More stories

  • in

    Imagining transformative biodiversity futures

    Imagination is critical to sustainable and just futures for life on Earth8,13. Writing after the West African Ebola outbreak, Professor Michael Osterholm and colleagues called for more “creative imagination” to consider future pandemic scenarios14. This feels particularly salient five years on. Purely technocratic approaches fail to engage with the emotions that motivate action towards alternative futures: fear, hope, grief and agency8,15. By building new ways of thinking about longstanding problems, inclusive and creative processes can generate positive stories about the future in ways that are empowering8,10. Imagining the future can drive societies towards change by shaping common practices, aspirations and institutions16.
    Methods for imagining, such as scenarios analysis, strategic foresight and speculative fiction are commonplace in research, investment and planning8,13,17. They can help the biodiversity community address the bleak futures that are projected for biodiversity. Research can play an important role in embracing imagination by fostering novel participatory methods that enable society to explore what is possible, plausible and desirable13. All models and scenarios are wrong, some are helpful: they contain assumptions about what matters, what is known and what is unknown. Embracing and communicating these assumptions and uncertainties builds trust in science, opening up spaces for deliberation about values, trade-offs and desirable futures18.
    Imagination can build the anticipatory capacity to get ahead of the curve, rather than react to crisis17. Decision makers must learn to provide anticipatory leadership that fosters shared responsibility for actions that may have greater costs now, to avert harm in the future. Enabling transformations also requires those who benefit from the status quo to acknowledge the need for change. Policy frameworks need to consider the distribution of costs and benefits over longer timescales when setting current priorities. Ultimately, society needs to accept that the future is unknowable and uncertain, but that action is needed now.
    These anticipatory capacities start with asking: what are the short- and long-term drivers of change? What values should be maintained into the future? What can be done differently over the next five years? Over the next 30 years? What do we need to know and what will we never know? How can options be created and traps avoided? What are the ethical implications of action and inaction? Considering these types of questions can provide a foundation for decision making despite uncertainty.
    Our stories show that choices have consequences. Some close down options. Some open up multiple pathways. Either way, choices create winners and losers. The critical challenges of the Anthropocene require humility19 and the ability to respond20. Imagination can help the biodiversity community grapple with these challenges by embracing diverse ways of thinking, listening, being and knowing. And such diversity can be the foundation of more just and sustainable futures for life on Earth. More

  • in

    Diatoms constrain forensic burial timelines: case study with DB Cooper money

    The Cooper bundles were found just beneath the sand surface ~15 m up from the waterline. A sand slope angle of 10∘ was measured during a site investigation which would place the burial site ~3 m vertically above the water line. This location would only be immersed during times of high water and wave action. Dredging operations took place on the river and the sand was dumped slightly upstream of the burial location and could have contributed to additional sand on top of the bills. Sand is no longer deposited on the beach and it has undergone severe erosion. Rubber bands found intact but degraded on the bundles suggests they were initially buried without any significant exposure to the elements which is known to rapidly degrade them25.
    In order to determine if a seasonal diatom timeline can be used to constrain the burial of the Cooper money, the first question to be answered is: can diatoms penetrate a bundle of money buried in sand? The diatom saturated water experiment showed that penetration is possible but only for the smaller range of diatoms and only a limited distance in from the edge on the order of millimeters. No “tide lines” of diatoms or small sand fragments were found on the Cooper bill. Since we know from the experiment that diatom accumulations were likely to happen on the edges, the lack of aggregations suggests they were destroyed with the severe degradation around the edges of the bundle. The inner degraded edge where the SEM samples were taken from showed no accumulations, suggesting the bills had congealed into a solid lump (consistent with the condition that the bills were found in), preventing any further diatom infiltration.
    A second line of evidence that would signal diatom infiltration while buried would be an abundance of diatoms in the bills that were also found in the surrounding sand. The extraction of the diatoms from the Tena Bar sand showed a predominance of small forms on the order of 3–5 µm. These small diatoms are consistent with species that can survive in sand due to their ability to situate in the interstitial crevices of a single sand grain26,27. Larger diatoms, of which Asterionella and Fragilaria are among the largest, have low survivability in the proportionally boulder size sand grains26. The lack of predominantly smaller diatoms on the Cooper bill suggests little to no diatom infiltration to the inner portions of the stack occurred while buried. While similar small diatoms were found on the bills, they were not a dominant category as would be expected if they were the primary source of infiltration.
    If the Cooper bill used in this examination was from the top of the stack, then one could expect to find a variety of diatoms from all sources. Figure 2C indicates conclusively that the examined bill is from the middle of the stack by finding an intact Fragilaria sandwiched between two bills. Due to the congealed nature of the bills, it was not uncommon to find intact fragments of other bills adhered to the larger bill. Fragilaria at ~80 µm28 is considered a larger diatom in the Columbia River system29. It is planktonic30 and therefore has no ability to move through sand. Its size and location interior to the stack (Fig. 1) and notably with no smaller diatoms surrounding it, suggests that it came to rest there while the bill was completely exposed to river water.
    If the previous experiments and investigations rule out diatom infiltration while buried, then the findings suggest that diatoms found their way onto the bills during water immersion. As shown in Fig. 4, a stack of bills once saturated, will fan out in water exposing all surfaces to micro-particles in the water environment. The exposure of the fanned out stack to the river, suggests the simplest way for large, intact but fragile diatoms to be found alone interior to the bill stack. This would have occurred prior to burial and be in the water long enough for fan out to occur.
    Figure 4

    (A) Stack of bills bound with a rubber band immediately after placing in still water. (B) After several minutes, the stack becomes saturated and fans out exposing individual bills to the water. Shortly thereafter the entire stack will sink to the bottom.

    Full size image

    The Columbia River has seasonal blooms of diatoms with different species found in winter vs summer19. If the bills were submerged for an extended period covering multiple seasons, then diatom species found on the bill should also represent multiple seasons. Table 1 shows the genera found on the Cooper bill and the dollar bill soaked in the Columbia in November. The first notable observation is that there is little overlap in genera between the two seasons.
    Asterionella followed by Fragilaria are key indicators in this study. Asterionella are relatively large up to 100 µm31, planktonic diatoms that undergo radical changes in population in the Columbia River (Fig. 5) of up to 10 × during the course of the year20. They assemble into star shaped colonies that are susceptible to damage. Asterionella were found broken but associated on the Cooper bill as shown in Fig. 2A. Although in pieces, the relatively complete association of parts suggests that the diatoms landed intact on the bill and were subsequently crushed and broken after the fact. Similar associations were found elsewhere on the Cooper samples.
    Figure 5

    Monthly abundance of Asterionella showing population bloom in May and June. Extremely low numbers are apparent for winter months. Data compiled from three sources19,20,21 graph shows relative numbers.

    Full size image

    Several examples Asterionella were found on the Cooper bills and this diatom is nearly absent in November when the jump occurred20,21. There is however a very large bloom of Asterionella in early summer during the months of May and June19,21. The other diatoms identified on the Cooper bill such as Stephanodiscus are also more prevalent in the summer season21. The diatoms found on the November bill are not consistent with species found on the Cooper bill. This suggests that the Cooper bill was immersed during the summer Asterionella bloom and the length of submersion did not extend into subsequent seasons.
    Trace elements are incorporated into the diatom frustule during growth and elemental availability varies in rivers during the year17. Krivtsov et al. 2000 studied the elemental variation in A. formosa and found that it varied by the season5. There were not enough recovered Asterionella from the November time frame to do a direct comparison but elemental signatures from a variety of specimens were compared between the November and Cooper bills. Figure 6 shows the diatom’s elemental spectra of calcium and sodium overlaid. The spectra were normalized to silicon and show relative abundances. The detected levels were small and near the limit of EDS sensitivity so this data is provided as qualitative. Elemental differences between the two groups showed slightly enriched calcium and a lack of sodium in the November diatoms while showing the complete opposite for the Cooper diatoms. A single fragment potentially from Asterionella or Fragilaria was found in the November sand from Tena Bar (Fig. 4B). This spectrum showed elevated levels of calcium and sodium again suggesting a difference from the A. formosa found on the Cooper bill which only showed enriched sodium. The single diatom spectrum from the March bill showed no increase in either sodium or calcium suggesting the March time frame has a different elemental abundance in the water from either the winter or Cooper sample suspected to have summer diatoms. The reproductive lifetime of a diatom is on the order of days32 so a difference in elemental abundance suggests that these three assemblages were from different seasonal periods.
    Figure 6

    (A) EDS spectra overlay showing the sodium line. Red lines are spectra from the Cooper bill diatoms showing elevated sodium levels, green lines are from November samples. Blue line is the single Asterionella spectra from the November sand sample showing no enrichment in either sodium or calcium. (B) Calcium line showing elevated presence of calcium for November diatoms while Cooper samples show lower levels. Each group of diatoms showed opposite enrichment of sodium and calcium. Data is relative and qualitative.

    Full size image More

  • in

    Author Correction: Political dynamics and governance of World Heritage ecosystems

    Affiliations

    ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland, Australia
    T. H. Morrison, C. Huchery & T. P. Hughes

    College of Life and Environmental Sciences, University of Exeter, Exeter, UK
    W. N. Adger & K. Brown

    Environment and Disaster Management Program, World Wildlife Fund, Washington, DC, USA
    M. Hettiarachchi

    School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
    M. C. Lemos

    Authors
    T. H. Morrison

    W. N. Adger

    K. Brown

    M. Hettiarachchi

    C. Huchery

    M. C. Lemos

    T. P. Hughes

    Corresponding author
    Correspondence to T. H. Morrison. More

  • in

    Genome sequencing and population genomics modeling provide insights into the local adaptation of weeping forsythia

    1.
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett.7, 1225–1241 (2004).
    Google Scholar 
    2.
    Cushman, S. A. et al. Editorial: the least cost path from landscape genetics to landscape genomics: challenges and opportunities to explore NGS data in a spatially explicit context. Front. Genet.9, 215 (2018).
    PubMed  PubMed Central  Google Scholar 

    3.
    Pereira, A. Plant abiotic stress challenges from the changing environment. Front. Plant Sci.7, 1123 (2016).
    PubMed  PubMed Central  Google Scholar 

    4.
    Rellstab, C. et al. A practical guide to environmental association analysis in landscape genomics. Mol. Ecol.24, 4348–4370 (2015).
    PubMed  Google Scholar 

    5.
    Zhu, J. K. Abiotic stress signaling and responses in plants. Cell167, 313–324 (2016).
    PubMed  PubMed Central  CAS  Google Scholar 

    6.
    Allendorf, F. W., Hohenlohe, P. A. & Luikart, G. Genomics and the future of conservation genetics. Nat. Rev. Genet.11, 697–709 (2010).
    PubMed  CAS  Google Scholar 

    7.
    Radwan, J. & Babik, W. The genomics of adaptation. Proc. Biol. Sci.279, 5024–5028 (2012).
    PubMed  PubMed Central  Google Scholar 

    8.
    Li, Y. et al. Ten years of landscape genomics: challenges and opportunities. Front. Plant Sci.8, 2136 (2017).
    PubMed  PubMed Central  Google Scholar 

    9.
    Cushman, S. A. Grand challenges in evolutionary and population genetics: the importance of integrating epigenetics, genomics, modeling, and experimentation. Front. Genet.5, 197 (2014).
    PubMed  PubMed Central  Google Scholar 

    10.
    Guggisberg, A. et al. The genomic basis of adaptation to calcareous and siliceous soils in Arabidopsis lyrata. Mol. Ecol.27, 5088–5103 (2018).
    PubMed  Google Scholar 

    11.
    Brennan, R. S. et al. Integrative population and physiological genomics reveals mechanisms of adaptation in killifish. Mol. Biol. Evol.35, 2639–2653 (2018).
    PubMed  CAS  Google Scholar 

    12.
    Chen, C. et al. Population genomics provide insights into the evolution and adaptation of the eastern honey bee (Apis cerana). Mol. Biol. Evol.35, 2260–2271 (2018).
    PubMed  PubMed Central  CAS  Google Scholar 

    13.
    Dittberner, H. et al. Natural variation in stomata size contributes to the local adaptation of water-use efficiency in Arabidopsis thaliana. Mol. Ecol.27, 4052–4065 (2018).
    PubMed  CAS  Google Scholar 

    14.
    Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol.35, 792–806 (2018).
    PubMed  PubMed Central  CAS  Google Scholar 

    15.
    Ahrens, C. W., Byrne, M. & Rymer, P. D. Standing genomic variation within coding and regulatory regions contributes to the adaptive capacity to climate in a foundation tree species. Mol. Ecol.28, 2502–2516 (2019).
    PubMed  CAS  Google Scholar 

    16.
    Wright, S. Evolution in Mendelian populations. Genetics16, 97–159 (1931).
    PubMed  PubMed Central  CAS  Google Scholar 

    17.
    Miao, C. Y. et al. Landscape genomics reveal that ecological character determines adaptation: a case study in smoke tree (Cotinus coggygria Scop.). BMC Evol. Biol.17, 202 (2017).
    PubMed  PubMed Central  Google Scholar 

    18.
    Li, J. X. et al. Adaptive genetic differentiation in Pterocarya stenoptera (Juglandaceae) driven by multiple environmental variables were revealed by landscape genomics. BMC Plant Biol.18, 306 (2018).
    PubMed  PubMed Central  Google Scholar 

    19.
    Arciero, E. et al. Demographic history and genetic adaptation in the Himalayan region inferred from genome-wide SNP genotypes of 49 populations. Mol. Biol. Evol.35, 1916–1933 (2018).
    PubMed  PubMed Central  CAS  Google Scholar 

    20.
    Friis, G. et al. Genome-wide signals of drift and local adaptation during rapid lineage divergence in a songbird. Mol. Ecol.27, 746–760 (2018).
    Google Scholar 

    21.
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett.18, 1–16 (2015).
    PubMed  Google Scholar 

    22.
    Guerrero, J. et al. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics. N. Phytol.219, 378–390 (2018).
    CAS  Google Scholar 

    23.
    Keller, S. R. et al. Local adaptation in the flowering-time gene network of balsam poplar, Populus balsamifera L. Mol. Biol. Evol.29, 3143–3152 (2012).
    PubMed  CAS  Google Scholar 

    24.
    Manel, S. et al. Genome assemblies, genomic resources and their influence on the detection of the signal of positive selection in genome scans. Mol. Ecol.25, 170–184 (2016).
    PubMed  CAS  Google Scholar 

    25.
    Fu, Z. Z. et al. Molecular data and ecological niche modeling reveal population dynamics of widespread shrub Forsythia suspensa (Oleaceae) in China’s warm-temperate zone in response to climate change during the Pleistocene. BMC Evol. Biol.14, 114 (2014).
    PubMed  PubMed Central  Google Scholar 

    26.
    Hamrick, J. L. & Godt, M. J. Plant Population Genetics, Breeding, and Genetic Resources (Sinauer, Sunderland, 1990).

    27.
    Hewitt, G. M. Genetic consequences of climatic oscillations in the quaternary. Philos. Trans. R. Soc. Lond. B Biol. Sci.359, 183–195 (2004).
    PubMed  PubMed Central  CAS  Google Scholar 

    28.
    Manel, S. & Holderegger, R. Ten years of landscape genetics. Trends Ecol. Evol.28, 614–621 (2013).
    PubMed  Google Scholar 

    29.
    Balkenhol, N. et al. Current status, future opportunities, and remaining challenges in landscape genetics. In (eds Balkenhol, N. C., et al.). Landscape Genetics: Concepts, Methods, Applications (Wiley, Hoboken, 2015).

    30.
    Yang, J. et al. Landscape population genomics of forsythia (Forsythia suspensa) reveal that ecological habitats determine the adaptive evolution of species. Front. Plant Sci.8, 481 (2017).
    PubMed  PubMed Central  Google Scholar 

    31.
    Sun, X. et al. SLAF-seq: an efficient method of large-scale de novo SNP discovery and genotyping using high-throughput sequencing. PLoS ONE8, e58700 (2013).
    PubMed  PubMed Central  CAS  Google Scholar 

    32.
    Sollars, E. S. A. et al. Genome sequence and genetic diversity of European ash trees. Nature541, 212–216 (2017).
    PubMed  CAS  Google Scholar 

    33.
    Unver, T. et al. Genome of wild olive and the evolution of oil biosynthesis. Proc. Natl Acad. Sci. USA114, E9413–E9422 (2017).
    PubMed  CAS  Google Scholar 

    34.
    Yang, X. et al. The chromosome-level quality genome provides insights into the evolution of the biosynthesis genes for aroma compounds of Osmanthus fragrans. Hortic. Res.5, 72 (2018).
    PubMed  PubMed Central  Google Scholar 

    35.
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res.19, 1655–1664 (2009).
    PubMed  PubMed Central  CAS  Google Scholar 

    36.
    Wallander, E. & Albert, V. A. Phylogeny and classification of Oleaceae based on rps16 and trnL-F sequence data. Am. J. Bot.87, 1827–1841 (2000).
    PubMed  CAS  Google Scholar 

    37.
    Wang, T. Q. et al. TCM treatment of anemopyretic cold rule analysis. J. Tianjin Univ. Tradit. Chin. Med.37, 113–117 (2018).
    Google Scholar 

    38.
    Fritsche, L. G. et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants. Nat. Genet.48, 134–143 (2016).
    PubMed  CAS  Google Scholar 

    39.
    Najafi, S., Sorkheh, K. & Nasernakhaei, F. Characterization of the APETALA2/Ethylene-responsive factor (AP2/ERF) transcription factor family in sunflower. Sci. Rep.8, 11576 (2018).
    PubMed  PubMed Central  Google Scholar 

    40.
    Xie, Z. et al. AP2/ERF transcription factor regulatory networks in hormone and abiotic stress responses in Arabidopsis. Front. Plant Sci.10, 228 (2019).
    PubMed  PubMed Central  Google Scholar 

    41.
    Chakraborty, U. & Pradhan, B. Drought stress-induced oxidative stress and antioxidative responses in four wheat (Triticum aestivum L.) varieties. Arch. Agron. Soil Sci.58, 617–630 (2012).
    CAS  Google Scholar 

    42.
    Noureddine, Y. Changes of peroxidase activities under cold stress in annuals populations of medicago. Mol. Plant Breed.6, 5 (2015).
    Google Scholar 

    43.
    Gong, L. et al. Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS ONE10, e0128041 (2015).
    PubMed  PubMed Central  Google Scholar 

    44.
    Wang, M. et al. Comparative transcriptome analysis to elucidate the enhanced thermotolerance of tea plants (Camellia sinensis) treated with exogenous calcium. Planta249, 775–786 (2019).
    PubMed  CAS  Google Scholar 

    45.
    Schöttler, M. A. et al. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. J. Exp. Bot.66, 2373–2400 (2015).
    PubMed  Google Scholar 

    46.
    Collakova, E. & DellaPenna, D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in the regulation of tocopherol synthesis during abiotic stress. Plant Physiol.133, 930–940 (2003).
    PubMed  PubMed Central  CAS  Google Scholar 

    47.
    Gavalas, N. A. & Clark, H. E. On the role of manganese in photosynthesis: kinetics of photoinhibition in manganese-deficent and 3-(4-chlorophenyl)-1, 1-dimethylurea-inhibited Euglena gracilis. Plant Physiol.47, 139–143 (1971).
    PubMed  PubMed Central  CAS  Google Scholar 

    48.
    Chen, C. Y. et al. Structural basis of jasmonate-amido synthetase FIN219 in complex with glutathione S-transferase FIP1 during the JA signal regulation. Proc. Natl Acad. Sci. USA114, E1815–E1824 (2017).
    PubMed  CAS  Google Scholar 

    49.
    Nisar, N. et al. Carotenoid metabolism in plant. Mol. Plant8, 68–82 (2015).
    PubMed  CAS  Google Scholar 

    50.
    Landguth, E. L. et al. Modeling multilocus selection in an individual-based, spatially-explicit landscape genetics framework. Mol. Ecol. Resour.20, 605–615 (2020).
    PubMed  Google Scholar 

    51.
    Ram, S. Role of alcohol dehydrogenase, malate dehydrogenase and malic enzyme in flooding tolerance in Brachiaria Species. J. Plant Biochem. Biot.9, 45–47 (2000).
    CAS  Google Scholar 

    52.
    Butsayawarapat, P. et al. Comparative transcriptome analysis of waterlogging-sensitive and tolerant zombi pea (Vigna vexillata) reveals energy conservation and root plasticity controlling waterlogging tolerance. Plants8, 264 (2019).
    PubMed Central  CAS  Google Scholar 

    53.
    Ohsawa, T. & Ide, Y. Global patterns of genetic variation in plant species along vertical and horizontal gradients on mountains. Glob. Ecol. Biogeogr.17, 152–163 (2008).
    Google Scholar 

    54.
    Yang, J. et al. Landscape genomics analysis of Achyranthes bidentata reveal adaptive genetic variations are driven by environmental variations relating to ecological habit. Popul. Ecol.59, 355–362 (2017).
    Google Scholar 

    55.
    Fu, Z. Z. et al. Population genetics of the widespread shrub Forsythia suspensa (Oleaceae) in warm-temperate China using microsatellite loci: implication for conservation. Plant Syst. Evol.302, 1–9 (2016).
    Google Scholar 

    56.
    Marcais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics27, 764–770 (2011).
    PubMed  PubMed Central  CAS  Google Scholar 

    57.
    Jain, M. et al. Nanopore sequencing and assembly of a human genome with ultra-long reads. Nat. Biotechnol.36, 338–345 (2018).
    PubMed  PubMed Central  CAS  Google Scholar 

    58.
    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive κ-mer weighting and repeat separation. Genome Res.27, 722–736 (2017).
    PubMed  PubMed Central  CAS  Google Scholar 

    59.
    Chakraborty, M. et al. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucleic Acids Res.44, e147 (2016).
    PubMed  PubMed Central  Google Scholar 

    60.
    Vaser, R. et al. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res.27, 737–746 (2017).
    PubMed  PubMed Central  CAS  Google Scholar 

    61.
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE9, e112963 (2014).
    PubMed  PubMed Central  Google Scholar 

    62.
    Simão, F. A. et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics31, 3210 (2015).
    PubMed  Google Scholar 

    63.
    Parra, G., Bradnam, K. & Korf, I. CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics23, 1061–1067 (2007).
    PubMed  CAS  Google Scholar 

    64.
    Zhang, J. et al. High-density genetic map construction and identification of a locus controlling weeping trait in an ornamental woody plant (Prunus mume Sieb. et Zucc). DNA Res.22, 1–9 (2015).
    Google Scholar 

    65.
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics25, 1754–1760 (2009).
    PubMed  PubMed Central  CAS  Google Scholar 

    66.
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res.20, 1297–1303 (2010).
    PubMed  PubMed Central  CAS  Google Scholar 

    67.
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics25, 2078–2079 (2009).
    PubMed  PubMed Central  Google Scholar 

    68.
    Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet.38, 904–909 (2006).
    PubMed  CAS  Google Scholar 

    69.
    Kumar, S. et al. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol.35, 1547–1549 (2018).
    PubMed  PubMed Central  CAS  Google Scholar 

    70.
    Excoffier, L. & Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour.10, 564–567 (2010).
    PubMed  Google Scholar 

    71.
    Pickrell, J. K. & Pritchard, J. K. Inference of population splits and mixtures from genome-wide allele frequency data. PLoS Genet.8, e1002967 (2012).
    PubMed  PubMed Central  CAS  Google Scholar 

    72.
    Foll, M. & Gaggiotti, O. E. A genome scan method to identify selected loci appropriate for both dominant and codominant markers: a Bayesian perspective. Genetics180, 977–993 (2008).
    PubMed  PubMed Central  Google Scholar 

    73.
    Hijmans, R. J. et al. Computer tools for spatial analysis of plant genetic resources data: 1. DIVA-GIS. Plant Genet. Resour. Newsl.127, 15–19 (2001).
    Google Scholar 

    74.
    Frichot, E. et al. Testing for associations between loci and environmental gradients using latent factor mixed models. Mol. Biol. Evol.30, 1687–1699 (2013).
    PubMed  PubMed Central  CAS  Google Scholar 

    75.
    Joost, S. et al. A spatial analysis method (SAM) to detect candidate loci for selection: towards a landscape genomics approach to adaptation. Mol. Ecol.16, 3955–3969 (2007).
    PubMed  CAS  Google Scholar 

    76.
    Stucki, S. et al. High performance computation of landscape genomic models including local indicators of spatial association. Mol. Ecol. Resour.17, 1072–1089 (2017).
    PubMed  CAS  Google Scholar 

    77.
    Oksanen, J. et al. Vegan: Community Ecology Package. R. Package Version 2.4-5 (2017).

    78.
    Altschul, S. F. et al. Basic local alignment search tool. J. Mol. Biol.215, 403–410 (1990).
    CAS  Google Scholar  More

  • in

    Author Correction: Remote sensing northern lake methane ebullition

    Author notes
    A. Serafimovich
    Present address: Deutscher Wetterdienst, Offenbach, Germany

    Affiliations

    Water and Environmental Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
    M. Engram & K. M. Walter Anthony

    International Arctic Research Center, University of Alaska Fairbanks, Fairbanks, AK, USA
    K. M. Walter Anthony

    GFZ German Research Centre for Geosciences, Potsdam, Germany
    T. Sachs, K. Kohnert & A. Serafimovich

    Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
    K. Kohnert

    Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Permafrost Research Center, Potsdam, Germany
    G. Grosse

    Institute of Geosciences, University of Potsdam, Potsdam, Germany
    G. Grosse

    Geophysical Institute, University of Alaska Fairbanks, Fairbanks, AK, USA
    F. J. Meyer

    Authors
    M. Engram

    K. M. Walter Anthony

    T. Sachs

    K. Kohnert

    A. Serafimovich

    G. Grosse

    F. J. Meyer

    Corresponding author
    Correspondence to M. Engram. More

  • in

    Assessing the response of micro-eukaryotic diversity to the Great Acceleration using lake sedimentary DNA

    1.
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 
    2.
    Keeler, B. L. et al. Linking water quality and well-being for improved assessment and valuation of ecosystem services. Proc. Natl Acad. Sci. USA 109, 18619–18624 (2012).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).
    PubMed  Google Scholar 

    4.
    Jenny, J.-P. et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl Acad. Sci. USA 116, 22972–22976 (2019).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Boyle, J. F., Chiverrell, R. C., Davies, H. & Alderson, D. M. An approach to modelling the impact of prehistoric farming on Holocene landscape phosphorus dynamics. Holocene 25, 203–214 (2015).
    ADS  Google Scholar 

    6.
    Steffen, W., Crutzen, P. J. & McNeill, J. R. The anthropocene: are humans now overwhelming the great forces of nature. AMBIO J. Hum. Environ. 36, 614–621 (2007).
    CAS  Google Scholar 

    7.
    Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the anthropocene: the great acceleration. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 

    8.
    Lewis, S. L. & Maslin, M. A. Defining the anthropocene. Nature 519, 171–180 (2015).
    ADS  CAS  PubMed  Google Scholar 

    9.
    Jenny, J.-P. et al. Urban point sources of nutrients were the leading cause for the historical spread of hypoxia across European lakes. Proc. Natl Acad. Sci. USA 113, 12655–12660 (2016).
    CAS  PubMed  Google Scholar 

    10.
    O’Beirne, M. D. et al. Anthropogenic climate change has altered primary productivity in Lake Superior. Nat. Commun. 8, 15713 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    11.
    Smol, J. P. Under the radar: long-term perspectives on ecological changes in lakes. Proc. R. Soc. B Biol. Sci. 286, 20190834 (2019).
    CAS  Google Scholar 

    12.
    Payne, R. J. Seven reasons why protists make useful bioindicators. Acta Protozool. 52, 105–113 (2013).

    13.
    Domaizon, I., Winegardner, A., Capo, E., Gauthier, J. & Gregory-Eaves, I. DNA-based methods in paleolimnology: new opportunities for investigating long-term dynamics of lacustrine biodiversity. J. Paleolimnol. 58, 1–21 (2017).
    ADS  Google Scholar 

    14.
    Gilbert, M. T. P., Bandelt, H.-J., Hofreiter, M. & Barnes, I. Assessing ancient DNA studies. Trends Ecol. Evol. 20, 541–544 (2005).
    PubMed  Google Scholar 

    15.
    Pedersen, M. W. et al. Ancient and modern environmental DNA. Philos. Trans. R. Soc. B Biol. Sci. 370, 20130383 (2015).
    Google Scholar 

    16.
    Coolen, M. J. L. et al. Evolution of the plankton paleome in the Black Sea from the Deglacial to Anthropocene. Proc. Natl Acad. Sci. USA 110, 8609–8614 (2013).
    ADS  CAS  PubMed  Google Scholar 

    17.
    Capo, E. et al. Long-term dynamics in microbial eukaryotes communities: a palaeolimnological view based on sedimentary DNA. Mol. Ecol. 25, 5925–5943 (2016).
    CAS  PubMed  Google Scholar 

    18.
    Capo, E. et al. Tracking a century of changes in microbial eukaryotic diversity in lakes driven by nutrient enrichment and climate warming. Environ. Microbiol. 19, 2873–2892 (2017).
    CAS  PubMed  Google Scholar 

    19.
    Capo, E. et al. How does environmental inter-annual variability shape aquatic microbial communities? A 40-year annual record of sedimentary DNA from a Boreal Lake (Nylandssjön, Sweden). Front. Ecol. Evol. 7, 245 (2019).
    ADS  Google Scholar 

    20.
    Coolen, M. J. L. et al. Combined DNA and lipid analyses of sediments reveal changes in Holocene haptophyte and diatom populations in an Antarctic lake. Earth Planet. Sci. Lett. 223, 225–239 (2004).
    ADS  CAS  Google Scholar 

    21.
    Boere, A. C. et al. Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and palynomorphs. Geobiology 7, 265–281 (2009).
    CAS  PubMed  Google Scholar 

    22.
    Kopf, R. K., Finlayson, C. M., Humphries, P., Sims, N. C. & Hladyz, S. Anthropocene baselines: assessing change and managing biodiversity in human-dominated aquatic ecosystems. BioScience 65, 798–811 (2015).
    Google Scholar 

    23.
    Smol, J. P. Pollution of Lakes and Rivers: A Paleoenvironmental Perspective (Wiley-Blackwell, 2008).

    24.
    McGill, B. J., Dornelas, M., Gotelli, N. J. & Magurran, A. E. Fifteen forms of biodiversity trend in the Anthropocene. Trends Ecol. Evol. 30, 104–113 (2015).
    PubMed  Google Scholar 

    25.
    Adl, S. M. et al. Revisions to the classification, nomenclature, and diversity of eukaryotes. J. Eukaryot. Microbiol. 66, 4–119 (2019).
    PubMed  PubMed Central  Google Scholar 

    26.
    Dornelas, M. et al. Assemblage Time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
    ADS  CAS  PubMed  Google Scholar 

    27.
    Charles, S. C. The value of microorganisms. Environ. Ethics 27, 375–390 (2005).
    Google Scholar 

    28.
    Bodelier, P. Toward understanding, managing, and protecting microbial ecosystems. Front. Microbiol. 2, 1–8 (2011).
    Google Scholar 

    29.
    Allison, S. D. & Martiny, J. B. H. Resistance, resilience, and redundancy in microbial communities. Proc. Natl Acad. Sci. USA 105, 11512–11519 (2008).
    ADS  CAS  PubMed  Google Scholar 

    30.
    Woodward, G., Perkins, D. M. & Brown, L. E. Climate change and freshwater ecosystems: impacts across multiple levels of organization. Philos. Trans. R. Soc. B Biol. Sci. 365, 2093–2106 (2010).
    Google Scholar 

    31.
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219 (2008).
    ADS  PubMed  Google Scholar 

    32.
    Leu, M., Hanser, S. E. & Knick, S. T. The human footprint in the West: a large-scale analysis of anthropogenic impacts. Ecol. Appl. 18, 1119–1139 (2008).
    PubMed  Google Scholar 

    33.
    Müller, B., Lotter, A. F., Sturm, M. & Ammann, A. Influence of catchment quality and altitude on the water and sediment composition of 68 small lakes in Central Europe. Aquat. Sci. 60, 316–337 (1998).
    Google Scholar 

    34.
    Weckström, K. et al. Impacts of climate warming on Alpine lake biota over the past decade. Arct. Antarct. Alp. Res. 48, 361–376 (2016).
    Google Scholar 

    35.
    Sadro, S., Melack, J. M., Sickman, J. O. & Skeen, K. Climate warming response of mountain lakes affected by variations in snow. Limnol. Oceanogr. Lett. 4, 9–17 (2019).
    Google Scholar 

    36.
    More, K. D., Giosan, L., Grice, K. & Coolen, M. J. L. Holocene paleodepositional changes reflected in the sedimentary microbiome of the Black Sea. Geobiology 17, 436–448 (2019).
    PubMed  Google Scholar 

    37.
    Li, F., Zhang, X., Xie, Y. & Wang, J. Sedimentary DNA reveals over 150 years of ecosystem change by human activities in Lake Chao, China. Environ. Int. 133, 105214 (2019).
    CAS  PubMed  Google Scholar 

    38.
    Jones, J. & Brett, M. T. in Global Environmental Change (ed. Freedman, B.) 273–279 (Springer Netherlands, 2014).

    39.
    De Senerpont Domis, L. N., Van de Waal, D. B., Helmsing, N. R., Van Donk, E. & Mooij, WolfM. Community stoichiometry in a changing world: combined effects of warming and eutrophication on phytoplankton dynamics. Ecology 95, 1485–1495 (2014).
    Google Scholar 

    40.
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
    CAS  PubMed  Google Scholar 

    41.
    Schindler, D. E., Carpenter, S. R., Cole, J. J., Kitchell, J. F. & Pace, M. L. Influence of food web structure on carbon exchange between lakes and the atmosphere. Science 277, 248–251 (1997).
    CAS  Google Scholar 

    42.
    Anderson, N. J., Heathcote, A. J. & Engstrom, D. R., Globocarb Data Contributors. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Sci. Adv. 6, eaaw2145 (2020).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Laplace-Treyture, C. & Feret, T. Performance of the Phytoplankton Index for Lakes (IPLAC): a multimetric phytoplankton index to assess the ecological status of water bodies in France. Ecol. Indic. 69, 686–698 (2016).
    CAS  Google Scholar 

    44.
    Carpenter, S. R. Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc. Natl Acad. Sci. USA 102, 10002–10005 (2005).
    ADS  CAS  PubMed  Google Scholar 

    45.
    Jensen, J. P., Jeppesen, E., Olrik, K. & Kristensen, P. Impact of nutrients and physical factors on the shift from cyanobacterial to chlorophyte dominance in shallow Danish Lakes. Can. J. Fish. Aquat. Sci. 51, 1692–1699 (1994).
    Google Scholar 

    46.
    Naselli-Flores, L. & Barone, R. Phytoplankton dynamics and structure: a comparative analysis in natural and man-made water bodies of different trophic state. Hydrobiologia 438, 65–74 (2000).
    CAS  Google Scholar 

    47.
    Fee, E. J. A relation between lake morphometry and primary productivity and its use in interpreting whole-lake eutrophication experiments. Limnol. Oceanogr. 24, 401–416 (1979).
    ADS  CAS  Google Scholar 

    48.
    Engstrom, D. R., Schottler, S. P., Leavitt, P. R. & Havens, K. E. A reevaluation of the cultural eutrophication of Lake Okeechobee using multiproxy sediment records. Ecol. Appl. 16, 1194–1206 (2006).
    PubMed  Google Scholar 

    49.
    Londeix, L., Herreyre, Y., Turon, J.-L. & Fletcher, W. Last glacial to holocene hydrology of the Marmara Sea inferred from a dinoflagellate cyst record. Rev. Palaeobot. Palynol. 158, 52–71 (2009).
    Google Scholar 

    50.
    Waibel, A., Peter, H. & Sommaruga, R. Importance of mixotrophic flagellates during the ice-free season in lakes located along an elevational gradient. Aquat. Sci. 81, 45 (2019).
    PubMed  PubMed Central  Google Scholar 

    51.
    Edwards, K. F. Mixotrophy in nanoflagellates across environmental gradients in the ocean. Proc. Natl Acad. Sci. USA 116, 6211–6220 (2019).
    CAS  PubMed  Google Scholar 

    52.
    Magurran, A. E., Dornelas, M., Moyes, F., Gotelli, N. J. & McGill, B. Rapid biotic homogenization of marine fish assemblages. Nat. Commun. 6, 8405 (2015).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    53.
    Knop, E. Biotic homogenization of three insect groups due to urbanization. Glob. Change Biol. 22, 228–236 (2016).
    ADS  Google Scholar 

    54.
    Rahel, F. J. Homogenization of fish faunas across the United States. Science 288, 854–856 (2000).
    ADS  CAS  PubMed  Google Scholar 

    55.
    Nielsen, T. F., Sand‐Jensen, K., Dornelas, M. & Bruun, H. H. More is less: net gain in species richness, but biotic homogenization over 140 years. Ecol. Lett. 22, 1650–1657 (2019).
    Google Scholar 

    56.
    Petsch, D. K. Causes and consequences of biotic homogenization in freshwater ecosystems. Int. Rev. Hydrobiol. 101, 113–122 (2016).
    Google Scholar 

    57.
    Monchamp, M.-E. et al. Homogenization of lake cyanobacterial communities over a century of climate change and eutrophication. Nat. Ecol. Evol. 2, 317 (2018).
    PubMed  Google Scholar 

    58.
    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 8568 (2015).
    ADS  PubMed  PubMed Central  Google Scholar 

    59.
    Litchman, E. Invisible invaders: non-pathogenic invasive microbes in aquatic and terrestrial ecosystems: Invasive microbes. Ecol. Lett. 13, 1560–1572 (2010).
    PubMed  Google Scholar 

    60.
    Wilkinson, D. M. Have we underestimated the importance of humans in the biogeography of free-living terrestrial microorganisms? J. Biogeogr. 37, 393–397 (2010).
    Google Scholar 

    61.
    Jenny, J.-P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Change Biol. 22, 1481–1489 (2016).
    ADS  Google Scholar 

    62.
    Birks, H. H. & Birks, H. J. B. Multi-proxy studies in palaeolimnology. Veg. Hist. Archaeobot. 15, 235–251 (2006).
    Google Scholar 

    63.
    Gast, R. J., Dennett, M. R. & Caron, D. A. Characterization of Protistan assemblages in the Ross Sea, Antarctica, by denaturing gradient gel electrophoresis. Appl. Environ. Microbiol. 70, 2028–2037 (2004).
    CAS  PubMed  PubMed Central  Google Scholar 

    64.
    Van de Peer, Y., De Rijk, P., Wuyts, J., Winkelmans, T. & De Wachter, R. The European small subunit ribosomal RNA database. Nucleic Acids Res. 28, 175–176 (2000).
    PubMed  PubMed Central  Google Scholar 

    65.
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).
    PubMed  PubMed Central  Google Scholar 

    66.
    Mangot, J.-F. et al. Short-term dynamics of diversity patterns: evidence of continual reassembly within lacustrine small eukaryotes: Short-term dynamics of small eukaryotes. Environ. Microbiol. 15, 1745–1758 (2013).
    CAS  PubMed  Google Scholar 

    67.
    Taib, N., Mangot, J.-F., Domaizon, I., Bronner, G. & Debroas, D. Phylogenetic affiliation of SSU rRNA genes generated by massively parallel sequencing: new insights into the freshwater protist diversity. PLoS ONE 8, e58950 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).
    CAS  PubMed  PubMed Central  Google Scholar 

    69.
    Guillou, L. et al. The Protist Ribosomal Reference database (PR2): a catalog of unicellular eukaryote Small Sub-Unit rRNA sequences with curated taxonomy. Nucleic Acids Res. 41, D597–D604 (2013).
    CAS  PubMed  Google Scholar 

    70.
    McKnight, D. T. et al. Methods for normalizing microbiome data: an ecological perspective. Methods Ecol. Evol. 10, 389–400 (2019).
    Google Scholar 

    71.
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 1.17–10 (2011).

    72.
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).
    Google Scholar 

    73.
    Anderson, M. J. Distance-Based Tests for Homogeneity of Multivariate Dispersions. Biometrics 62, 245–253 (2006).
    MathSciNet  PubMed  MATH  Google Scholar 

    74.
    Therneau, T., Atkinson, B. & Ripley, B. (2019). rpart: Recursive Partitioning and Regression Trees. R package version 4.1–13. (2018).

    75.
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
    PubMed  PubMed Central  Google Scholar  More

  • in

    Intermittent meromixis controls the trophic state of warming deep lakes

    1.
    Smith, V. H. & Schindler, D. W. Eutrophication science: where do we go from here?. Trends Ecol. Evol. 24, 201–207 (2009).
    PubMed  Google Scholar 
    2.
    Steffen, W. et al. Planetary boundaries: guiding human development on a changing planet. Science 347, 1259855 (2015).
    PubMed  Google Scholar 

    3.
    Carpenter, S. et al. Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecol. Appl. 8, 559–568 (1998).
    Google Scholar 

    4.
    Cohen, A. S. et al. Climate warming reduces fish production and benthic habitat in Lake Tanganyika, one of the most biodiverse freshwater ecosystems. Proc. Natl. Acad. Sci. 113, 9563–9568 (2016).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Fernández, J. E., Peeters, F. & Hofmann, H. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake. Environ. Sci. Technol. 48, 7297–7304 (2014).
    ADS  Google Scholar 

    6.
    Friedrich, J. et al. Investigating hypoxia in aquatic environments: diverse approaches to addressing a complex phenomenon. Biogeosciences 11, 1215–1259 (2014).
    ADS  Google Scholar 

    7.
    Vollenweider, R. A. Advances in Defining Critical Loading Levels for Phosphorus in Lake Eutrophication (Mem. dell’Istituto Ital. di Idrobiol. Dott, Marco Marchi Verbania Pallanza, 1976).
    Google Scholar 

    8.
    Jenny, J.-P. et al. Inherited hypoxia: a new challenge for reoligotrophicated lakes under global warming. Glob. Biogeochem. Cycles 28, 1413–1423 (2014).
    ADS  CAS  Google Scholar 

    9.
    Matzinger, A. et al. Eutrophication of ancient Lake Ohrid: global warming amplifies detrimental effects of increased nutrient inputs. Limnol. Oceanogr. 52, 338–353 (2007).
    ADS  CAS  Google Scholar 

    10.
    Meire, L., Soetaert, K. E. R. & Meysman, F. J. R. Impact of global change on coastal oxygen dynamics and risk of hypoxia. Biogeosciences 10, 2633–2653 (2013).
    ADS  CAS  Google Scholar 

    11.
    Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).

    12.
    O’Reilly, C. M. et al. Rapid and highly variable warming of lake surface waters around the globe. Geophys. Res. Lett. 42, 10773–10781 (2015).
    ADS  Google Scholar 

    13.
    Schmid, M., Hunziker, S. & Wüest, A. Lake surface temperatures in a changing climate: a global sensitivity analysis. Clim. Change 124, 301–315 (2014).
    ADS  Google Scholar 

    14.
    Paerl, H. W. & Huisman, J. Blooms like it hot. Science 320, 57–58 (2008).
    CAS  Google Scholar 

    15.
    Müller, B., Bryant, L. D., Matzinger, A. & Wüest, A. Hypolimnetic oxygen depletion in eutrophic lakes. Environ. Sci. Technol. 46, 9964–9971 (2012).
    PubMed  Google Scholar 

    16.
    Adrian, R. et al. Lakes as sentinels of climate change. Limnol. Oceanogr. 54, 2283–2297 (2009).
    ADS  PubMed  PubMed Central  Google Scholar 

    17.
    Butcher, J. B., Nover, D., Johnson, T. E. & Clark, C. M. Sensitivity of lake thermal and mixing dynamics to climate change. Clim. Change 129, 295–305 (2015).
    ADS  CAS  Google Scholar 

    18.
    Kirillin, G. Modeling the impact of global warming on water temperature and seasonal mixing regimes in small temperate lakes. Boreal Environ. Res. 15, 279–293 (2010).
    Google Scholar 

    19.
    Straile, D., Jöhnk, K. & Rossknecht, H. Complex effects of winter warming on the physicochemical characteristics of a deep lake. Limnol. Oceanogr. 48, 1432–1438 (2003).
    ADS  CAS  Google Scholar 

    20.
    Woolway, R. I. & Merchant, C. J. Worldwide alteration of lake mixing regimes in response to climate change. Nat. Geosci. 12, 271–276 (2019).
    ADS  CAS  Google Scholar 

    21.
    Boehrer, B., Fukuyama, R. & Chikita, K. Stratification of very deep, thermally stratified lakes. Geophys. Res. Lett. 35, 8–12 (2008).
    Google Scholar 

    22.
    Boehrer, B. & Schultze, M. Stratification of lakes. Rev. Geophys. 46, 1–27 (2008).
    Google Scholar 

    23.
    Boehrer, B., Rohden, C. Von & Schultze, M. Ecology of Meromictic Lakes. 228 (2017).

    24.
    Hall, K. J. & Northcote, T. G. Meromictic lakes. In Encyclopedia of Lakes and Reservoirs 519–524 (Springer, 2012).

    25.
    Søndergaard, M., Jensen, J. P. & Jeppesen, E. Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506–509, 135–145 (2003).
    Google Scholar 

    26.
    Hupfer, M. & Lewandowski, J. Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int. Rev. Hydrobiol. 93, 415–432 (2008).
    CAS  Google Scholar 

    27.
    Yankova, Y., Neuenschwander, S., Köster, O. & Posch, T. Abrupt stop of deep water turnover with lake warming: drastic consequences for algal primary producers. Sci. Rep. 7, 13770 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    28.
    Lehmann, M. et al. Powering up the “biogeochemical engine”: the impact of exceptional ventilation of a deep meromictic lake on the lacustrine redox, nutrient, and methane balances. Front. Earth Sci. 3, 45 (2015).
    ADS  Google Scholar 

    29.
    Anneville, O., Gammeter, S. & Straile, D. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshw. Biol. 50, 1731–1746 (2005).
    CAS  Google Scholar 

    30.
    Posch, T., Köster, O., Salcher, M. M. & Pernthaler, J. Harmful filamentous cyanobacteria favoured by reduced water turnover with lake warming. Nat. Clim. Change 2, 809 (2012).
    ADS  CAS  Google Scholar 

    31.
    Winder, M. Lake warming mimics fertilization. Nat. Clim. Change 2, 771 (2012).
    ADS  CAS  Google Scholar 

    32.
    Coats, R., Perez-Losada, J., Schladow, G., Richards, R. & Goldman, C. The warming of Lake Tahoe. Clim. Change 76, 121–148 (2006).
    ADS  Google Scholar 

    33.
    Kraemer, B. M. et al. Morphometry and average temperature affect lake stratification responses to climate change. Geophys. Res. Lett. 42, 4981–4988 (2015).
    ADS  Google Scholar 

    34.
    Verburg, P., Hecky, R. E. & Kling, H. Ecological consequences of a century of warming in Lake Tanganyika. Science 301, 505–507 (2003).
    ADS  CAS  PubMed  Google Scholar 

    35.
    North, R. P., North, R. L., Livingstone, D. M., Köster, O. & Kipfer, R. Long-term changes in hypoxia and soluble reactive phosphorus in the hypolimnion of a large temperate lake: consequences of a climate regime shift. Glob. Change Biol. 20, 811–823 (2014).
    ADS  Google Scholar 

    36.
    Salmaso, N. Effects of climatic fluctuations and vertical mixing on the interannual trophic variability of Lake Garda, Italy. Limnol. Oceanogr. 50, 553–565 (2005).
    ADS  Google Scholar 

    37.
    Kõiv, T., Nõges, T. & Laas, A. Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660, 105–115 (2011).
    Google Scholar 

    38.
    Walker, K. F. & Likens, G. E. Meromixis and a reconsidered typology of lake circulation patterns. Int. Vereinigung für Theor. und Angew. Limnol. Verhandlungen 19, 442–458 (1975).
    Google Scholar 

    39.
    Rogora, M. et al. Climatic effects on vertical mixing and deep-water oxygen content in the subalpine lakes in Italy. Hydrobiologia https://doi.org/10.1007/s10750-018-3623-y (2018).
    Article  Google Scholar 

    40.
    Valerio, G., Pilotti, M., Barontini, S. & Leoni, B. Sensitivity of the multiannual thermal dynamics of a deep pre-alpine lake to climatic change. Hydrol. Process. 29, 767–779 (2015).
    ADS  Google Scholar 

    41.
    Rapuc, W. et al. Holocene-long record of flood frequency in the Southern Alps (Lake Iseo, Italy) under human and climate forcing. Glob. Planet. Change 175, 160–172 (2019).
    ADS  Google Scholar 

    42.
    Gächter, R. & Müller, B. Why the phosphorus retention of lakes does not necessarily depend on the oxygen supply to their sediment surface. Limnol. Oceanogr. 48, 929–933 (2003).
    ADS  Google Scholar 

    43.
    Katsev, S. & Dittrich, M. Modeling of decadal scale phosphorus retention in lake sediment under varying redox conditions. Ecol. Model. 251, 246–259 (2013).
    CAS  Google Scholar 

    44.
    Garibaldi, L., Mezzanotte, V., Brizzio, M. C., Rogora, M. & Mosello, R. The trophic evolution of Lake Iseo as related to its holomixis. J. Limnol. 58, 10 (1999).
    Google Scholar 

    45.
    Leoni, B. et al. Long-term studies for evaluating the impacts of natural and anthropic stressors on limnological features and the ecosystem quality of Lake Iseo. Adv. Oceanogr. Limnol. https://doi.org/10.4081/aiol.2019.8622 (2019).
    Article  Google Scholar 

    46.
    Wilhelm, S. & Adrian, R. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton. Freshw. Biol. 53, 226–237 (2008).
    CAS  Google Scholar 

    47.
    Pilotti, M., Valerio, G. & Leoni, B. Data set for hydrodynamic lake model calibration: a deep prealpine case. Water Resour. Res. 49, 7159–7163 (2013).
    ADS  Google Scholar 

    48.
    Hutchinson, G. E. Treatise on limnology; geography, physics of lakes. In Treatise on Limnology; Geography, Physics of Lakes (Wiley, New York, 1975).

    49.
    Livingstone, D. M. A change of climate provokes a change of paradigm: taking leave of two tacit assumptions about physical lake forcing. Int. Rev. Hydrobiol. 93, 404–414 (2008).
    Google Scholar 

    50.
    Livingstone, D. M. Impact of secular climate change on the thermal structure of a large temperate central European lake. Clim. Change 57, 205–225 (2003).
    Google Scholar 

    51.
    Peeters, F., Livingstone, D. M., Goudsmit, G.-H., Kipfer, R. & Forster, R. Modeling 50 years of historical temperature profiles in a large central European lake. Limnol. Oceanogr. 47, 186–197 (2002).
    ADS  Google Scholar 

    52.
    Foley, B., Jones, I. D., Maberly, S. C. & Rippey, B. Long-term changes in oxygen depletion in a small temperate lake: effects of climate change and eutrophication. Freshw. Biol. 57, 278–289 (2011).
    Google Scholar 

    53.
    Salmaso, N., Boscaini, A., Capelli, C. & Cerasino, L. Ongoing ecological shifts in a large lake are driven by climate change and eutrophication: evidences from a three-decade study in Lake Garda. Hydrobiologia 824, 177–195 (2018).
    CAS  Google Scholar 

    54.
    Vinçon-Leite, B., Lemaire, B. J., Khac, V. T. & Tassin, B. Long-term temperature evolution in a deep sub-alpine lake, Lake Bourget, France: how a one-dimensional model improves its trend assessment. Hydrobiologia 731, 49–64 (2014).
    Google Scholar 

    55.
    Livingstone, D. M. An example of the simultaneous occurrence of climate-driven “sawtooth” deep-water warming/cooling episodes in several Swiss lakes. SIL Proc. 1922–2010(26), 822–828 (1997).
    Google Scholar 

    56.
    Martin-Creuzburg, D., von Elert, E. & Hoffmann, K. H. Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnol. Oceanogr. 53, 456–468 (2008).
    ADS  Google Scholar 

    57.
    Zadereev, E. S., Boehrer, B. & Gulati, R. D. Introduction: meromictic lakes, their terminology and geographic distribution. In: Ecology of Meromictic Lakes, Vol. 228, 1–11 (Springer, 2017).

    58.
    Bryhn, A. C., Girel, C., Paolini, G. & Jacquet, S. Predicting future effects from nutrient abatement and climate change on phosphorus concentrations in Lake Bourget, France. Ecol. Model. 221, 1440–1450 (2010).
    CAS  Google Scholar 

    59.
    Kourzeneva, E., Asensio, H., Martin, E. & Faroux, S. Global gridded dataset of lake coverage and lake depth for use in numerical weather prediction and climate modelling. Tellus A Dyn. Meteorol. Oceanogr. 64, 15640 (2012).
    Google Scholar 

    60.
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).
    ADS  Google Scholar 

    61.
    Cael, B. B., Heathcote, A. J. & Seekell, D. A. The volume and mean depth of Earth’s lakes. Geophys. Res. Lett. 44, 209–218 (2017).
    ADS  Google Scholar 

    62.
    Brett, M. T. & Benjamin, M. M. A review and reassessment of lake phosphorus retention and the nutrient loading concept. Freshw. Biol. 53, 194–211 (2007).
    Google Scholar 

    63.
    Bryhn, A. C. A morphometrically based method for predicting water layer boundaries in meromictic lakes. Hydrobiologia 636, 413–419 (2009).
    CAS  Google Scholar 

    64.
    Rempfer, J. et al. The effect of the exceptionally mild European winter of 2006–2007 on temperature and oxygen profiles in lakes in Switzerland: a foretaste of the future?. Limnol. Oceanogr. 55, 2170–2180 (2010).
    ADS  CAS  Google Scholar 

    65.
    Jenny, J. P. et al. Global spread of hypoxia in freshwater ecosystems during the last three centuries is caused by rising local human pressure. Glob. Change Biol. 22, 1481–1489 (2016).
    ADS  Google Scholar 

    66.
    Kraemer, B. M., Mehner, T. & Adrian, R. Reconciling the opposing effects of warming on phytoplankton biomass in 188 large lakes. Sci. Rep. 7, 10762 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    67.
    Bonomi, G. & Gerletti, M. Lake Iseo: a first limnological survey (temperature, chemistry, plankton and benthos). Mem. 1st. Ital. Idrobiol. 22, 149–175 (1967).
    Google Scholar 

    68.
    Pilotti, M., Simoncelli, S. & Valerio, G. A simple approach to the evaluation of the actual water renewal time of natural stratified lakes. Water Resour. Res. 50, 2830–2849 (2014).
    ADS  Google Scholar 

    69.
    Ambrosetti, W. & Barbanti, L. Evolution towards meromixis of Lake Iseo (Northern Italy) as revealed by its stability trend. J. Limnol. 64, 1 (2005).
    Google Scholar 

    70.
    Hupfer, M., Reitzel, K., Kleeberg, A. & Lewandowski, J. Long-term efficiency of lake restoration by chemical phosphorus precipitation: scenario analysis with a phosphorus balance model. Water Res. 97, 153–161 (2016).
    CAS  PubMed  Google Scholar 

    71.
    Hesslein, R. H. An in situ sampler for close interval pore water studies1. Limnol. Oceanogr. 21, 912–914 (1976).
    ADS  CAS  Google Scholar 

    72.
    Psenner, R., Pucsko, R. & Sage, M. Fractionation of Organic and Inorganic Phosphorus Compounds in Lake Sediments, An Attempt to Characterize Ecologically Important Fractions (Die Fraktionierung Organischer und Anorganischer Phosphorverbindungen von Sedimenten, Versuch einer Definition Okologisch Wichtiger Fraktionen). Arch. fur Hydrobiol. 1 (1984).

    73.
    Hupfer, M., Gächter, R. & Giovanoli, R. Transformation of phosphorus species in settling seston and during early sediment diagenesis. Aquat. Sci. 57, 305–324 (1995).
    Google Scholar 

    74.
    Reitzel, K., Hansen, J., Andersen, F. Ø, Hansen, K. S. & Jensen, H. S. Lake restoration by dosing aluminum relative to mobile phosphorus in the sediment. Environ. Sci. Technol. https://doi.org/10.1021/ES0485964 (2005).
    Article  PubMed  Google Scholar 

    75.
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).
    ADS  CAS  Google Scholar 

    76.
    Yuan-Hui, L. & Gregory, S. Diffusion of ions in sea water and in deep-sea sediments. Geochim. Cosmochim. Acta 38, 703–714 (1974).
    ADS  Google Scholar 

    77.
    R Core Team. R: a language and environment for statistical computing (2013).

    78.
    Messager, M. L., Lehner, B., Grill, G., Nedeva, I. & Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 7, 13603 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    79.
    Håkanson, L. The importance of lake morphometry for the structure and function of lakes. Int. Rev. Hydrobiol. 90, 433–461 (2005).
    Google Scholar  More

  • in

    Unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases

    1.
    Mukherjee, S. et al. Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Res.47, D649–D659 (2019).
    CAS  PubMed  Google Scholar 
    2.
    Agarwala, R. et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res.46, D8–D13 (2018).
    Google Scholar 

    3.
    Chen, I. M. A. et al. IMG/M v.5.0: An integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res.47, D666–D677 (2019).
    CAS  PubMed  Google Scholar 

    4.
    Blakemore, R. P. Magnetotactic Bacteria. Science190, 377–379 (1975).
    ADS  CAS  PubMed  Google Scholar 

    5.
    Benoit, M. R. et al. Visualizing implanted tumors in mice with magnetic resonance imaging using magnetotactic bacteria. Clin Cancer Res.15, 5170–5177 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    6.
    Alphandéry, E., Chebbi, I., Guyot, F. & Durand-Dubief, M. Use of bacterial magnetosomes in the magnetic hyperthermia treatment of tumours: A review. Int. J. Hyperth.29, 801–809 (2013).
    Google Scholar 

    7.
    Chang, S. & Kirschvink, J. L. Magnetofossils, the magnetization of sediments, and the evolution of magnetite biomineralization. Annu. Rev. Earth Planet. Sci17, 169–95 (1989).
    ADS  CAS  Google Scholar 

    8.
    Kodama, K. P., Moeller, R. E., Bazylinski, D. A., Kopp, R. E. & Chen, A. P. The mineral magnetic record of magnetofossils in recent lake sediments of Lake Ely, PA. Glob. Planet. Change110, 350–363 (2013).
    ADS  Google Scholar 

    9.
    Kopp, R. E. & Kirschvink, J. L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth-Science Rev.86, 42–61 (2008).
    ADS  Google Scholar 

    10.
    Mckay, C. P., Friedmann, E. I., Frankel, R. B. & Bazylinski, D. A. Magnetotactic bacteria on Earth and on Mars. Astrobiology3, 263–271 (2003).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Uebe, R. & Schüler, D. Magnetosome biogenesis in magnetotactic bacteria. Nature Reviews Microbiology14, 621–637 (2016).
    CAS  PubMed  Google Scholar 

    12.
    Lin, W., Pan, Y. & Bazylinsky, D. A. Diversity and ecology of and biomineralization by magnetotactic bacteria. Environ. Microbiol. Rep.9, 345–356 (2017).
    CAS  PubMed  Google Scholar 

    13.
    Lin, W. et al. Genomic insights into the uncultured genus ‘Candidatus Magnetobacterium’ in the phylum Nitrospirae. ISME J.8, 2463–2477 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    14.
    Lin, W. & Pan, Y. A putative greigite-type magnetosome gene cluster from the candidate phylum Latescibacteria. Environ. Microbiol. Rep.7, 237–242 (2015).
    CAS  PubMed  Google Scholar 

    15.
    Lin, W. et al. Genomic expansion of magnetotactic bacteria reveals an early common origin of magnetotaxis with lineage-specific evolution. ISME J. 201812, 1508–1519 (2018).
    CAS  Google Scholar 

    16.
    Ji, B. et al. Comparative genomic analysis provides insights into the evolution and niche adaptation of marine Magnetospira sp. QH-2 strain. Environ. Microbiol.16, 525–544 (2014).
    CAS  PubMed  Google Scholar 

    17.
    Koziaeva, V. V. et al. Magnetospirillum kuznetsovii sp. nov., a novel magnetotactic bacterium isolated from a lake in the Moscow region. Int. J. Syst. Evol. Microbiol.69, 1953–1959 (2019).
    CAS  Google Scholar 

    18.
    Matsunaga, T. et al. Complete genome sequence of the facultative anaerobic magnetotactic bacterium Magnetospirillum sp. strain AMB-1. DNA Res.12, 157–166 (2005).
    CAS  PubMed  Google Scholar 

    19.
    Smalley, M. D., Marinov, G. K., Bertani, L. E. & DeSalvo, G. Genome sequence of Magnetospirillum magnetotacticum strain MS-1. Genome Announc.3, e00233–15 (2015).
    PubMed  PubMed Central  Google Scholar 

    20.
    Koziaeva, V. V. et al. Draft Genome sequences of two magnetotactic bacteria, Magnetospirillum moscoviense BB-1 and Magnetospirillum marisnigri SP-1. Genome Announc.4, e00814–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    21.
    Ke, L., Liu, P., Liu, S. & Gao, M. Complete genome sequence of Magnetospirillum sp. ME-1, a novel magnetotactic bacterium isolated from East Lake, Wuhan, China. Genome Announc.5, e00485–17 (2017).
    PubMed  PubMed Central  Google Scholar 

    22.
    Wang, Y. et al. Complete genome sequence of Magnetospirillum sp. Strain XM-1, isolated from the Xi’an City Moat. China. Genome Announc.4, e01171–16 (2016).
    PubMed  Google Scholar 

    23.
    Grouzdev, D. S. et al. Draft genome sequence of Magnetospirillum sp. Strain SO-1, a freshwater magnetotactic bacterium isolated from the Ol’khovka River, Russia. Genome Announc.2, e00235–14 (2014).
    PubMed  PubMed Central  Google Scholar 

    24.
    Ullrich, S., Kube, M., Schübbe, S., Reinhardt, R. & Schüler, D. A hypervariable 130-kilobase genomic region of Magnetospirillum gryphiswaldense comprises a magnetosome island which undergoes frequent rearrangements during stationary growth. J. Bacteriol.187, 7176–7184 (2005).
    CAS  PubMed  PubMed Central  Google Scholar 

    25.
    Trubitsyn, D. et al. Draft genome sequence of Magnetovibrio blakemorei strain MV-1, a marine vibrioid magnetotactic bacterium. Genome Announc.4, e01330–16 (2016).
    PubMed  PubMed Central  Google Scholar 

    26.
    Jogler, C. et al. Comparative analysis of magnetosome gene clusters in magnetotactic bacteria provides further evidence for horizontal gene transfer. Environ. Microbiol.11, 1267–1277 (2009).
    CAS  PubMed  Google Scholar 

    27.
    Monteil, C. L. et al. Genomic study of a novel magnetotactic Alphaproteobacteria uncovers the multiple ancestry of magnetotaxis. Environ. Microbiol.20, 4415–4430 (2018).
    CAS  PubMed  Google Scholar 

    28.
    Schübbe, S. et al. Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1. Appl. Environ. Microbiol.75, 4835–4852 (2009).
    PubMed  PubMed Central  Google Scholar 

    29.
    Ji, B. et al. The chimeric nature of the genomes of marine magnetotactic coccoid-ovoid bacteria defines a novel group of Proteobacteria. Environ. Microbiol.19, 1103–1119 (2017).
    CAS  PubMed  Google Scholar 

    30.
    Morillo, V. et al. Isolation, cultivation and genomic analysis of magnetosome biomineralization genes of a new genus of South-seeking magnetotactic cocci within the Alphaproteobacteria. Front. Microbiol.5, 72 (2014).
    PubMed  PubMed Central  Google Scholar 

    31.
    Koziaeva, V. et al. Genome-based metabolic reconstruction of a novel uncultivated freshwater magnetotactic coccus “Ca. Magnetaquicoccus inordinatus” UR-1, and proposal of a candidate family “Ca. Magnetaquicoccaceae”. Front. Microbiol.10, 2290 (2019).
    PubMed  PubMed Central  Google Scholar 

    32.
    Abreu, F. et al. Deciphering unusual uncultured magnetotactic multicellular prokaryotes through genomics. ISME J.8, 1055–1068 (2014).
    CAS  PubMed  Google Scholar 

    33.
    Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics reveals potential for magnetite and greigite biomineralization in an uncultivated multicellular magnetotactic prokaryote. Environ. Microbiol. Rep.6, 524–531 (2014).
    CAS  PubMed  Google Scholar 

    34.
    Lefèvre, C. T. et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Environ. Microbiol.15, 2712–2735 (2013).
    PubMed  Google Scholar 

    35.
    Nakazawa, H. et al. Whole genome sequence of Desulfovibrio magneticus strain RS-1 revealed common gene clusters in magnetotactic bacteria. Genome Res.19, 1801–1808 (2009).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Lefèvre, C. T. et al. Novel magnetite-producing magnetotactic bacteria belonging to the Gammaproteobacteria. ISME J.6, 440–450 (2012).
    PubMed  Google Scholar 

    37.
    Baker, B. J., Lazar, C. S., Teske, A. P. & Dick, G. J. Genomic resolution of linkages in carbon, nitrogen, and sulfur cycling among widespread estuary sediment bacteria. Microbiome3 (2015).

    38.
    Jogler, C. et al. Cultivation-independent characterization of ‘Candidatus Magnetobacterium bavaricum’ via ultrastructural, geochemical, ecological and metagenomic methods. Environ. Microbiol.12, 2466–2478 (2010).
    CAS  PubMed  Google Scholar 

    39.
    Kolinko, S., Richter, M., Glöckner, F. O., Brachmann, A. & Schüler, D. Single-cell genomics of uncultivated deep-branching magnetotactic bacteria reveals a conserved set of magnetosome genes. Environ. Microbiol.18, 21–37 (2016).
    CAS  PubMed  Google Scholar 

    40.
    Lin, W. et al. Origin of microbial biomineralization and magnetotaxis during the Archean. Proc. Natl. Acad. Sci.114, 2171–2176 (2017).
    ADS  CAS  PubMed  Google Scholar 

    41.
    Koziaeva, V. V. et al. Biodiversity of magnetotactic bacteria in the freshwater lake Beloe Bordukovskoe, Russia. Microbiology89, 348–358, https://doi.org/10.1134/S002626172003008X (2020).

    42.
    Wrighton, K. C. et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science (80−).337, 1661–1665 (2012).
    ADS  CAS  Google Scholar 

    43.
    Kolinko, S. et al. Single-cell analysis reveals a novel uncultivated magnetotactic bacterium within the candidate division OP3. Environ. Microbiol.14, 1709–1721 (2012).
    CAS  PubMed  Google Scholar 

    44.
    BioSample of Candidatus Hydrogenedentes bacterium MAG_17971_hgd_130. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911668 (2020).

    45.
    Thrash, C. J. et al. Metagenomic assembly and prokaryotic metagenome-assembled genome sequences from the northern Gulf of Mexico “Dead Zone”. Microbiol. Resour. Announc.7, 4–6 (2018).
    Google Scholar 

    46.
    Watson, S. W. & Waterbury, J. B. Characteristics of two marine nitrite oxidizing bacteria, Nitrospina gracilis nov. gen. nov. sp. and Nitrococcus mobilis nov. gen. nov. sp. Arch. Microbiol.77, 203–230 (1971).
    Google Scholar 

    47.
    Tian, R. M. et al. The deep-sea glass sponge Lophophysema eversa harbours potential symbionts responsible for the nutrient conversions of carbon, nitrogen and sulfur. Environ. Microbiol.18, 2481–2494 (2016).
    CAS  PubMed  Google Scholar 

    48.
    BioSample of Deltaproteobacteria bacterium MAG_22309_dsfv_022. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911677 (2020).

    49.
    Didonato, R. J. et al. Genome sequence of the deltaproteobacterial strain NaphS2 and analysis of differential gene expression during anaerobic growth on naphthalene. PLos One5, e14072 (2010).
    ADS  PubMed  PubMed Central  Google Scholar 

    50.
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol.2, 1533–1542 (2017).
    CAS  PubMed  Google Scholar 

    51.
    Tully, B. J., Graham, E. D. & Heidelberg, J. F. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data5, 1–8 (2018).
    Google Scholar 

    52.
    Sizova, M. V., Panikov, N. S., Spiridonova, E. M., Slobodova, N. V. & Tourova, T. P. Novel facultative anaerobic acidotolerant Telmatospirillum siberiense gen. nov. sp. nov. isolated from mesotrophic fen. Syst. Appl. Microbiol.30, 213–220 (2007).
    CAS  PubMed  Google Scholar 

    53.
    Bazylinski, D. A. et al. Magnetococcus marinus gen. nov., sp. nov., a marine, magnetotactic bacterium that represents a novel lineage (Magnetococcaceae fam. nov., Magnetococcales ord. nov.) at the base of the Alphaproteobacteria. Int. J. Syst. Evol. Microbiol.63, 801–808 (2013).
    CAS  PubMed  Google Scholar 

    54.
    Lebedeva, E. V. et al. Isolation and characterization of a moderately thermophilic nitrite-oxidizing bacterium from a geothermal spring. FEMS Microbiol. Ecol.75, 195–204 (2011).
    CAS  PubMed  Google Scholar 

    55.
    Lefèvre, C. T. et al. Moderately thermophilic magnetotactic bacteria from hot springs in Nevada. Appl. Environ. Microbiol.76, 3740–3743 (2010).
    PubMed  PubMed Central  Google Scholar 

    56.
    Lefèvre, C. T. et al. Comparative genomic analysis of magnetotactic bacteria from the Deltaproteobacteria provides new insights into magnetite and greigite magnetosome genes required for magnetotaxis. Syst. Appl. Microbiol.40, 280–289 (2017).
    PubMed  Google Scholar 

    57.
    Mikaelyan, A. et al. High-resolution phylogenetic analysis of Endomicrobia reveals multiple acquisitions of endosymbiotic lineages by termite gut flagellates. Environ. Microbiol. Rep.9, 477–483 (2017).
    CAS  PubMed  Google Scholar 

    58.
    Izawa, K. et al. Discovery of ectosymbiotic Endomicrobium lineages associated with protists in the gut of stolotermitid termites. Environ. Microbiol. Rep.9, 411–418 (2017).
    CAS  PubMed  Google Scholar 

    59.
    Ohkuma, M. et al. The candidate phylum ‘Termite Group 1’ of bacteria: Phylogenetic diversity, distribution, and endosymbiont members of various gut flagellated protists. FEMS Microbiol. Ecol.60, 467–476 (2007).
    CAS  PubMed  Google Scholar 

    60.
    Dufour, S. C. et al. Magnetosome-containing bacteria living as symbionts of bivalves. ISME J.8, 2453–2462 (2014).
    CAS  PubMed  PubMed Central  Google Scholar 

    61.
    Monteil, C. L. et al. Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol.4, 1088–1095 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    62.
    Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature499, 431–437 (2013).
    ADS  CAS  PubMed  Google Scholar 

    63.
    Probst, A. J. et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2 concentrations. Environ. Microbiol.19, 459–474 (2016).
    PubMed  Google Scholar 

    64.
    Tully, B. J., Wheat, C. G., Glazer, B. T. & Huber, J. A. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME J.12, 1–16 (2018).
    CAS  PubMed  Google Scholar 

    65.
    Lücker, S., Nowka, B., Rattei, T., Spieck, E. & Daims, H. The genome of Nitrospina gracilis illuminates the metabolism and evolution of the major marine nitrite oxidizer. Front. Microbiol.4, 27 (2013).
    PubMed  PubMed Central  Google Scholar 

    66.
    Mendler, K. et al. Annotree: Visualization and exploration of a functionally annotated microbial tree of life. Nucleic Acids Res.47, 4442–4448 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    67.
    Laczny, C. C. et al. BusyBee Web: Metagenomic data analysis by bootstrapped supervised binning and annotation. Nucleic Acids Res.45, W171–W179 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    68.
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics32, 605–607 (2016).
    CAS  Google Scholar 

    69.
    Lin, H. H. & Liao, Y. C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci. Rep.6, 12–19 (2016).
    Google Scholar 

    70.
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol.3, 836–843 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    71.
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res.25, 1043–1055 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    72.
    Gurevich, A., Saveliev, V., Vyahhi, N. & Tesler, G. QUAST: Quality assessment tool for genome assemblies. Bioinformatics29, 1072–1075 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun.9, 5114 (2018).
    ADS  PubMed  PubMed Central  Google Scholar 

    74.
    Murali, A., Bhargava, A. & Wright, E. S. IDTAXA: A novel approach for accurate taxonomic classification of microbiome sequences. Microbiome6, 140 (2018).
    PubMed  PubMed Central  Google Scholar 

    75.
    Chaumeil, P., Mussig, A. J., Parks, D. H. & Hugenholtz, P. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 1–3, https://doi.org/10.1093/bioinformatics/btz848 (2019).

    76.
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol.36, 996 (2018).
    CAS  PubMed  Google Scholar 

    77.
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol.30, 772–80 (2013).
    CAS  PubMed  PubMed Central  Google Scholar 

    78.
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol.17, 540–552 (2000).
    CAS  PubMed  Google Scholar 

    79.
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol.32, 268–274 (2015).
    CAS  PubMed  Google Scholar 

    80.
    Kalyaanamoorthy, S., Minh, B. Q., Wong, T. K. F., Haeseler, A. V. & Jermiin, L. S. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods14, 587–589 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    81.
    Hoang, D. T., Chernomor, O., Von Haeseler, A., Minh, B. Q. & Vinh, L. S. UFBoot2: Improving the ultrafast bootstrap approximation. Mol. Biol. Evol.35, 518–522 (2018).
    CAS  PubMed  Google Scholar 

    82.
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res.47, W256–W259 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    83.
    ASM268676v1 assembly for Magnetovibrio sp. NCBI Assembly https://identifiers.org/ncbi/insdc.gca:GCA_002686765.1 (2013).

    84.
    ASM240148v1assembly for Elusimicrobia bacterium NORP122. NCBI Assembly https://identifiers.org/ncbi/insdc.gca:GCA_002401485.1 (2017).

    85.
    BioSample of Candidatus Hydrogenedentes bacterium MAG_17963_hgd_111. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911667 (2020).

    86.
    BioSample of Deltaproteobacteria bacterium MAG_00134_naph_006. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911648 (2020).

    87.
    BioSample of Deltaproteobacteria bacterium MAG_00241_naph_010. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911655 (2020).

    88.
    BioSample of Deltaproteobacteria bacterium MAG_00792_naph_016. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911656 (2020).

    89.
    BioSample of Deltaproteobacteria bacterium MAG_09788_naph_37. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911662 (2020).

    90.
    BioSample of Deltaproteobacteria bacterium MAG_15370_dsfb_81. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911665 (2020).

    91.
    BioSample of Deltaproteobacteria bacterium MAG_17929_sntb_26. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911666 (2020).

    92.
    BioSample of Deltaproteobacteria bacterium MAG_17996_sntb_20. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911670 (2020).

    93.
    BioSample of Deltaproteobacteria bacterium MAG_22204_dsfv_001. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911675 (2020).

    94.
    BioSample of Gammaproteobacteria bacterium MAG_00150_gam_010. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911649 (2020).

    95.
    BioSample of Gammaproteobacteria bacterium MAG_00160_gam_009. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911650 (2020).

    96.
    BioSample of Gammaproteobacteria bacterium MAG_00172_gam_018. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911651 (2020).

    97.
    BioSample of Gammaproteobacteria bacterium MAG_00188_gam_006. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911652 (2020).

    98.
    BioSample of Gammaproteobacteria bacterium MAG_00212_gam_1. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911653 (2020).

    99.
    BioSample of Gammaproteobacteria bacterium MAG_00215_gam_020. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911654 (2020).

    100.
    BioSample of Magnetococcales bacterium MAG_21055_mgc_1. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911672 (2020).

    101.
    BioSample of Nitrospinae bacterium MAG_09705_ntspn_70. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911661 (2020).

    102.
    BioSample of Nitrospirae bacterium MAG_10313_ntr_31. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911663 (2020).

    103.
    BioSample of Desulfuromonadales bacterium MAG_21601_9_030. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911674 (2020).

    104.
    BioSample of Desulfuromonadales bacterium MAG_13126_9_058. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911678 (2020).

    105.
    BioSample of Desulfuromonadales bacterium MAG_21600_9_004. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911673 (2020).

    106.
    BioSample of Planctomycetes bacterium MAG_11118_pl_115. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911664 (2020).

    107.
    BioSample of Planctomycetes bacterium MAG_17991_pl_60. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911669 (2020).

    108.
    BioSample of Planctomycetes bacterium MAG_18080_pl_157. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911671 (2020).

    109.
    BioSample of Rhodospirillaceae bacterium MAG_04806_tlms_2. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911657 (2020).

    110.
    BioSample of Rhodospirillaceae bacterium MAG_05422_2-02_14. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911658 (2020).

    111.
    BioSample of Rhodospirillaceae bacterium MAG_05596_2-02_51. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911659 (2020).

    112.
    BioSample of Rhodospirillaceae bacterium MAG_06104_tlms_034. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911660 (2020).

    113.
    BioSample of Rhodospirillaceae bacterium MAG_22225_2-02_112. NCBI BioSample https://identifiers.org/ncbi/biosample:SAMN14911676 (2020).

    114.
    Assembly for unclassified Nitrospina Bin 25. IMG https://identifiers.org/img.taxon:2651870060 (2016).

    115.
    Assembly for Planctomycetes bacterium SCGC JGI090-P21. IMG Assembly https://identifiers.org/img.taxon:2264265205 (2015).

    116.
    Assembly for Omnitrophica bacterium SCGC_AG-290-C17. IMG Assembly https://identifiers.org/img.taxon:3300015153 (2017).

    117.
    Assembly for uncultured microorganism SbSrfc.SA12.01.D19. IMG Assembly https://identifiers.org/img.taxon:3300022116 (2017).

    118.
    Uzun, M., Alekseeva, L., Krutkina, M., Koziaeva, V. & Grouzdev, D. Analysis: unravelling the diversity of magnetotactic bacteria through analysis of open genomic databases. fighsare https://doi.org/10.6084/m9.figshare.c.4883706 (2020).

    119.
    Espínola, F. et al. Metagenomic Analysis of Subtidal Sediments from Polar and Subpolar Coastal Environments Highlights the Relevance of Anaerobic Hydrocarbon Degradation Processes. Microb. Ecol.75, 123–139 (2018).
    PubMed  Google Scholar 

    120.
    Wu, X. et al. Microbial metagenomes from three aquifers in the Fennoscandian shield terrestrial deep biosphere reveal metabolic partitioning among populations. ISME J.10, 1192–1203 (2016).
    CAS  PubMed  Google Scholar  More