Extreme environmental conditions reduce coral reef fish biodiversity and productivity
1.
Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).
ADS CAS PubMed Google Scholar
2.
Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).
ADS CAS PubMed Google Scholar
3.
Mace, G. M., Norris, K. & Fitter, A. H. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. evolution 27, 19–26 (2012).
Google Scholar
4.
Vellend, M. The Theory of Ecological Communities (MPB-57) Vol. 75 (Princeton University Press, 2016).
5.
Kraft, N. J. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
Google Scholar
6.
Leibold, M. A. et al. The metacommunity concept: a framework for multi‐scale community ecology. Ecol. Lett. 7, 601–613 (2004).
Google Scholar
7.
Duffy, J. E., Godwin, C. M. & Cardinale, B. J. Biodiversity effects in the wild are common and as strong as key drivers of productivity. Nature 549, 261 (2017).
ADS CAS PubMed Google Scholar
8.
Schweiger, A. K. et al. Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function. Nat. Ecol. Evol. 2, 976 (2018).
PubMed Google Scholar
9.
Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).
PubMed Google Scholar
10.
Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science 354, aaf7671 (2016).
PubMed Google Scholar
11.
García, F. C., Bestion, E., Warfield, R. & Yvon-Durocher, G. Changes in temperature alter the relationship between biodiversity and ecosystem functioning. Proc. Natl Acad. Sci. USA 115, 10989–10994 (2018).
PubMed Google Scholar
12.
Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).
PubMed Google Scholar
13.
Deutsch, C., Ferrel, A., Seibel, B., Pörtner, H.-O. & Huey, R. B. Climate change tightens a metabolic constraint on marine habitats. Science 348, 1132–1135 (2015).
ADS CAS PubMed Google Scholar
14.
Bozinovic, F. & Pörtner, H. Physiological ecology meets climate change. Ecol. Evol. 5, 1025–1030 (2015).
PubMed PubMed Central Google Scholar
15.
Barneche, D. R., Jahn, M. & Seebacher, F. Warming increases the cost of growth in a model vertebrate. Funct. Ecol. 33, 1256–1266 (2019).
Google Scholar
16.
Brown, J. H., Hall, C. A. & Sibly, R. M. Equal fitness paradigm explained by a trade-off between generation time and energy production rate. Nat. Ecol. Evol. 2, 262 (2018).
PubMed Google Scholar
17.
Toseland, A. et al. The impact of temperature on marine phytoplankton resource allocation and metabolism. Nat. Clim. Change 3, 979 (2013).
ADS CAS Google Scholar
18.
Barneche, D. R. & Allen, A. P. The energetics of fish growth and how it constrains food‐web trophic structure. Ecol. Lett. 21, 836–844 (2018).
PubMed Google Scholar
19.
Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).
Google Scholar
20.
Barnes, A. D. et al. Energy flux: the link between multitrophic biodiversity and ecosystem functioning. Trends Ecol. Evol. 33, 186–197 (2018).
PubMed PubMed Central Google Scholar
21.
Brandl, S. J. et al. Coral reef ecosystem functioning: eight core processes and the role of biodiversity. Front. Ecol. Environ. 17, 445–454 (2019).
Google Scholar
22.
Spalding, M. et al. Mapping the global value and distribution of coral reef tourism. Mar. Policy 82, 104–113 (2017).
Google Scholar
23.
Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).
ADS CAS PubMed Google Scholar
24.
Pratchett, M. S., Hoey, A. S., Wilson, S. K., Messmer, V. & Graham, N. A. Changes in biodiversity and functioning of reef fish assemblages following coral bleaching and coral loss. Diversity 3, 424–452 (2011).
Google Scholar
25.
Brandl, S. J., Emslie, M. J. & Ceccarelli, D. M. Habitat degradation increases functional originality in highly diverse coral reef fish assemblages. Ecosphere 7, e01557 (2016).
Google Scholar
26.
Fontoura, L. et al. Climate‐driven shift in coral morphological structure predicts decline of juvenile reef fishes. Glob. Change Biol. 26, 557–567 (2020).
ADS Google Scholar
27.
Bellwood, D. R., Hoey, A. S., Ackerman, J. L. & Depczynski, M. Coral bleaching, reef fish community phase shifts and the resilience of coral reefs. Glob. Change Biol. 12, 1587–1594 (2006).
ADS Google Scholar
28.
Robinson, J. P. et al. Productive instability of coral reef fisheries after climate-driven regime shifts. Nat. Ecol. Evol. 3, 183 (2019).
PubMed Google Scholar
29.
Wismer, S., Tebbett, S. B., Streit, R. P. & Bellwood, D. R. Young fishes persist despite coral loss on the Great Barrier Reef. Commun. Biol. 2, 456 (2019).
PubMed PubMed Central Google Scholar
30.
Taylor, B. M. et al. Synchronous biological feedbacks in parrotfishes associated with pantropical coral bleaching. Glob. Change Biol. 26, 1285–1294 (2020).
ADS Google Scholar
31.
Morais, R. A. et al. Severe coral loss shifts energetic dynamics on a coral reef. Funct. Ecol. 34, 1507–1518 (2020).
Google Scholar
32.
Pörtner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).
ADS PubMed Google Scholar
33.
Comte, L. & Olden, J. D. Climatic vulnerability of the world’s freshwater and marine fishes. Nat. Clim. Change 7, 718 (2017).
ADS Google Scholar
34.
Munday, P. L., McCormick, M. I. & Nilsson, G. E. Impact of global warming and rising CO2 levels on coral reef fishes: what hope for the future? J. Exp. Biol. 215, 3865–3873 (2012).
CAS PubMed Google Scholar
35.
Munday, P. L., Jones, G. P., Pratchett, M. S. & Williams, A. J. Climate change and the future for coral reef fishes. Fish. Fish. 9, 261–285 (2008).
Google Scholar
36.
Donelson, J., Munday, P., McCormick, M. & Pitcher, C. Rapid transgenerational acclimation of a tropical reef fish to climate change. Nat. Clim. Change 2, 30 (2012).
ADS Google Scholar
37.
Ern, R., Huong, D., Cong, N., Bayley, M. & Wang, T. Effect of salinity on oxygen consumption in fishes: a review. J. Fish. Biol. 84, 1210–1220 (2014).
CAS PubMed Google Scholar
38.
Johansen, J. & Jones, G. Increasing ocean temperature reduces the metabolic performance and swimming ability of coral reef damselfishes. Glob. Change Biol. 17, 2971–2979 (2011).
ADS Google Scholar
39.
Rummer, J. L. et al. Life on the edge: thermal optima for aerobic scope of equatorial reef fishes are close to current day temperatures. Glob. Change Biol. 20, 1055–1066 (2014).
ADS Google Scholar
40.
Nilsson, G. E., Crawley, N., Lunde, I. G. & Munday, P. L. Elevated temperature reduces the respiratory scope of coral reef fishes. Glob. Change Biol. 15, 1405–1412 (2009).
ADS Google Scholar
41.
Eme, J. & Bennett, W. A. Critical thermal tolerance polygons of tropical marine fishes from Sulawesi, Indonesia. J. Therm. Biol. 34, 220–225 (2009).
Google Scholar
42.
Gardiner, N. M., Munday, P. L. & Nilsson, G. E. Counter-gradient variation in respiratory performance of coral reef fishes at elevated temperatures. PLoS ONE 5, e13299 (2010).
ADS PubMed PubMed Central Google Scholar
43.
Bernal, M. A. et al. Species-specific molecular responses of wild coral reef fishes during a marine heatwave. Sci. Adv. 6, eaay3423 (2020).
ADS PubMed PubMed Central Google Scholar
44.
Mora, C. & Ospina, A. Tolerance to high temperatures and potential impact of sea warming on reef fishes of Gorgona Island (tropical eastern Pacific). Mar. Biol. 139, 765–769 (2001).
Google Scholar
45.
Feary, D. A. et al. Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish. Fish. 15, 593–615 (2014).
Google Scholar
46.
Bernal, M. A. et al. Phenotypic and molecular consequences of stepwise temperature increase across generations in a coral reef fish. Mol. Ecol. 27, 4516–4528 (2018).
CAS PubMed Google Scholar
47.
Grenchik, M., Donelson, J. & Munday, P. Evidence for developmental thermal acclimation in the damselfish, Pomacentrus moluccensis. Coral Reefs 32, 85–90 (2013).
ADS Google Scholar
48.
Miller, D. D., Ota, Y., Sumaila, U. R., Cisneros‐Montemayor, A. M. & Cheung, W. W. Adaptation strategies to climate change in marine systems. Glob. Change Biol. 24, e1–e14 (2018).
Google Scholar
49.
Brandl, S. J., Goatley, C. H., Bellwood, D. R. & Tornabene, L. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs. Biol. Rev. 93, 1846–1873 (2018).
PubMed Google Scholar
50.
Brandl, S. J., Casey, J. M., Knowlton, N. & Duffy, J. E. Marine dock pilings foster diverse, native cryptobenthic fish assemblages across bioregions. Ecol. Evol. 7, 7069–7079 (2017).
PubMed PubMed Central Google Scholar
51.
Ahmadia, G. N., Tornabene, L., Smith, D. J. & Pezold, F. L. The relative importance of regional, local, and evolutionary factors structuring cryptobenthic coral-reef assemblages. Coral Reefs 37, 279–293 (2018).
ADS Google Scholar
52.
Coker, D. J., DiBattista, J. D., Sinclair-Taylor, T. H. & Berumen, M. L. Spatial patterns of cryptobenthic coral-reef fishes in the Red Sea. Coral Reefs https://doi.org/10.1007/s00338-017-1647-9 (2017).
53.
Brandl, S. J. et al. Demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).
ADS CAS PubMed Google Scholar
54.
Miller, P. J. Miniature Vertebrates. The Implications of Small Body Size Vol. 69 (Oxford University Press, 1996).
55.
Depczynski, M. & Bellwood, D. Microhabitat utilisation patterns in cryptobenthic coral reef fish communities. Mar. Biol. 145, 455–463 (2004).
Google Scholar
56.
Bellwood, D. R. et al. Coral recovery may not herald the return of fishes on damaged coral reefs. Oecologia 170, 567–573 (2012).
ADS PubMed Google Scholar
57.
Depczynski, M. & Bellwood, D. R. Shortest recorded vertebrate lifespan found in a coral reef fish. Curr. Biol. 15, R288–R289 (2005).
CAS PubMed Google Scholar
58.
Tornabene, L., Valdez, S., Erdmann, M. & Pezold, F. Support for a ‘Center of Origin’in the Coral Triangle: cryptic diversity, recent speciation, and local endemism in a diverse lineage of reef fishes (Gobiidae: Eviota). Mol. Phylogenet. Evol. 82, 200–210 (2015).
PubMed Google Scholar
59.
NASA Goddard Space Flight Center, Ocean Ecology Laboratory, Ocean Biology Processing Group. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua 11µm Day/Night Sea Surface Temperature Data. https://oceandata.sci.gsfc.nasa.gov/MODIS-Aqua/Mapped/Daily/4km/sst (2018).
60.
Howells, E. J. et al. Corals in the hottest reefs in the world exhibit symbiont fidelity not flexibility. Mol. Ecol. 29, 899–911 (2020).
CAS PubMed Google Scholar
61.
Howells, E. J., Abrego, D., Meyer, E., Kirk, N. L. & Burt, J. A. Host adaptation and unexpected symbiont partners enable reef‐building corals to tolerate extreme temperatures. Glob. Change Biol. 22, 2702–2714 (2016).
ADS Google Scholar
62.
Riegl, B. M. & Purkis, S. J. (Eds.) in Coral Reefs of the Gulf 1–4, (Springer, 2012).
63.
Purkis, S. J. & Riegl, B. M. in Coral Reefs of the Gulf: Adaptation to Climatic Extremes (eds Riegl, B. M. & Purkis, S. J.) 33–50 (Springer Netherlands, 2012).
64.
Price, A., Sheppard, C. & Roberts, C. The Gulf: its biological setting. Mar. Pollut. Bull. 27, 9–15 (1993).
Google Scholar
65.
Eagderi, S., Fricke, R., Esmaeili, H. & Jalili, P. Annotated checklist of the fishes of the Persian Gulf: Diversity and conservation status. Iran. J. Ichthyol. 6, 1–171 (2019).
Google Scholar
66.
Casey, J. M. et al. Reconstructing hyperdiverse food webs: gut content metabarcoding as a tool to disentangle trophic interactions on coral reefs. Methods Ecol. Evol. 10, 1157–1170 (2019).
Google Scholar
67.
Depczynski, M. & Bellwood, D. R. The role of cryptobenthic reef fishes in coral reef trophodynamics. Mar. Ecol. Prog. Ser. 256, 183–191 (2003).
ADS Google Scholar
68.
Pratchett, M. S., Wilson, S. K. & Munday, P. L. in Ecology of Fishes on Coral Reefs (ed. Mora, C.) 127 (Cambridge University Press, 2015).
69.
Krupp, F. & Müller, T. The status of fish populations in the northern Arabian Gulf two years after the 1991 Gulf War oil spill. Cour. Forschungsinst. Senckenb. 166, 67–75 (1994).
Google Scholar
70.
Bishop, J. History and current checklist of Kuwait’s ichthyofauna. J. Arid Environ. 54, 237–256 (2003).
ADS Google Scholar
71.
Feary, D. A., Burt, J. A., Cavalcante, G. H. & Bauman, A. G. in Coral Reefs of the Gulf: Adaptation to Climatic Extremes (eds Riegl, B. M. & Purkis, S. J.) 163–170 (Springer Netherlands, 2012).
72.
Donelson, J. M., Munday, P. L., MCCORMICK, M. I. & Nilsson, G. E. Acclimation to predicted ocean warming through developmental plasticity in a tropical reef fish. Glob. Change Biol. 17, 1712–1719 (2011).
ADS Google Scholar
73.
Ohlberger, J. Climate warming and ectotherm body size—from individual physiology to community ecology. Funct. Ecol. 27, 991–1001 (2013).
Google Scholar
74.
Gardner, J. L., Peters, A., Kearney, M. R., Joseph, L. & Heinsohn, R. Declining body size: a third universal response to warming? Trends Ecol. Evol. 26, 285–291 (2011).
PubMed Google Scholar
75.
Peig, J. & Green, A. J. The paradigm of body condition: a critical reappraisal of current methods based on mass and length. Funct. Ecol. 24, 1323–1332 (2010).
Google Scholar
76.
Sullam, K. E. et al. Changes in digestive traits and body nutritional composition accommodate a trophic niche shift in Trinidadian guppies. Oecologia 177, 245–257 (2015).
ADS PubMed Google Scholar
77.
Whelan, C. J., Brown, J. S., Schmidt, K. A., Steele, B. B. & Willson, M. F. Linking consumer–resource theory and digestive physiology: application to diet shifts. Evolut. Ecol. Res. 2, 911–934 (2000).
Google Scholar
78.
Petchey, O. L. Prey diversity, prey composition, and predator population dynamics in experimental microcosms. J. Anim. Ecol. 69, 874–882 (2000).
PubMed Google Scholar
79.
Merrick, R. L., Chumbley, M. K. & Byrd, G. V. Diet diversity of Steller sea lions (Eumetopias jubatus) and their population decline in Alaska: a potential relationship. Can. J. Fish. Aquat. Sci. 54, 1342–1348 (1997).
Google Scholar
80.
Hondorp, D. W., Pothoven, S. A. & Brandt, S. B. Influence of Diporeia density on diet composition, relative abundance, and energy density of planktivorous fishes in southeast Lake Michigan. Trans. Am. Fish. Soc. 134, 588–601 (2005).
Google Scholar
81.
Shraim, R. et al. Environmental extremes are associated with dietary patterns in Arabian Gulf Reef fishes. Front. Mar. Sci. 4, 285 (2017).
Google Scholar
82.
Agorreta, A. et al. Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Mol. Phylogenet. Evol. 69, 619–633 (2013).
PubMed Google Scholar
83.
Thacker, C. E. & Roje, D. M. Phylogeny of Gobiidae and identification of gobiid lineages. Syst. Biodivers. 9, 329–347 (2011).
Google Scholar
84.
Kovačić, M., Bogorodsky, S. V. & Mal, A. O. Two new species of Coryogalops (Perciformes: Gobiidae) from the Red Sea. Zootaxa 3881, 513–531 (2014).
PubMed Google Scholar
85.
Rishworth, G. M., Strydom, N. A. & Perissinotto, R. Fishes associated with living stromatolite communities in peritidal pools: predators, recruits and ecological traps. Mar. Ecol. Prog. Ser. 580, 153–167 (2017).
ADS CAS Google Scholar
86.
Munday, P. L. & Jones, G. P. The ecological implications of small body size among coral-reef fishes. Oceanogr. Mar. Biol. Annu. Rev. 36, 373–411 (1998).
Google Scholar
87.
Sandblom, E. et al. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings. Nat. Commun. 7, 11447 (2016).
ADS CAS PubMed PubMed Central Google Scholar
88.
Norin, T. & Metcalfe, N. B. Ecological and evolutionary consequences of metabolic rate plasticity in response to environmental change. Philos. Trans. R. Soc. B 374, 20180180 (2019).
Google Scholar
89.
Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).
PubMed Google Scholar
90.
Crossland, C., Hatcher, B. & Smith, S. Role of coral reefs in global ocean production. Coral Reefs 10, 55–64 (1991).
ADS Google Scholar
91.
Gove, J. M. et al. Near-island biological hotspots in barren ocean basins. Nat. Commun. 7, 10581 (2016).
ADS CAS PubMed PubMed Central Google Scholar
92.
De Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).
ADS PubMed Google Scholar
93.
Wild, C. et al. Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428, 66–70 (2004).
ADS CAS PubMed Google Scholar
94.
Hamner, W., Jones, M., Carleton, J., Hauri, I. & Williams, D. M. Zooplankton, planktivorous fish, and water currents on a windward reef face: Great Barrier Reef, Australia. Bull. Mar. Sci. 42, 459–479 (1988).
Google Scholar
95.
Hatcher, B. G. Coral reef primary productivity: a beggar’s banquet. Trends Ecol. Evol. 3, 106–111 (1988).
CAS PubMed Google Scholar
96.
Bacon, P., Gurney, W., Jones, W., McLaren, I. & Youngson, A. Seasonal growth patterns of wild juvenile fish: partitioning variation among explanatory variables, based on individual growth trajectories of Atlantic salmon (Salmo salar) parr. J. Anim. Ecol. 74, 1–11 (2005).
Google Scholar
97.
Coles, S. L. Coral species diversity and environmental factors in the Arabian Gulf and the Gulf of Oman: a comparison to the Indo-Pacific region. Atoll Res. Bull. 507, 1–19 (2003).
Google Scholar
98.
Morais, R. A. & Bellwood, D. R. Pelagic subsidies underpin fish productivity on a degraded coral reef. Curr. Biol. 29, 1521–1527 (2019).
CAS PubMed Google Scholar
99.
Riegl, B. Effects of the 1996 and 1998 positive sea-surface temperature anomalies on corals, coral diseases and fish in the Arabian Gulf (Dubai, UAE). Mar. Biol. 140, 29–40 (2002).
Google Scholar
100.
Riegl, B. & Purkis, S. Coral population dynamics across consecutive mass mortality events. Glob. Change Biol. 21, 3995–4005 (2015).
ADS Google Scholar
101.
Burt, J., Al-Harthi, S. & Al-Cibahy, A. Long-term impacts of coral bleaching events on the world’s warmest reefs. Mar. Environ. Res. 72, 225–229 (2011).
CAS PubMed Google Scholar
102.
Burt, J. A., Paparella, F., Al-Mansoori, N., Al-Mansoori, A. & Al-Jailani, H. Causes and consequences of the 2017 coral bleaching event in the southern Persian/Arabian Gulf. Coral Reefs 38, 567–589 (2019).
ADS Google Scholar
103.
Coker, D. J., Wilson, S. K. & Pratchett, M. S. Importance of live coral habitat for reef fishes. Rev. Fish. Biol. Fish. 24, 89–126 (2014).
Google Scholar
104.
Pratchett, M. S., Baird, A. H., Bauman, A. G. & Burt, J. A. Abundance and composition of juvenile corals reveals divergent trajectories for coral assemblages across the United Arab Emirates. Mar. Pollut. Bull. 114, 1031–1035 (2017).
CAS PubMed Google Scholar
105.
Munday, P. L. Habitat loss, resource specialization, and extinction on coral reefs. Glob. Change Biol. 10, 1642–1647 (2004).
ADS Google Scholar
106.
Burt, J. A. et al. Biogeographic patterns of reef fish community structure in the northeastern Arabian Peninsula. ICES J. Mar. Sci. 68, 1875–1883 (2011).
Google Scholar
107.
Brose, U. et al. Predator traits determine food-web architecture across ecosystems. Nat. Ecol. Evol. 3, 919 (2019).
PubMed Google Scholar
108.
Ackerman, J. L. & Bellwood, D. R. Reef fish assemblages: a re-evaluation using enclosed rotenone stations. Mar. Ecol.-Prog. Ser. 206, 227–237 (2000).
ADS Google Scholar
109.
Beitinger, T. L., Bennett, W. A. & McCauley, R. W. Temperature tolerances of North American freshwater fishes exposed to dynamic changes in temperature. Environ. Biol. Fishes 58, 237–275 (2000).
Google Scholar
110.
Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).
PubMed PubMed Central Google Scholar
111.
Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all‐taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).
CAS PubMed Google Scholar
112.
Sherwood, A. R. & Presting, G. G. Universal primers amplify a 23S rDNA plastid marker in eukaryotic algae and cyanobacteria. J. Phycol. 43, 605–608 (2007).
Google Scholar
113.
Hamsher, S. E., Evans, K. M., Mann, D. G., Poulíčková, A. & Saunders, G. W. Barcoding diatoms: exploring alternatives to COI-5P. Protist 162, 405–422 (2011).
CAS PubMed Google Scholar
114.
Cannon, M. et al. In silico assessment of primers for eDNA studies using PrimerTree and application to characterize the biodiversity surrounding the Cuyahoga River. Sci. Rep. 6, 22908 (2016).
ADS CAS PubMed PubMed Central Google Scholar
115.
Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335 (2010).
CAS PubMed PubMed Central Google Scholar
116.
Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996 (2013).
CAS PubMed Google Scholar
117.
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
Google Scholar
118.
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
CAS Google Scholar
119.
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinform. 10, 421 (2009).
Google Scholar
120.
Edgar, R. C. & Flyvbjerg, H. Error filtering, pair assembly and error correction for next-generation sequencing reads. Bioinformatics 31, 3476–3482 (2015).
CAS PubMed Google Scholar
121.
Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).
122.
Yilmaz, P. et al. The SILVA and “all-species living tree project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–D648 (2013).
PubMed PubMed Central Google Scholar
123.
Bürkner, P.-C. Advanced Bayesian multilevel modeling with the R Package brms. The R Journal 10, 395–411 (2018).
Google Scholar
124.
Wasserman, S. & Faust, K. Social Network Analysis: Methods and Applications Vol. 8 (Cambridge University Press, 1994).
125.
Newman, M. E. Modularity and community structure in networks. Proc. Natl Acad. Sci. USA 103, 8577–8582 (2006).
ADS CAS PubMed Google Scholar
126.
Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).
ADS MathSciNet PubMed PubMed Central Google Scholar
127.
Hsieh, T., Ma, K. & Chao, A. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456 (2016).
Google Scholar
128.
Brandl, S. J. et al. Supplemental materials for demographic dynamics of the smallest marine vertebrates fuel coral reef ecosystem functioning. Science 364, 1189–1192 (2019).
ADS CAS PubMed Google Scholar
129.
Morais, R. A. & Bellwood, D. R. Global drivers of reef fish growth. Fish. Fish. 19, 874–889 (2018).
Google Scholar
130.
Allen, K. R. Relation between production and biomass. J. Fish. Board Can. 28, 1573–1581 (1971).
Google Scholar
131.
Pauly, D. On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES J. Mar. Sci. 39, 175–192 (1980).
Google Scholar
132.
Gislason, H., Daan, N., Rice, J. C. & Pope, J. G. Size, growth, temperature and the natural mortality of marine fish. Fish. Fish. 11, 149–158 (2010).
Google Scholar
133.
Morais, R. A. & Bellwood, D. R. Principles for estimating fish productivity on coral reefs. Coral Reefs https://doi.org/10.1007/s00338-020-01969-9 (2020).
134.
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).
135.
Wickham, H. Tidyverse: easily install and load’tidyverse’packages. R package version 1, https://CRAN.R-project.org/package=tidyverse (2017).
136.
Oksanen, J. et al. The vegan package. Commun. Ecol. Package 10, 719 (2007).
Google Scholar
137.
Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal, Complex Syst. 1695, 1–9 (2006).
Google Scholar
138.
Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).
Google Scholar
139.
Kay, M. tidybayes: Tidy data and geoms for Bayesian models. R package version 1, https://doi.org/10.5281/zenodo.1468151 (2018).
140.
Chen, T., He, T., Benesty, M., Khotilovich, V. & Tang, Y. Xgboost: extreme gradient boosting. R package version 0.4-2, 1–4 (2015).
141.
Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. Package “emmeans”: estimated marginal means, aka least-squares means. Compr. R. Arch. Netw. 1–67 (2019). http://CRAN.R-project.org/package=emmeans.
142.
Bauer, R. Oceanmap: a plotting toolbox for 2D oceanographic data. R package, version 0.0 9, https://CRAN.R-project.org/package=oceanmap (2017).
143.
Pierce, D. & Pierce, M. D. Package ‘ncdf4’. https://cran.r-project.org/web/packages/ncdf4/index.html (2019).
144.
Hijmans, R. J. et al. Raster package in R. https://cran.r-project.org/web/packages/raster/index.html (2013).
145.
Schiettekatte, N. M., Brandl, S. J. & Casey, J. M. fishualize: Color palettes based on fish species. https://cran.r-project.org/web/packages/fishualize/fishualize.pdf (2019). More