapong, E. & Kwofie, S. Mapping changes in artisanal and small-scale mining (ASM) landscape using machine and deep learning algorithms—a proxy evaluation of the 2017 ban on ASM in Ghana. Environ. Chall. 3, 100053 (2021).Article 

    Google Scholar 
    Rahmati, O. et al. Land subsidence modelling using tree-based machine learning algorithms. Sci. Total Environ. 672, 239–252 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    Kingma, D. P. & Ba, J. Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980 (2014).Gupta, A. A comprehensive guide on deep learning optimizers. Analytics Vidhya. Dostopno na: https://www.analyticsvidhya.com/blog/2021/10/acomprehensive-guide-on-deep-learningoptimizers/#:~:text=An%20optimizer%20is%20a%20function,loss%20and%20improve%20the%20accuracy [22 May 2022] (2021).Reddy, V. K. & AV, R. K. Multi-channel neuro signal classification using Adam-based coyote optimization enabled deep belief network. Biomed. Signal Process. Control 77, 103774 (2022).Article 

    Google Scholar 
    Pulatov, B., Linderson, M.-L., Hall, K. & Jönsson, A. M. Modeling climate change impact on potato crop phenology, and risk of frost damage and heat stress in northern Europe. Agric. For. Meteorol. 214, 281–292 (2015).Article 
    ADS 

    Google Scholar 
    Parker, L., Pathak, T. & Ostoja, S. Climate change reduces frost exposure for high-value California orchard crops. Sci. Total Environ. 762, 143971 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Svystun, T., Lundströmer, J., Berlin, M., Westin, J. & Jönsson, A. M. Model analysis of temperature impact on the Norway spruce provenance specific bud burst and associated risk of frost damage. For. Ecol. Manage. 493, 119252 (2021).Article 

    Google Scholar 
    Kheybari, S., Rezaie, F. M. & Farazmand, H. Analytic network process: An overview of applications. Appl. Math. Comput. 367, 124780 (2020).MATH 

    Google Scholar 
    Saaty, T. The Analytic Hierarchy Process: Planning, Priority Setting Resource Allocation (McGraw-Hill, 1980).MATH 

    Google Scholar 
    Saaty, T. L. & Ozdemir, M. S. The Encyclicon-Volume 1: A Dictionary of Decisions with Dependence and Feedback Based on the Analytic Network Process (RWS Publications, 2021).
    Google Scholar 
    Saaty, T. L. Fundamentals of the analytic network process—Dependence and feedback in decision-making with a single network. J. Syst. Sci. Syst. Eng. 13, 129–157 (2004).Article 
    ADS 

    Google Scholar 
    Chung, K. L. Markov Chains with Stationary Transition Probabilities 5–11 (Springer, 1960).
    Google Scholar 
    Mokarram, M., Pourghasemi, H. R., Hu, M. & Zhang, H. Determining and forecasting drought susceptibility in southwestern Iran using multi-criteria decision-making (MCDM) coupled with CA–Markov model. Sci. Total Environ. 781, 146703 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Maleki, T., Koohestani, H. & Keshavarz, M. Can climate-smart agriculture mitigate the Urmia Lake tragedy in its eastern basin?. Agric. Water Manag. 260, 107256 (2022).Article 

    Google Scholar 
    Rahmani, J. & Danesh-Yazdi, M. Quantifying the impacts of agricultural alteration and climate change on the water cycle dynamics in a headwater catchment of Lake Urmia Basin. Agric. Water Manag. 270, 107749 (2022).Article 

    Google Scholar 
    Schmidt, M., Gonda, R. & Transiskus, S. Environmental degradation at Lake Urmia (Iran): Exploring the causes and their impacts on rural livelihoods. GeoJournal 86, 2149–2163 (2021).Article 

    Google Scholar 
    Eimanifar, A. & Mohebbi, F. Urmia Lake (northwest Iran): A brief review. Saline Syst. 3, 1–8 (2007).Article 

    Google Scholar 
    Shadkam, S., Ludwig, F., van Oel, P., Kirmit, Ç. & Kabat, P. Impacts of climate change and water resources development on the declining inflow into Iran’s Urmia Lake. J. Great Lakes Res. 42, 942–952 (2016).Article 

    Google Scholar 
    Chaudhari, S., Felfelani, F., Shin, S. & Pokhrel, Y. Climate and anthropogenic contributions to the desiccation of the second largest saline lake in the twentieth century. J. Hydrol. 560, 342–353 (2018).Article 
    ADS 

    Google Scholar 
    Khazaei, B. et al. Climatic or regionally induced by humans? Tracing hydro-climatic and land-use changes to better understand the Lake Urmia tragedy. J. Hydrol. 569, 203–217 (2019).Article 
    ADS 

    Google Scholar 
    Schulz, S., Darehshouri, S., Hassanzadeh, E., Tajrishy, M. & Schüth, C. Climate change or irrigated agriculture—What drives the water level decline of Lake Urmia. Sci. Rep. 10, 1–10 (2020).Article 

    Google Scholar 
    Azarnivand, A., Hashemi-Madani, F. S. & Banihabib, M. E. Extended fuzzy analytic hierarchy process approach in water and environmental management (case study: Lake Urmia Basin, Iran). Environ. Earth Sci. 73, 13–26 (2015).Article 
    ADS 

    Google Scholar 
    Bonham-Carter, G. F. & Bonham-Carter, G. Geographic Information Systems for Geoscientists: Modelling with GIS (Elsevier, 1994).
    Google Scholar 
    Garajeh, M. K. et al. An automated deep learning convolutional neural network algorithm applied for soil salinity distribution mapping in Lake Urmia, Iran. Sci. Total Environ. 778, 146253 (2021).Article 
    ADS 
    CAS 

    Google Scholar  More

  • in

    Alma Dal Co (1989–2022)

    A visionary and interdisciplinary scientist who brought a fearless passion to everything she did, inspiring all those around her.
    Alma Dal Co tragically passed away on 14 November 2022 at the age of 33, doing what she loved most — spearfishing near the Italian island of Pantelleria. Alma was a visionary scientist at the beginning of what was promising to become a stellar career. As a physicist turned biologist, Alma wanted to unravel how complexity emerges from simplicity. Despite her young age, she had already made an important impact on the field by showing how the activities of microbial communities emerge from interactions between individual cells. Alma was a warm and caring friend, and a committed and inspiring mentor. She pursued science with fearless passion, creativity, vision and dedication.Alma Dal Co in 2016 in Joshua Tree National Park, California. Photograph by Simon van Vliet.Alma had an exceptionally sharp and creative mind, and an insatiable curiosity. She kept exploring new directions, working on everything from gene-regulatory circuits to microbial communities, to developmental processes. She was the embodiment of a true interdisciplinary scientist, combining state-of-the-art experiments with advanced computational approaches. The unifying theme of her work was to understand how interactions between individuals (be it fish, microorganisms or pancreatic cells) give rise to complex behaviour at higher levels of organization. She strived to derive simple, quantitative rules to explain the complexity that we see around us. Alma believed that science is a team effort: she was generous with her time, and always happy to discuss ideas and share resources. No matter where she went, she quickly connected with people, built formal and informal networks, and fostered collaborations and friendships.Alma was born in Turin and grew up in Venice, in Italy. Her true home, however, was Pantelleria, an Italian island in the Mediterranean Sea off the coast of Sicily. Alma spent her summers in the sea from an early age, developing a deep and lasting bond with it. The sea was not only a place to recharge, but also a source of inspiration: Alma became fascinated by the intricate behaviours of octopuses and schools of fish, creating a lasting sense of wonder about the natural world. Alma’s primary education focused on the humanities, but most of all music. In 2002, she was accepted to the conservatorium in Venice to study the piano. However, her love for the natural world remained and in 2007 she started studying physics in Padua. In 2011, she finished her BSc in physics and a year later her education at the conservatorium. Both a career in music and in science were an option, but Alma chose science and moved to Turin to study the physics of complex systems. Music always remained important in her life, and she played the piano whenever she could.Alma’s transition to biology started in Turin in the laboratory of Michelle Caselle, where she used mathematical models to study gene regulatory networks. She discovered how the regulation of gene expression can reduce stochastic fluctuations and provide robustness to the expression of an organism’s phenotype (A. Dal Co et al. Nucleic Acids Res. 45, 1069–1078; 2017). In 2014, she exchanged the blackboard for the wet lab, and moved to Zurich, Switzerland, to start her PhD with Martin Ackermann at ETH and the aquatic research institute Eawag. Despite the struggles of having to learn hands-on biology without formal training, she was not deterred from pursuing a highly challenging project.Alma developed an innovative approach to gain a mechanistic understanding of how metabolic interactions between individual microbial cells determine the dynamics of spatially structured communities. She quantified the growth of single cells in a synthetic microbial community and developed computational tools to infer their interaction network. She showed that cells in these communities live in a small world: they only interact with few neighbours (A. Dal Co et al. Nat. Ecol. Evol. 4, 366–375; 2020). This short interaction range limits the growth of mutually dependent microorganisms, thereby counteracting the evolution of metabolic specialization. Moreover, Alma developed a mathematical framework to quantitatively predict the dynamics of microbial communities from the molecular properties of the underlying intercellular interactions (S. van Vliet et al. PLoS Comput. Biol. 18, e1009877; 2022). Together, these works have made an important contribution to our understanding of how microbial communities function, and they have inspired numerous follow-up projects, both by Alma herself (for example, A. Dal Co et al. Phil. Trans. R. Soc. B 374, 20190080; 2019) and by others in the field (for example, J. van Gestel et al. Nat. Commun. 12, 2324; 2021).Alma finished her PhD in 2019, winning the ETH medal for an outstanding thesis. She then moved to Harvard to study developmental processes, together with Michael Brenner. She quickly developed a large network of collaborators and designed an innovative project to study pancreatic islet formation. However, COVID-19-related laboratory restrictions brought an early end to these plans, and Alma instead developed a novel computational framework that can be applied to both animal tissues and microbial communities to study how local cell–cell interactions can create spatial structure at the scale of multicellular systems.In September 2021, Alma started an assistant professorship at the University of Lausanne. At the age of 32, she was one of youngest professors ever appointed there. Thanks to her leadership, she quickly assembled a highly interdisciplinary, collaborative and cohesive team of talented young scientists. The group’s research was as varied as Alma’s interests. A major theme was to gain a quantitative understanding of how cell–cell interactions affect the function and structure of microbial communities and other multicellular systems. Her group combines state-of-the art experimental tools such as optogenetics, microfluidics and single-cell imaging, with computational approaches and mathematical modelling to study the dynamics of a wide range of model systems.During her very short career as an assistant professor, Alma was a core member of the Swiss National Research Program on microbiome research (https://nccr-microbiomes.ch); was awarded two major grants; established a large network of collaborators; and was invited to present her work at numerous international meetings. Most importantly, Alma fostered a strong sense of community, both in her group and beyond — creating an open, inclusive and interactive space to discuss science and life.Interacting with Alma was never dull: her passion and energy were infectious and her curiosity and openness a source of inspiration. She always kept you on your toes with her constant stream of pointed questions. But most of all, her easy laugh and positive energy made working with her an extraordinarily joyous experience.With Alma the world has lost a visionary scientist. We are deeply saddened that we will never see what other discoveries she would have made. However, it offers some conciliation to see how profoundly Alma has impacted the people around her, leaving a lasting impression even on those she only briefly met. Her vision, spirit and leadership have profoundly changed many around her and will continue to be a source of inspiration for many years to come. More

  • in

    Genetic structure and relatedness of juvenile sicklefin lemon shark (Negaprion acutidens) at Dongsha Island

    Dulvy, N. K., Sadovy, Y. & Reynolds, J. D. Extinction vulnerability in marine populations. Fish Fish. 4, 25–64 (2003).Article 

    Google Scholar 
    Fowler S. L. et al. Sharks, Rays and Chimaeras: The Status of the Chondrichthyan Fishes. IUCN/SSC Shark Specialist Group, Gland, Switzerland and Cambridge, UK (2005).Dulvy, N. K. et al. Extinction risk and conservation of the world’s sharks and rays. Elife 3, e00590 (2014).Article 

    Google Scholar 
    Lack M. & Sant G. Illegal, Unreported and Unregulated Shark Catch: A review of current knowledge and action. Department of the Environment, Water, Heritage and the Arts and TRAFFIC, Canberra http://www.traffic.org/fish/ (2008).Rose D.A. An Overview of World Trade in Sharks and Other Cartilaginous Fishes. TRAFFIC International, Cambridge, UK (1996).Lam, V. Y. & Sadovy, M. Y. The sharks of South East Asia–unknown, unmonitored and unmanaged. Fish Fish 12, 51–74 (2011).Article 

    Google Scholar 
    Kessel S.T. Investigation into the behaviour and population dynamics of the lemon shark (Negaprion brevirostris). Cardiff University (United Kingdom) (2010).Morrissey, J. F. & Gruber, S. H. Habitat selection by juvenile lemon sharks Negaprion brevirostris. Environ. Biol. Fishes 38, 311–319 (1993).Article 

    Google Scholar 
    Filmalter, J. D., Dagorn, L. & Cowley, P. D. Spatial behaviour and site fidelity of the sicklefin lemon shark Negaprion acutidens in a remote Indian Ocean atoll. Mari. Biol. 160, 2425–2436 (2013).Article 

    Google Scholar 
    DiBattista, J. D. et al. A genetic assessment of polyandry and breeding site fidelity in lemon sharks. Mol. Ecol. 17, 3337–3351 (2008).Article 

    Google Scholar 
    Wetherbee, B. M., Gruber, S. H. & Rosa, R. S. Movement patterns of juvenile lemon sharks Negaprion brevirostris within Atol das Rocas, Brazil: A nursery characterized by tidal extremes. Mar. Ecol. Prog. Seri. 343, 283–293 (2007).Article 
    ADS 

    Google Scholar 
    Feldheim, K. A. et al. Two decades of genetic profiling yields first evidence of natal philopatry and long-term fidelity to parturition sites in sharks. Mol. Ecol. 23, 110–117 (2014).Article 

    Google Scholar 
    Stevens J. D. et al. Diversity, abundance and habitat utilisation of sharks and rays: Final report to West Australian Marine Science Institute. CSIRO, editor. Hobart (2009).Schultz, J. K. et al. Global phylogeography and seascape genetics of the lemon sharks (genus Negaprion). Mol. Ecol. 17, 5336–5348 (2008).Article 
    CAS 

    Google Scholar 
    Mourier, J., Buray, N., Schultz, J. K., Clua, E. & Planes, S. Genetic network and breeding patterns of a sicklefin lemon shark (Negaprion acutidens) population in the Society Islands, French Polynesia. PLoS ONE 8, e73899 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Speed, C. W. et al. Reef shark movements relative to a coastal marine protected area. Reg. Stud. Mar. Sci. 3, 58–66 (2016).
    Google Scholar 
    Huang, Z. Marine Species and Their Distribution in China’s Seas (Krieger Publishing Company, 2001).
    Google Scholar 
    Chang, C. W., Huang, C. S. & Wang, S. I. Species composition and sizes of fish in the lagoon of dongsha island (Pratas Island), Dongsha Atoll of the South China sea. Platax 2012, 25–32 (2012).
    Google Scholar 
    Pillans, R. D. et al. Long-term acoustic monitoring reveals site fidelity, reproductive migrations, and sex specific differences in habitat use and migratory timing in a large coastal shark (Negaprion acutidens). Front. Mar. Sci. 8, 616633 (2021).Article 

    Google Scholar 
    Daly-Engel, T. S. et al. Global phylogeography with mixed-marker analysis reveals male-mediated dispersal in the endangered scalloped hammerhead shark (Sphyrna lewini). PLoS ONE 7, e29986 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Félix-López, D. G. et al. Possible female philopatry of the smooth hammerhead shark Sphyrna zygaena revealed by genetic structure patterns. J. Fish Biol. 94, 671–679 (2019).Article 

    Google Scholar 
    Nosal, A. P., Caillat, A., Kisfaludy, E. K., Royer, M. A. & Wegner, N. C. Aggregation behavior and seasonal philopatry in male and female leopard sharks Triakis semifasciata along the open coast of southern California, USA. Mar. Ecol. Prog. Ser. 499, 157–175 (2014).Article 
    ADS 

    Google Scholar 
    Jirik, K. E. & Lowe, C. G. An elasmobranch maternity ward: Female round stingrays Urobatis halleri use warm, restored estuarine habitat during gestation. J. Fish. Biol. 80(5), 1227–1245 (2012).Article 
    CAS 

    Google Scholar 
    Jacoby, D. M., Croft, D. P. & Sims, D. W. Social behaviour in sharks and rays: Analysis, patterns and implications for conservation. Fish Fish 13(4), 399–417 (2012).Article 

    Google Scholar 
    Su, S. H., Liu, S. Y. V., Liu, K. M. & Tsai, W. P. Development and characterization of novel microsatellite loci for an endangered hammerhead shark Sphyrna lewini by using shotgun sequencing. Taiwania 65(2), 261–263 (2020).
    Google Scholar 
    Dieringer, D. & Schlötterer, C. Microsatellite analyser (MSA): A platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes 3, 167–169 (2003).Article 
    CAS 

    Google Scholar 
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. Micro-checker: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538 (2004).Article 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).Article 
    CAS 

    Google Scholar 
    Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Mol. Ecol. Notes 7, 574–578 (2007).Article 
    CAS 

    Google Scholar 
    Earl, D. A. & VonHoldt, B. M. Structure harvester: A website and program for visualizing structure output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).Article 

    Google Scholar 
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23(14), 1801–1806 (2007).Article 
    CAS 

    Google Scholar 
    Peakall, R. & Smouse, P. E. GenAlEx 6.5: Genetic analysis in excel population genetic software for teaching and research–an update. Bioinformatics 28, 2537–2539 (2012).Article 
    CAS 

    Google Scholar 
    Kamvar, Z. N., Tabima, J. F. & Grünwald, N. J. POPPR: An R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2, e281 (2014).Article 

    Google Scholar 
    Kalinowski, S. T., Wagner, A. P. & Taper, M. L. ML-Relate: A computer program for maximum likelihood estimation of relatedness and relationship. Mol. Ecol. Resour. 6, 576–579 (2006).Article 
    CAS 

    Google Scholar 
    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214 (2014).Article 
    CAS 

    Google Scholar 
    Oh, B. Z. et al. Contrasting patterns of residency and space use of coastal sharks within a communal shark nursery. Mar. Freshw. Res. 68, 1501–1517 (2017).Article 

    Google Scholar 
    McClelland J. Genetic Assessment of Breeding Patterns and Population Size of the Sicklefin Lemon Shark Negaprion acutidens in a Tropical Marine Protected Area: Implications for Conservation and Management (Doctoral dissertation, University of York) (2020).Compagno L. J .V. FAO species catalogue Sharks of the world: An annotated and illustrated catalogue of shark species known to date. FAO Fish. Synop. No. 125 Rome 4, 1–655 (1984).Stevens, J. D. Life-history and ecology of sharks at aldabra Atoll. Indian Ocean. Proc R Soc. B 222, 79–106 (1984).ADS 

    Google Scholar 
    Kool, J. T., Moilanen, A. & Treml, E. A. Population connectivity: Recent advances and new perspectives. Landsc. Ecol. 28, 165–185 (2013).Article 

    Google Scholar 
    Ruzzante, D. E. et al. Effective number of breeders, effective population size and their relationship with census size in an iteroparous species Salvelinus fontinalis. Proc. R Soc. B 283, 20152601 (2016).Article 

    Google Scholar 
    Van Wyngaarden, M. et al. Identifying patterns of dispersal, connectivity and selection in the sea scallop, Placopecten magellanicus, using RADseq-derived SNPs. Evol. Appl. 10, 102–117 (2017).Article 

    Google Scholar 
    Frankham, R., Bradshaw, C. J. A. & Brook, B. W. Genetics in conservation management: Revised recommendations for the 50/500 rules, Red list criteria and population viability analyses. Biol. Conserv. 170, 56–63 (2014).Article 

    Google Scholar 
    Pazmiño, D. A., Maes, G. E., Simpfendorfer, C. A., Salinas-de-León, P. & van Herwerden, L. Genome-wide SNPs reveal low effective population size within confined management units of the highly vagile Galapagos shark (Carcharhinus galapagensis). Conserv. Genet. 18, 1151–1163 (2017).Article 

    Google Scholar 
    Waples, R. S. & Do, C. Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: A largely untapped resource for applied conservation and evolution. Evol. Appl. 3, 244–262 (2010).Article 

    Google Scholar 
    Dudgeon, C. L. & Ovenden, J. R. The relationship between abundance and genetic effective population size in elasmobranchs: An example from the globally threatened zebra shark Stegostoma fasciatum within its protected range. Conserv. Genet. 16, 1443–1454 (2015).Article 

    Google Scholar 
    Feldheim, K. A., Gruber, S. H. & Ashley, M. V. Population genetic structure of the lemon shark (Negaprion brevirostris) in the western Atlantic: DNA microsatellite variation. Mol. Ecol. 10, 295–303 (2001).Article 
    CAS 

    Google Scholar 
    Feldheim, K. A., Gruber, S. H. & Ashley, M. V. The breeding biology of lemon sharks at a tropical nursery lagoon. Proc. R. Soc. Lond. B 269, 1471–2954 (2002).Article 

    Google Scholar 
    Portnoy, D., McDowell, J. R., Thompson, K., Musick, J. A. & Graves, J. E. Isolation and characterization of five dinucleotide microsatellite loci in the sandbar shark, Carcharhinus plumbeus. Mol. Ecol. Notes 6, 431–433 (2006).Article 
    CAS 

    Google Scholar  More

  • in

    The impact of industrial agglomeration on urban green land use efficiency in the Yangtze River Economic Belt

    Research areaThe YREB covers Shanghai, Jiangsu, Zhejiang, Anhui, Jiangxi, Hubei, Hunan, Chongqing, Sichuan, Guizhou, and Yunnan. It includes the Yangtze River Delta urban agglomerations (YRDUA), Yangtze River midstream urban agglomeration (YRMUA), and Chengdu-Chongqing urban agglomeration (CCUA). With a regional area of 2.05 million km2, the YREB runs through the eastern, central and western regions in China32. In 2019, the total GDP of YREB is 45.8 trillion yuan, accounting for 46.2% of the national GDP. The YREB plays a pivotal strategic support and leading role in the overall situation of stable economic growth in China33. At the same time, the contradiction between the shortage of land resources and economic growth in the YREB is very prominent. Therefore, this paper selects 107 cities in YREB as the research sample. The specific geographic locations are shown in Fig. 2. This article uses ARCGIS 10.2 version to draw the map. The URL link is http://demo.domain.com:6080/arcgis/services.Figure 2The geographic location of the YREB in China.Full size imageResearch methodsGlobal Malmquist–Luenberger indexUGLUE refers to the effective utilization degree of land elements under certain input of other elements. The green utilization of urban land mainly comes from three aspects: first, improve the utilization intensity of the existing actual input land, that is, increase the input intensity of other elements of the unit land area. Second, reduce the input of land in the production process to avoid excessive waste of land. Third, promote the optimal allocation of land elements among production units. Technical efficiency refers to the maximum degree that all factor inputs need to expand or shrink in equal proportion when all production units reach the production frontier. However, for production units with high technical efficiency, the factor allocation structure may not be reasonable. The land factors may still have the problem of under-input or over-input, resulting in the reduction of UGLUE.Pastor and Lovell34 proposed a global index, which uses all the inspection periods of each decision-making unit as a benchmark to construct the production frontier. According to the current benchmark construction period t, the production possibility set reference set is defined as follows:$$P_{C}^{t} (x^{t} ) = left{ {left. {(y^{t} ,b^{t} )} right|x^{t} {kern 1pt} can{kern 1pt} , produce{kern 1pt} , b^{t} ,y^{t} } right}$$
    (1)
    The global benchmark is defined as: (P_{G} = P_{C}^{1} , cup ,P_{C}^{2} , cup , cdots ,P_{C}^{t}), The subscripts C and G represent the current benchmark and the global benchmark respectively. The ML index of decision-making unit i is calculated based on the current reference benchmark:$$ML^{S} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{C}^{S} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{C}^{S} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}}$$
    (2)
    Among them, the superscript S indicates two adjacent periods, t period and t + 1 period. The subscript C indicates the current benchmark, which is a simplified directional distance function. (ML^{s} > 1), indicates that the productivity increases. (ML^{s} < 1), indicates that the productivity decreases.According to Hofmann et al.35, the GMLI is defined as follows:$$GMLI^{t,t + 1} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}}$$ (3) Among them, (D_{G}^{T} (x,y,b) = max left{ {alpha |(y - alpha y,b - alpha b) in P_{G} (x)} right}). (GMLI^{t,t + 1} > 1) indicates that the productivity has increased. (GMLI^{t,t + 1} < 1) indicates that the productivity decreases. The GMLI is further broken down as follows:$$begin{aligned} & GMLI^{t,t + 1} (x^{t} ,y^{t} ,b^{t} ,x^{t + 1} ,y^{t + 1} ,b^{t + 1} ) = frac{{1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}} \ & quad = frac{{1 + D_{G}^{t} (x^{t} ,y^{t} ,b^{t} )}}{{1 + D_{G}^{t + 1} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} )}} times left[ {frac{{(1 + D_{G}^{T} (x^{t} ,y^{t} ,b^{t} ))/(1 + D_{C}^{T} (x^{t} ,y^{t} ,b^{t} ))}}{{(1 + D_{G}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} ))/(1 + D_{C}^{T} (x^{t + 1} ,y^{t + 1} ,b^{t + 1} ))}}} right] \ & quad = frac{{TE^{t + 1} }}{{TE^{t} }} times left( {frac{{BPG_{t + 1}^{t + 1} }}{{BPG_{t}^{t + 1} }}} right) = EC_{t}^{t + 1} times BPC_{t}^{t + 1} \ end{aligned}$$ (4) Among them, TE is the change of technological progress. EC is the change of technological efficiency. The change of technological progress reflects the change of the highest technical level. The improvement of the highest technical level often requires the introduction and innovation of advanced technology, which often requires a large amount of investment. The change of technical efficiency reflects the gap with the highest technical level. Narrowing the gap with the highest technical level often requires improvements in internal management and governance structures. (BPG_{t}^{t + 1}) is the “best practitioner gap” between the current period and overall technological frontier. (BPC_{t}^{t + 1}) measures the changes in the “best practitioner gap” between two periods (technological changes). (BPC_{t}^{t + 1} , > , 1 ,) indicates technological progress. (BPC_{t}^{t + 1} < 1) indicates technology regress.Econometric techniques of industrial agglomeration on UGLUEIn recent years, many scholars used the traditional SPM for empirical analysis, which is a basic measurement model suitable for panel data. Therefore, this article firstly uses the traditional SPM to analyze the impact of industrial agglomeration on UGLUE. The formula is:$$begin{aligned} ln UGLUE_{it} & = alpha_{0} + alpha_{1} ln RZI_{it} + alpha_{2} ln RZI_{it} *ln RZI_{it} + alpha_{3} ln RDI_{it} + alpha_{4} ln EC_{it} \ & quad + alpha_{5} ln GDP_{it} + alpha_{6} ln TEC_{it} + alpha_{7} ln ROAD_{it} + alpha_{8} ln GOV_{it} + varepsilon_{it} \ end{aligned}$$ (5) Among them, ε is the disturbance term. i represents the city, i in this paper involves 107 cities in YREB. t represents the time, and the range of t in this paper is from 2007 to 2016. UGLUE is the explained variable, which represents the UGLUE. RZI and RDI are explanatory variables, representing industrial specialization agglomeration and industrial diversification agglomeration. EC is the industrial structure. GDP is the level of economic development. TEC is the level of technology. ROAD is the level of infrastructure. GOV is the degree of government intervention. (alpha_{1}) to (alpha_{8}) is the coefficient of each variable.Formula (5) assumes that the UGLUE changes with the changes of various influencing factors in the current period. That is, there is no time lag effect. But in reality, land use often has a time lag effect. The previous level has a non-negligible impact on the current results. Therefore, this paper selects the dynamic panel model for empirical analysis. However, there is often a two-way causal relationship between industrial agglomeration and UGLUE, which may cause endogenous bias. For example, cities with higher UGLUE levels tend to have higher levels of economic development, which promotes industrial agglomeration in this city. Therefore, this paper adopts the method of system GMM for regression analysis of dynamic panel model. Compared with mixed OLS, system GMM can make full use of sample information, select appropriate lag terms as instrumental variables36. It can effectively solve the endogeneity problem between industrial agglomeration and UGLUE. Based on the above analysis, this paper introduces the first-order lag term of UGLUE on the basis of formula (5). The DPM is as follows:$$begin{aligned} ln UGLUE_{it} & = beta_{0} + tau ln UGLUE_{i(t - 1)} + beta_{1} ln RZI_{it} + beta_{2} ln RZI_{it} times ln RZI_{it} + beta_{3} ln RDI_{it} \ & quad + beta_{4} ln EC_{it} + beta_{5} ln GDP_{it} + beta_{6} ln TEC_{it} + beta_{7} ln ROAD_{it} + beta_{8} ln GOV_{it} + varepsilon_{{{text{it}}}} \ end{aligned}$$ (6) Among them, (tau) is the first-order lag coefficient of UGLUE, reflecting the time lag effect of UGLUE.Variable descriptionExplained variableThe GMLI is used to measure the UGLUE of 107 cities in YREB. According to existing research37, the following core evaluation index of UGLUE are selected (see Table 1). Regarding input indicators, we mainly choose land element input M, labor element input L, and capital element input K as input indicators. Regarding output indicators, we choose the added value of the secondary and tertiary industries in the municipal area as the expected output, and use the GDP deflator to convert it into a comparable value. At the same time, pollution indicators such as industrial wastewater emissions, industrial sulfur dioxide emissions, and industrial smoke (dust) emissions are selected as undesired output. Since the GMLI reflects the growth rate of UGLUE, this paper assumes that the GMLI in 2006 is 1, and then multiplies the calculated GMLI year by year to obtain the development level of UGLUE in each city from 2007 to 2016.Table 1 Input and output index.Full size tableExplanatory variablesIndustrial specialization index ZI is usually used to measure the specialization level of urban industries. The specialization index is represented by the share of the employment of the industry in the total employment of the city:$$ZI_{i} = Max_{j} (S_{ij} )$$ (7) Nextly, we use the relative specialization index to make a horizontal comparison of the specialization level between different cities:$$RZI_{i} = Max(S_{ij} /S_{j} )$$ (8) The most common measure of the level of industrial diversification is the Herfindahl–Hirschman Index (HHI). For city i, the HHI is the sum of the square sum of employment shares of all industries in the city. The diversification index is the reciprocal of the HHI:$$DZ_{i} = frac{1}{{sumlimits_{j} {S_{ij}^{2} } }}$$ (9) The expression of relative diversification index is as follows:$$RDI_{i} = {1 mathord{left/ {vphantom {1 {sumlimits_{j} {left| {S_{ij} - S_{j} } right|} }}} right. kern-0pt} {sumlimits_{j} {left| {S_{ij} - S_{j} } right|} }}$$ (10) Among them, Sij is the employment proportion of j industry in city i, and Sj is the proportion of the total employment of the national j industry. The greater value of RZI and RDI, the higher level of industrial specialization and diversification.Control variablesRegarding control variables, we choose the following variables as control variables.Industrial structure (EC): The continuous optimization of industrial structure promotes the improvement of UGLUE through three aspects: saving land, increasing land income and promoting the optimal allocation of land resources. This paper selects the added value of the tertiary industry as a percentage of GDP (take the logarithm) to express.Technological level (TEC): The higher the technological innovation level of a city is, the more it promotes the use of input elements and the transformation of innovation results, thereby improving the UGLUE. This paper selects the proportion of science and technology expenditure to fiscal expenditure (take the logarithm) to represent.Economic development level (GDP): The continuous economic development promote the rational allocation of various production factors and increase the level of urban land output, thereby improving the UGLUE. This paper selects GDP per capita (take the logarithm) to express.Road infrastructure level (ROAD): The continuous improvement of infrastructure reduces transportation costs and transaction costs, and promotes communication externalities between producers, consumers, and between producers and consumers. This paper selects the average road area per capita (take the logarithm) to express.Government behavior (GOV): Fiscal expenditure is an important means for the government to carry out macro-control. Appropriate fiscal expenditure makes up for market shortages, improves factor flow and resource allocation efficiency, and realizes positive economic externalities. This paper selects the proportion of fiscal expenditure to GDP (take the logarithm) to express. We can see the meaning of specific variables from Table 2.Table 2 The descriptive statistics of variables.Full size tableData sourceThe object of this thesis is the 107 cities in YREB from 2007 to 2016. The urban construction land area data comes from the "China Urban Construction Statistical Yearbook", and the rest of the index data all come from the "China City Statistical Yearbook". The URL link is https://www.cnki.net/. In order to maintain the integrity of the data, this article uses the average method to fill in the missing values. In addition, because Chaohu City began to be under the jurisdiction of Hefei City in 2011, Bijie City and Tongren City in Guizhou Province only became prefecture-level cities in 2011. The three cities and Pu'er City are taken from the sample to maintain the continuity of data. More