More stories

  • in

    Weather and biotic interactions as determinants of seasonal shifts in abundance measured through nest-box occupancy in the Siberian flying squirrel

    Study area and nest-box occupancy
    The study area is located in the Kauhava region, western Finland (62° 54′–63° 16′ N, 22° 54′–23°47′ E; ca. 1,300 km2 area; altitude 42 m), where the landscape is mainly characterized by a mosaic of commercially managed coniferous forests, agricultural land and peatland bogs23,49. Some mixed and old-growth forests as well as many clear-cuts and sapling areas are also found within the area. The area is sparsely populated, and settlement mainly consists of one-family houses and farmhouses.
    The flying squirrel is dependent on natural cavities, which have become scarce in Finnish managed forests, including our study area40. In the study area, flying squirrels used nest boxes built for Pygmy owls (Glaucidium passerinum) that are set up for research purposes (e.g.23,40,50). This nest-box type resembles cavities made by the great spotted woodpecker (Dendrocopos major) with the thickness of the front wall  > 50 mm and the diameter of the entrance-hole of 45 mm. Nest boxes were grouped so that there are 2 boxes 80–100 m apart within a forest site, the sites being at least 0.8–1.0 km apart23,40. The 2 boxes per site were within an average flying squirrel female territory (8 ha51), and the data for these boxes were combined, that is, if one of the boxes was occupied the site was classified as occupied. In other words, the site was used as a sampling unit (on average 364 ± 121 nest boxes in 208 ± 61 sites yearly).
    The occupancy of the nest boxes by flying squirrels was checked every spring and autumn in 2002–2018. Sites were often visited more than once in both spring and autumn, and we control for the number of visits in our analysis (on average 4 ± 1 visits per year on a site). Occupancy was determined by the presence of flying squirrel nesting material within the nest box (ball-shaped nest made of lichen, moss and other soft material, distinct from the nests built by any other animal in the area). If the nest was not used, the nest material was lacking or was a flat layer in the bottom of the nest box, often covered with bird nest materials. The flying squirrel occupied about 9% of the available nest-boxes23. The density of nest boxes was low (0.3 boxes per 1 km2) suggesting that nest boxes had only a minor role in the spatial distribution of the flying squirrel population within the area. The nest boxes were in various forest types, but the detection probability in different forest types does not differ substantially in our data23.
    The occupancy patterns were expected to reflect the seasonal mortality and dispersal patterns described in the introduction of this study (seasonal models: (i) dispersal model, (ii) summer survival model, and (iii) winter survival model). Individuals do have more than one nest during year in nest-boxes, dreys and natural cavities21. We could not observe individuals if they did not use nest boxes. Natural cavities were, however, rare near the nest boxes40 and the nest boxes were made to resemble natural cavities by using the trunk of spruce (Picea abies) or aspen (Populus tremula). Communal nesting behavior or reproductive success do not differ for flying squirrels living in these nest boxes and natural cavities in Finland21. The lack of cavities means that flying squirrels present in the area had a reason to build nests to nest boxes, because cavities or nest boxes are preferred nesting places over dreys21. Thus, there should not be much individuals not using our nest boxes, although it is clear that such a cases do occur (see “Discussion”). The data includes, for example, cases where the residents died during summer, but we did not detect them, because dispersers recolonised the nest box. In practise, the number of such cases remains low in our data. It would simultaneously require that in an occupied nest box (occupancy rate of available nest boxes was on average 9%) the resident adult dies during summer (adult summer mortality is not high) and a disperser arrives to the site, which likelihood for a specific nest box remains low. Finally, we are unaware of species that might prevent flying squirrels from using the nest boxes, except for the Pygmy owl. In spring, 5 to 10% of nest-box sites (3–6% of nest boxes) were occupied by breeding pygmy owls and in autumn 17% of nest-boxes included food-stores of Pygmy owls50. Pygmy owls do not prey on flying squirrels but may affect the availability of nest boxes. However, one nest box per forest site was available for flying squirrels even in the sites used by a Pygmy owl, thanks to the study design of two nest boxes per site.
    Winter food
    Birch catkins are the main food for the flying squirrel in winter21, likely, because the birch is the most abundant deciduous tree in Finnish forests. However, alder catkins are preferred over birch catkins21, and recent studies indicate that the availability of alder catkins in the winter and spring preceding reproduction is an important determinant of breeding success22,25. Temperature in summer determines catkin production30, that is, catkins mature during summer, are available for flying squirrels starting in autumn and stay dormant over winter. Thus, in the current analyses temperature measured in summer is related to next winters’ catkin availability. Catkins flower in spring but flying squirrels may extend the period of catkin usage by storing them21.
    For birch catkin availability, we used estimates from an annual birch catkin survey conducted by the Natural Resources Institute Finland (www.luke.fi). These data are collected to describe nation-wide pollen conditions in Finland. Catkin production of deciduous trees is spatially auto-correlated at scales of up to a few hundred kilometres in Finland30,51, and we used the estimate for central-western Finland, where our study area is located. The birch catkin data for central-western Finland is collected annually at approximately six different locations from 304 trees within the region. We did not have an estimate for alder catkin production, but following earlier studies22,25,26,52, we used aerial pollen estimates for central-western Finland as a proxy for alder catkin production (https://www.norkko.fi/). Pollen data were collected by the aerobiology unit of the University of Turku from 10 locations in Finland using EU standard methods and Burkard samplers. The data consisted of accumulated sums of average daily counts of airborne pollen in 1 m3 of air during spring30. Thus, winter food data used in this study describes yearly changes in catkin availability in the region.
    Weather data
    We used mean monthly weather information from the weather station maintained by the Finnish Meteorological Institute in Kauhava53. The weather recording station was in the middle of the study area and at the same altitude as the rest of the area. There is minimal spatial variation in mean monthly weather measures within our flat study area. We counted mean temperature and precipitation from monthly means for the following periods: winter (December–February), spring (April–May), summer (June–August) and autumn (October–November). March and September were excluded, as they could not be unequivocally assigned to a specific season and, thus, to life stages of flying squirrels (spring: reproduction; summer: rising juveniles; autumn: dispersal period; winter: surviving from the elements). Including these months to analysis did not change the current results or conclusions.
    During the study period of 2002–2018, the temperature had an increasing trend in winter and autumn, and a negative trend in summer (effect of continuous variable year on temperature: in winter positive relationship r2 = 0.09; in spring positive r2 = 0.01; in summer negative r2 = 0.09; in autumn positive r2 = 0.1). For precipitation, the trends were positive or non-existing (effect of year on precipitation: in winter positive r2 = 0.04, in spring positive r2 = 0.02, in summer positive r2 = 0.07, in autumn r2 = 0).
    Predation pressure
    Flying squirrels are negatively affected by the presence of the Ural owl in our study area23. Other predators play a lesser role without having major impacts on flying squirrels (the goshawk Accipiter gentilis23), or are not very common in the area (the pine marten Martes martes and the eagle owl Bubo bubo48). The Ural owl prefers mature mixed and spruce-dominated forest54, just like the flying squirrel. Data on Ural owls was collected by surveys on natural cavities and nest boxes and by searching for new nest sites annually in 2002–2018. Long-term studies of birds of prey have been carried out in the Kauhava region (e.g.40,48,49), so the locations of Ural owl nests are known. The density of Ural owls was approximately 2 pairs per 10 km2 (48; M. Hänninen & E. Korpimäki, unpublished data).
    Using the data for Ural owl nests located during the field surveys, the predator presence at flying squirrel nest-box sites was described by calculating flat-top bivariate Gaussian kernels around each nest (see23,55). Following our earlier analysis23, we calculated the kernels with a flat top distance of 500 m, SD of 4 and cut off distance of 5 km. The flat-top part represents the area where the impact of the avian predator is strongest, beyond which it declines, following the Gaussian distribution. The height of the kernel (0–1) at flying squirrel nest box was used as a proxy for predation pressure (referred to as Ural owl index). The kernels were calculated using ArcGIS 10.1 software by Esri and R 3.2.555. The Gaussian kernels were used because the location of nests was known, but we do not know the exact hunting area of individuals. The kernels were based, however, on expert knowledge on likely hunting distance of the species56. That is, the hunting effort was assumed to be highest close to the bird’s nest and to remain at a high level within a given distance and then decrease symmetrically in all directions when moving further from the nest.
    Habitat data
    The areas of different land use classes within a buffer of 200 m were calculated for each nest box in ArcGIS and R. The buffer corresponds roughly to the estimated home-range size of female flying squirrels50. Thus, the selected spatial scale captured habitat composition at the level central for reproductive success. Landscape maps were based on SLICE dataset57, two forest classifications from 1997 and 2009 (METLA, https://www.maanmittauslaitos.fi/en/opendata), and Landsat images (https://landsat.usgs.gov/), so that yearly changes in forest cover (e.g. clear-cutting of forest) were taken into account. For a detailed description of map processing, see40. We compared which forest composition best describes the squirrel presence and selected the one best fitted to the data based on an Akaike Information Criterion (AIC). That is, model combinations with different forest types and age classes were tested and the one with lowest AIC-values was selected to final models being best fitted for the analysis. The habitat best explaining flying squirrel occurrence included all mature and old spruce and mixed coniferous–deciduous forests. Pure pine forests, which are not preferred by the species21, were excluded.
    The available habitat data ended in the year 2015 because we had no information for changes in the forest cover after 2015. We updated the habitat data until 2018 with the values for 2015, but in the end decided to use only the habitat data until 2015 and omitted it from the final models, because it had no effect (see “Results”). Thus, we gained full power to analyse the effects of weather, winter food and predator pressure on flying squirrel occupancy patterns.
    Analyses—dispersal model, summer survival model, and winter survival model
    We built three binary models (using GLIMMIX in SAS 9.4. software) with nest-box occupancy in different seasons as a response variable. In each model, the nest-box site was a repeated factor (using generalized estimation equations, GLIMMIX SAS) and the year and average number of nest-box visits per year were continuous explanatory variables. To simplify the models, we used an AIC comparison to select the weather variables that were best fitted to the model (AIC  More

  • in

    Yield reduction under climate warming varies among wheat cultivars in South Africa

    Experimental design
    Raw data used in the manuscript were collected by the ARC-SGI of South Africa in open field test plots. The raw data include observed dryland wheat yields matched by location with daily minimum and maximum temperatures and total precipitation recorded during the growing season at near-by weather stations. Weather station data were downloaded from NASA GSOD using GSODR59. From the raw data, we only include wheat trial locations that have a weather station within 75 km and at least five years of wheat field trials, and wheat cultivars must appear in at least two trial years. It is possible that there are slight differences in the weather station observations and the actual weather at wheat trial locations, particularly with respect to precipitation. However, the weather station observations in the study region appear representative based on climatic norms60 and are the best available data for capturing daily extremes. This results in 18,881 wheat yield observations from ARC-SGI spanning 17 locations and 71 cultivars from 1998 to 2014.
    The yield and weather data vary substantially in-sample, which supports robust estimation of wheat yield responses to extreme and average weather conditions (Supplementary Tables 1, 2; Supplementary Figs. 1 and 2). The growing season for each location-year-cultivar is defined by the planting and harvest dates, and typically span mid-May to late October. Planting and flowering dates are observed, not estimated. Flowering is defined as the day at which 50 percent flowering occurs. Harvest dates are not observed and thus inferred using a rule of 30 days after the observed flowering date, which provided consistent results with other alternatives discussed in the robustness checks below. Phenological information were collected by both ARC staff and wheat producers based on a field observation conducted once per weekday for ARC run stations and daily for producer fields. The temperature bins are calculated from maximum and minimum temperatures using a sinusoidal interpolation of temperature exposure within each day and span 5 °C intervals. Total days (24 h) spent within intervals for the entire season are summed into eight temperature exposure bins. All negative temperatures are summed into a single bin, as well as all temperatures above 30 °C. Notably, exposures greater than 30 °C occur substantially more in the Free State compared to the Western Cape.
    Statistical analysis
    The preferred regression model specifies log wheat yield as a function of location, cultivar, and year fixed effects, as well as a quadratic polynomial for cumulative precipitation and the eight temperature bins mentioned above61. The weather variables are seasonal aggregates from the observed planting date to the inferred harvest date. The highest temperature bin of >30 °C represents exposures known to negatively affect wheat yields62,63,64. Average exposures across bins are provided for the two main dryland wheat-growing provinces, the Free State and Western Cape, in Supplementary Fig. 1. We considered simplified models that include linear and quadratic trends instead of year fixed effects, or (alternatively) omitting the temperature bins in favor of average temperatures, and found that they substantially reduced model performance (Supplementary Tables 3, 4). In addition, we considered extensions of the model that added pre-season precipitation (30 days before planting), or (alternatively) a cubic polynomial for in-season precipitation instead of a quadratic, and found that they also did not improve model performance. The preferred model is specified in Eq. (1):

    $$y_{ijt} = alpha _i + alpha _j + alpha _t + beta _1p_{ijt} + beta _2p_{ijt}^2 + mathop {sum}limits_{k = 1}^8 {delta _k} Bin_{ijkt} + varepsilon _{ijt},$$
    (1)

    where yijt is log yield for cultivar i in location j in year t. Fixed effects (α) are included separately for cultivars, locations, and years. The weather variables include a quadratic polynomial effect for cumulative precipitation pijt and the nonlinear effect of weather across temperature bins Binijkt.
    There is likely a large amount of spatial correlation among the error terms of the model across cultivars in the same location, as well as across locations more generally. One could cluster standard errors by year to account for all spatial correlations, however there are 17 years in the data which is a questionably small number of clusters65,66. Instead we cluster errors by year-province as there are only two provinces in the data, Western Cape and the Free State, and their boundaries are several hundred kilometers apart. This method accounts for correlations among the regressors which can also bias standard errors. Cameron and Miller (2015)65 report the variance inflation factor in their equation 6 as 1 + ρx ρu (N – 1), where N is the cluster size, ρu is the within-cluster correlation of the regression errors, and ρx is the within-cluster correlation of the regressor. Note that spatial correlation of the regressors can bias regression standard errors downward even if the errors are only slightly correlated. Just under their equation 6, Cameron and Miller (2015)65 cite a study in which the correlation of the errors was small at 0.03 but the inflation factor was 13 because the regressors were highly correlated.
    To better investigate the role that spatial correlation is playing in this analysis, Moran’s I was calculated for each year in the data for both the log yield observations and the regression errors from the preferred model above. The averages of the Moran’s I across years is presented in Table 1. The distance of 1 km captures the within-trial correlations, whereas the distances 100, 500, and 1000 km capture broader groupings. Positive correlation exists in the log yield data and it is highest within-trial as expected. The correlation remains positive as distance increases but dilutes to its smallest value at 1000 km. The regression purges much of the correlation from the data as indicated by the Moran’s I for the errors, although some remains. As noted above, the clustered errors may still produce an adjustment by increasing the variances compared with classical Ordinary Least Squares which does not account for correlations. For example, the standard error on our measure of heat (the >30 °C bin) is 0.0196 under clustering but 0.00433 without clustering (i.e., robust standard errors). This suggests an inflation factor of approximately 20 which is quite large and important for adequately representing the statistical uncertainty in our warming impacts.
    Table 1 Moran’s I (MI) spatial autocorrelation for log yield and regression errors.
    Full size table

    Heterogeneous cultivar-level temperature effects are investigated to assess the potential for climate change adaptation via cultivar selection. The preferred specification was modified to account for differences in cultivar effects using the following multilevel model66 specified in Eq. (2):

    $$y_{ijt} = alpha _i + alpha _j + alpha _t + beta _1p_{ijt} + beta _2p_{ijt}^2 + mathop {sum}limits_{k = 1}^8 {delta _k} Bin_{ijkt} + u_iBin_{ij8t} + varepsilon _{ijt},$$
    (2)

    where we extend the preferred model to include a random slope (ui) across cultivars for the highest temperature bin (30 °C+). Note that the fixed effects from the preferred model are include here as dummy variables in the fixed portion of the multilevel model. The only random effect in the multilevel model is for the effect of the >30 °C bin.
    Warming impacts are based on uniform changes in the daily temperature data. For example, we use the observed (historical) daily minimum and maximum temperatures and increase them by 1 °C and then re-calculate the growing season bins for all locations and years3,43,45. Averaging these across years and locations then provides a shifted climate to simulate yield change based on the initial regression model parameters and yield estimates. The impacts are calculated as (100left[ {e^{left( {{boldsymbol{Bin}},1 – {boldsymbol{Bin}},0} right)delta } – 1} right])where Bin is a vector of the temperature bins for shifted (1) and baseline (0) climate. The same steps are repeated for the 2 and 3 °C warming scenarios as well. Estimates from the regression in Supplementary Table 3 are used for δ. The point estimation for warming scenarios relies on the Delta Method of asymptotic approximation for large samples as implemented via the nlcom command in Stata version 16.
    Robustness checks
    The first robustness check we consider is replacing the temperature bins with a quadratic specification of seasonal average temperatures. Interestingly, a two-tailed joint test under this model implies that temperatures do not have a statistically significant effect on yields (F(2,30) = 0.57, p = 0.5716), thereby suggesting that seasonal averages cannot capture yield reductions associated with heat above 30 °C as in our preferred model. The seasonal average model generates misleadingly small warming impacts (Supplementary Fig. 4).
    Next we investigate the appropriateness of the equally spaced five degree exposure bins by examining three alternatives: (i) bins of length three degrees, (ii) bins of length five degrees but with a threshold of 29 °C and, separately, (iii) a threshold of 31 °C. We find that all three alternatives produce similar marginal effects of temperatures and warming impacts as our preferred model (Supplementary Figs. 5 and 6).
    Under our preferred model the parameters for precipitation and precipitation squared are statistically significant for a two-tailed joint test (F(2,30) = 9.43, p = 0.0007). We find that the yield effects of precipitation are not trivial as a one standard deviation reduction in cumulative rainfall below the average level is associated with a 9.6% yield reduction. To more directly investigate the differentiated impacts of drought and heat, the precipitation component was modified to include the quadratic function (as in the preferred model) along with an indicator variable that takes on a value of “1” when cumulative precipitation is below the 10th percentile of all observed rainfall data. This indicator captures low rainfall conditions likely associated with droughts, and findings suggest the effect of 10th percentile rainfall is an 18% yield reduction (Delta Method = −2.95, p = 0.003). The inclusion of the additional low-rainfall control variable produced similar marginal effects of temperatures and warming impacts as our preferred model (Supplementary Figs. 7 and 8). In addition, we consider controlling for the seasonal variation of precipitation as in Rowhani et al. (2011)67, but found a similar pattern of results for the temperature and warming effects (Supplementary Figs. 8 and 9). Thus, the high temperature effect and precipitation effect seem well differentiated from each other, likely due to the location and year fixed effects that control for (among other things) locations with a more drought-prone climate and widespread droughts across locations within years.
    It is essential that cultivars in the data experience sufficient heat exposure to capture the temperature effects, especially when we estimate the cultivar-specific heat effects. Within the sample, every cultivar was exposed to temperatures above 30 °C ranging from 4 to 115 h. Not every cultivar was exposed to temperatures above 30 °C at every location, but cultivars with no exposure above 30 °C at every location account for less than 10 percent of observations. Nonetheless, as a robustness check for the warming impact estimates we drop cultivar-years not experiencing exposures above 30 °C and re-estimate the model. We find similar marginal effects of temperatures and warming impacts as our preferred model (Supplementary Figs. 9 and 10).
    We also consider whether allowing the temperature and precipitation effects to vary within season affects the warming impacts. We separate the growing season into three stages: (i) planting to 20 days before flowering to capture the vegetative stage, (ii) 20 days before to 10 days after the flowering date to capture the flowering stage, and (iii) 10 days after flowering to the end of season to capture the grain-filling stage. We then re-estimate the model including stage-specific measures of the precipitation and temperature variables, and find that warming impacts are very similar to those from our preferred model approach (Supplementary Fig. 11).
    Next, we analyze whether cultivars developed from specific breeders provide differential heat effects by interacting the temperature bin variable for exposures above 30 °C with dummy variables for each of the three breeders represented in our data: Pannar, Sensako, and the South African ARC-SGI. A two-sided joint test of these interactions suggest that the heat effects do differ across breeders for n = 18,629 yield observations with breeder information (F(2,30) = 6.68, p = 0.004), however the magnitude of the differences are small and the warming impacts are similar across all three breeders (Supplementary Figs. 12 and 13). We also consider whether heat effects differ across the spring, facultative, and winter wheat cultivars represented in the data using the same dummy variable approach. A two-sided joint test suggests a lack of statistical significance for these differences (F(2,30) = 2.20, p = 0.128), and the temperature and warming effects are similar across all three types (Supplementary Figs. 13 and 14).
    Another robustness check interacts the temperature bin variable for exposures above 30 °C with a continuous variable for the year that each cultivar was publicly released. The in-sample release years span 1984–2012 and we again find a lack of statistical significance for the interaction with a two-tailed test (t(30) = 0.53, p = 0.471) coupled with similar temperature and warming effects (Supplementary Figs. 13 and 15).
    The robustness of weather station data was tested by including all available weather stations within 200 km (regardless of missing data) for every wheat trial location using distance-weighting (1/distance2) of the weather observations at the location-year-day level. This increased the number of field trial sites to 32 (some were dropped before because of missing weather data) and the number of unique weather stations to 107. The number of stations matched to a particular site ranged from 12 to 30. We then re-estimate the model using these alternative data and find that the temperature and warming effects are similar to the preferred model (Supplementary Figs. 16 and 17). It is also possible that this distance-weighted interpolation approach is overly simplistic, thereby introducing measurement error that can bias estimates. This type of error would likely affect precipitation more than temperature due to its more localized nature, so we replace our measure of rainfall with that of the gridded Climate Hazards group Infrared Precipitation with Stations (CHIRPS) dataset68. We re-estimate the model and find that the temperature and warming effects are again similar to the preferred model (Supplementary Figs. 16 and 17).
    Some studies have shown that wheat maturity occurs more quickly under heat stress62,69. Thus, to test our assumption of a flowering-to-harvest time of 30 days at each location-year, we use this expanded weather station data and re-calculate the temperature bins for a shorter 20 day maturity period. We define the optimal maturity length by running separate regressions of log yield on the weather covariates for each location-year in the data. Each iteration produces two measures of R-squared, one for each of the two maturity lengths, and the higher one is used for that location-year. We find that 30 days is optimal for approximately 2/3 of the location-years (Supplementary Fig. 18). A regression of the improvement in R-squared from varying the maturity length on the occurrence of temperatures above 30 °C suggests that a one percent increase in heat occurrence only improves model fit by approximately 0.001 percent. In addition, we find that optimizing the maturity lengths by location-year produces similar temperature and warming effects as the preferred model (Supplementary Figs. 16 and 17).
    Expanding the weather data also provides an opportunity to consider the potential effects of shifting planting dates. Producers may adapt to increasing heat stress by planting earlier to avoid critical periods of heat exposure. To test the implications of this adaptation, warming impacts were simulated based on the initial temperature impacts with different weather variables created by planting date shifts at 7 and 14 days earlier with fixed (days-to-flowering and days-to-harvest) season lengths. For +1 °C, shifting planting dates to 14 days earlier provides approximately one percent reduction in the warming impact on yields, while for +3 °C a 14 day earlier planting date may reduce impacts by about four percent (Supplementary Fig. 19).
    Reporting summary
    Further information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Publisher Correction: Keystone taxa indispensable for microbiome recovery

    Affiliations

    Institute for Systems Biology, Seattle, WA, USA
    Sean M. Gibbons

    Department of Bioengineering, University of Washington, Seattle, WA, USA
    Sean M. Gibbons

    eScience Institute, University of Washington, Seattle, WA, USA
    Sean M. Gibbons

    Authors
    Sean M. Gibbons

    Corresponding author
    Correspondence to Sean M. Gibbons. More

  • in

    Altitude and hillside orientation shapes the population structure of the Leishmania infantum vector Phlebotomus ariasi

    1.
    Dolmatova, A. V. & Demina, N. A. Les phlébotomes (Phlebotominae) et les maladies qu’ils transmettent. ORSTOM 20, 1–169 (1966).
    Google Scholar 
    2.
    Bichaud, L. et al. Epidemiologic relationship between toscana virus infection and Leishmania infantum due to common exposure to Phlebotomus perniciosus sandfly vector. PLoS Negl. Trop. Dis. 5(9), e1328 (2011).
    PubMed  PubMed Central  Google Scholar 

    3.
    Rioux, J.-A., Killick-Kendrick, R., Perieres, J., Turner, D. & Lanotte, G. Ecologie des Leishmanioses dans le sud de la France. 13. Les sites de “flanc de coteau”, biotopes de transmission privilégiés de la Leishmaniose viscérale en Cévennes. Ann . Parasitol. Hum. Comp. 55(4), 445–453 (1980).
    CAS  PubMed  Google Scholar 

    4.
    Rioux, J.-A. et al. Ecology of leishmaniasis in the South of France. 22. Reliability and representativeness of 12 Phlebotomus ariasi, P. perniciosus and Sergentomyia minuta (Diptera: Psychodidae) sampling stations in Vallespir (eastern French Pyrenees region). Parasite 20, 34 (2013).
    PubMed  PubMed Central  Google Scholar 

    5.
    Rioux, J.-A. et al. Epidémiologie des leishmanioses dans le Sud de la France. Monogr. l’Inst. Natl. Santé Rech. Méd. 20, 1–228 (1969).
    Google Scholar 

    6.
    Lewis, D. J. A taxonomic review of the genus Phlebotomus (Diptera: Psychodidae). Bull. Br. Museum 45(2), 121–209 (1982).
    Google Scholar 

    7.
    Rossi, E. et al. Mapping the main Leishmania phlebotomine vector in the endemic focus of the Mt. Vesuvius in southern Italy. Geospat. Health 1(2), 191–198 (2007).
    PubMed  Google Scholar 

    8.
    Ballart, C., Barón, S., Alcover, M. M., Portus, M. & Gallego, M. Distribution of phlebotomine sand flies (Diptera: Psychodidae) in Andorra: First finding of P. perniciosus and wide distribution of P. ariasi. Acta Trop. 122(1), 155–159 (2012).
    CAS  PubMed  Google Scholar 

    9.
    Ballart, C. et al. Importance of individual analysis of environmental and climatic factors affecting the density of Leishmania vectors living in the same geographical area: The example of Phlebotomus ariasi and P. perniciosus in northeast Spain. Geospat. Health 8(2), 389–403 (2014).
    PubMed  Google Scholar 

    10.
    Boussaa, S., Neffa, M., Pesson, B. & Boumezzough, A. Phlebotomine sandflies (Diptera: Psychodidae) of southern Morocco: Results of entomological surveys along the Marrakech-Ouarzazat and Marrakech-Azilal roads. Ann. Trop. Med. Parasitol. 104(2), 163–170 (2010).
    CAS  PubMed  Google Scholar 

    11.
    Franco, F. et al. Genetic structure of Phlebotomus (Larroussius) ariasi populations, the vector of Leishmania infantum in the western Mediterranean: Epidemiological implications. Int. J. Parasitol. 40(11), 1335–1346 (2010).
    PubMed  Google Scholar 

    12.
    Ready, P. Leishmaniasis emergence in Europe. Euro Surveill. 15(10), 19505 (2010).
    CAS  PubMed  Google Scholar 

    13.
    Branco, S. et al. Entomological and ecological studies in a new potential zoonotic leishmaniasis focus in Torres Novas municipality, Central Region, Portugal. Acta Trop. 125(3), 339–348 (2013).
    CAS  PubMed  Google Scholar 

    14.
    Barón, S. D. et al. Risk maps for the presence and absence of Phlebotomus perniciosus in an endemic area of leishmaniasis in southern Spain: Implications for the control of the disease. Parasitology 138(10), 1234–1244 (2011).
    PubMed  Google Scholar 

    15.
    Boudabous, R. et al. The phlebotomine fauna (Diptera: Psychodidae) of the eastern coast of Tunisia. J. Med. Entomol. 46(1), 1–8 (2009).
    CAS  PubMed  Google Scholar 

    16.
    European Centre for Disease Prevention and Control E. Phlebotomine sand flies maps [internet] 2019 [10/01/19]. https://www.ecdc.europa.eu/en/disease-vectors/surveillance-and-disease-data/phlebotomine-maps.

    17.
    Dedet, J.-P. Les leishmanioses en France métropolitaine. BEH Hors-Sér. 2010, 9–12 (2020).
    Google Scholar 

    18.
    Depaquit, J., Grandadam, M., Fouque, F., Andry, P.-E. & Peyrefitte, C. Arthropod-borne viruses transmitted by Phlebotomine sandflies in Europe: A review. Euro Surveill. 15(10), 19507 (2010).
    CAS  PubMed  Google Scholar 

    19.
    Kamhawi, S. et al. Two populations of Phlebotomus ariasi in the Cévennes focus of leishmaniasis in the south of France revealed by analysis of cuticular hydrocarbons. Med. Vet. Entomol. 1(1), 97–102 (1987).
    CAS  PubMed  Google Scholar 

    20.
    Pesson, B., Wallon, M., Floer, M. & Kristensen, A. Étude isoenzymatique de populations méditerranéennes de phlébotomes du sous-genre Larroussius. Parassitologia 33, 471–476 (1991).
    PubMed  Google Scholar 

    21.
    Ballart, C., Pesson, B. & Gallego, M. Isoenzymatic characterization of Phlebotomus ariasi and P. perniciosus of canine leishmaniasis foci from Eastern Pyrenean regions and comparison with other populations from Europe. Parasite. 25, 3 (2018).
    PubMed  PubMed Central  Google Scholar 

    22.
    Martin-Sanchez, J., Gramiccia, M., Pesson, B. & Morillas-Marquez, F. Genetic polymorphism in sympatric species of the genus Phlebotomus, with special reference to Phlebotomus perniciosus and Phlebotomus longicuspis (Diptera, Phlebotomidae). Parasite 7(4), 247–254 (2000).
    CAS  PubMed  Google Scholar 

    23.
    Mahamdallie, S. S., Pesson, B. & Ready, P. D. Multiple genetic divergences and population expansions of a Mediterranean sandfly, Phlebotomus ariasi, in Europe during the Pleistocene glacial cycles. Heredity 106(5), 714–726 (2010).
    PubMed  PubMed Central  Google Scholar 

    24.
    Prudhomme, J. et al. Ecology and spatiotemporal dynamics of sandflies in the Mediterranean Languedoc region (Roquedur area, Gard, France). Parasit. Vectors 8(1), 1–14 (2015).
    Google Scholar 

    25.
    Prudhomme, J. et al. Ecology and morphological variations in wings of Phlebotomus ariasi (Diptera: Psychodidae) in the region of Roquedur (Gard, France): A geometric morphometrics approach. Parasit. Vectors 9(1), 578 (2016).
    PubMed  PubMed Central  Google Scholar 

    26.
    Lachaud, L. et al. Surveillance of leishmaniases in France, 1999 to 2012. Euro Surveill. 18(29), 20534 (2013).
    CAS  PubMed  Google Scholar 

    27.
    Prudhomme, J. et al. New microsatellite markers for multi-scale genetic studies on Phlebotomus ariasi Tonnoir, vector of Leishmania infantum in the Mediterranean area. Acta Trop. 142, 79–85 (2015).
    CAS  PubMed  Google Scholar 

    28.
    Wattier, R., Engel, C. R., Saumitou-Laprade, P. & Valero, M. Short allele dominance as a source of heterozygote deficiency at microsatellite loci: Experimental evidence at the dinucleotide locus Gv1CT in Gracilaria gracilis (Rhodophyta). Mol. Ecol. 7(11), 1569–1573 (1998).
    CAS  Google Scholar 

    29.
    De Meeûs T, Chan CT, Ludwig JM, Tsao JI, Patel J, Bhagatwala J, Beati L. Deceptive combined effects of short allele dominance and stuttering: An example with Ixodes scapularis, the main vector of Lyme disease in the U.S.A. peerreviewed and recommended by PCI Evolutionary Biology. 2019.

    30.
    De Meeûs, T. Revisiting, FIS, FST, Wahlund Effects, and Null Alleles. J. Hered. 109(4), 446–456 (2018).
    PubMed  Google Scholar 

    31.
    Teriokhin, A. T., De Meeûs, T. & Guegan, J. F. On the power of some binomial modifications of the Bonferroni multiple test. J. Gener. Biol. 68(5), 332–340 (2007).
    CAS  Google Scholar 

    32.
    De Meeûs, T., Guégan, J.-F. & Teriokhin, A. T. MultiTest V.1.2., a program to binomially combine independent tests and performance comparison with other related methods on proportional data. BMC Bioinform. 10(1), 443 (2009).
    Google Scholar 

    33.
    Nei, M. & Chesser, R. K. Estimation of fixation indices and gene diversities. Ann. Hum. Genet. 47(3), 253–259 (1983).
    CAS  PubMed  MATH  Google Scholar 

    34.
    Meirmans, P. G. & Hedrick, P. W. Assessing population structure: FST and related measures. Mol. Ecol. Resour. 11(1), 5–18 (2011).
    PubMed  Google Scholar 

    35.
    Wang, J. Does GST underestimate genetic differentiation from marker data? Mol. Ecol. 24(14), 3546–3558 (2015).
    CAS  PubMed  Google Scholar 

    36.
    Chapuis, M. P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24(3), 621–631 (2007).
    CAS  PubMed  Google Scholar 

    37.
    Maingon, R. et al. Genetic identification of two sibling species of Lutzomyia longipalpis (Diptera: Psychodidae) that produce distinct male sex pheromones in Sobral, Ceará State, Brazil. Mol. Ecol. 12(7), 1879–1894 (2003).
    CAS  PubMed  Google Scholar 

    38.
    Bauzer, L. G., Souza, N. A., Maingon, R. D. & Peixoto, A. A. Lutzomyia longipalpis in Brazil: A complex or a single species? A mini-review. Mem. Inst. Oswaldo Cruz. 102(1), 1–12 (2007).
    PubMed  Google Scholar 

    39.
    Scarpassa, V. M. & Alencar, R. B. Lutzomyia umbratilis, the main vector of Leishmania guyanensis, represents a novel species complex? PLoS One 7(5), e37341 (2012).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    40.
    Tharmatha, T., Gajapathy, K., Ramasamy, R. & Surendran, S. N. Morphological and molecular identification of cryptic species in the Sergentomyia bailyi (Sinton, 1931) complex in Sri Lanka. Bull. Entomol. Res. 107(1), 58–65 (2016).
    PubMed  Google Scholar 

    41.
    Balloux, F. Heterozygote excess in small populations and the heterozygote-excess effective population size. Evolution 58(9), 1891–1900 (2004).
    PubMed  Google Scholar 

    42.
    Manangwa, O. et al. Detecting Wahlund effects together with amplification problems: Cryptic species, null alleles and short allele dominance in Glossina pallidipes populations from Tanzania. Mol. Ecol. Resour. 19(3), 757–772 (2019).
    PubMed  Google Scholar 

    43.
    Hartl, D. L. & Clarck, A. G. Principles of Population Genetics 2nd edn. (Sinauer Associates Inc, Sunderland, 1989).
    Google Scholar 

    44.
    Araki, A. S. et al. Multilocus analysis of divergence and introgression in sympatric and allopatric sibling species of the Lutzomyia longipalpis complex in Brazil. PLoS Negl Trop Dis. 7(10), e2495 (2013).
    PubMed  PubMed Central  Google Scholar 

    45.
    Kyriacou, C. Sex and rhythms in sandflies and mosquitoes: an appreciation of the work of Alexandre Afranio Peixoto (1963–2013). Infect. Genet. Evol. 28, 662–665 (2014).
    PubMed  PubMed Central  Google Scholar 

    46.
    Abonnenc E. Les phlébotomes de la région éthiopienne (Diptera, Psychodidae): Cahiers de l’ORSTOM, série Entomologie médicale et Parasitologie; 1972 01/01. 239.

    47.
    Rougeron, V. et al. Reproductive strategies and population structure in Leishmania: Substantial amount of sex in Leishmania Viannia guyanensis. Mol. Ecol. 20(15), 3116–3127 (2011).
    PubMed  Google Scholar 

    48.
    Rougeron, V. et al. Multifaceted population structure and reproductive strategy in Leishmania donovani complex in one Sudanese village. PLoS Negl. Trop. Dis. 5(12), e1448 (2011).
    PubMed  PubMed Central  Google Scholar 

    49.
    Rioux, J.-A. et al. Ecologie des Leishmanioses dans le sud de la France. 12. Dispersion horizontale de Phlebotomus ariasi Tonnoir, 1921. Experiences préliminaires. Ann. Parasitol. Hum. Comp. 54(6), 673–682 (1979).
    CAS  PubMed  Google Scholar 

    50.
    Latch, E. K., Dharmarajan, G., Glaubitz, J. C. & Rhodes, O. E. Relative performance of Bayesian clustering software for inferring population substructure and individual assignment at low levels of population differentiation. Conserv. Genet. 7(2), 295–302 (2006).
    Google Scholar 

    51.
    Kaeuffer, R., Réale, D., Coltman, D. & Pontier, D. Detecting population structure using STRUCTURE software: Effect of background linkage disequilibrium. Heredity 99(4), 374–380 (2007).
    CAS  PubMed  Google Scholar 

    52.
    Frantz, A. C., Cellina, S., Krier, A., Schley, L. & Burke, T. Using spatial Bayesian methods to determine the genetic structure of a continuously distributed population: Clusters or isolation by distance? J. Appl. Ecol. 46(2), 493–505 (2009).
    Google Scholar 

    53.
    Blair, C. et al. A simulation-based evaluation of methods for inferring linear barriers to gene flow. Mol. Ecol. Resour. 12(5), 822–833 (2012).
    PubMed  Google Scholar 

    54.
    Bohling, J. H. et al. Describing a developing hybrid zone between red wolves and coyotes in eastern North Carolina, USA. Evol. Appl. 9(6), 791–804 (2016).
    PubMed  PubMed Central  Google Scholar 

    55.
    Le, D. P. bioclimat Mediterraneen: Analyse des formes climatiques par le systeme d’Emberger. Vegetation 34(2), 87–103 (1977).
    Google Scholar 

    56.
    Alten, B. et al. Sampling strategies for phlebotomine sand flies (Diptera: Psychodidae) in Europe. Bull. Entomol. Res. 105(6), 664–678 (2015).
    CAS  PubMed  Google Scholar 

    57.
    Ayhan, N. et al. Practical guidelines for studies on sandfly-borne phleboviruses: Part I: Important points to consider ante field work. Vector Borne Zoonot. Dis. 17(1), 73–80 (2017).
    Google Scholar 

    58.
    Killick-Kendrick, R. et al. The identification of female sandflies of the subgenus Larroussius by the morphology of the spermathecal ducts. Parassitologia 33, 335–347 (1991).
    PubMed  Google Scholar 

    59.
    Wang, Q. & Wang, X. Comparison of methods for DNA extraction from a single chironomid for PCR analysis. Pak. J. Zool. 44(2), 421–426 (2012).
    CAS  Google Scholar 

    60.
    Esseghir, S., Ready, P. D., Killick-Kendrick, R. & Ben-Ismail, R. Mitochondrial haplotypes and phylogeography of Phlebotomus vectors of Leishmania major. Insect. Mol. Biol. 6(3), 221–225 (1997).
    Google Scholar 

    61.
    Depaquit, J., Leger, N. & Randrianambinintsoa, F. J. Paraphyly of the subgenus Anaphlebotomus and creation of Madaphlebotomus subg. Nov. (Phlebotominae: Phlebotomus). Med. Vet. Entomol. 29(2), 159–170 (2015).
    CAS  PubMed  Google Scholar 

    62.
    Coombs, J. A., Letcher, B. H. & Nislow, K. H. Create: A software to create input files from diploid genotypic data for 52 genetic software programs. Mol. Ecol. Resour. 8(3), 578–580 (2008).
    CAS  PubMed  Google Scholar 

    63.
    Bohling, J. H., Adams, J. R. & Waits, L. P. Evaluating the ability of Bayesian clustering methods to detect hybridization and introgression using an empirical red wolf data set. Mol. Ecol. 22(1), 74–86 (2013).
    PubMed  Google Scholar 

    64.
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11(1), 94 (2010).
    PubMed  PubMed Central  Google Scholar 

    65.
    Jombart, T. adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24(11), 1403–1405 (2008).
    CAS  Google Scholar 

    66.
    R Development Core Team RT. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, 2012. https://www.R-project.org/. 2018.

    67.
    Corander, J. & Marttinen, P. Bayesian identification of admixture events using multilocus molecular markers. Mol. Ecol. 15(10), 2833–2843 (2006).
    PubMed  Google Scholar 

    68.
    Corander, J., Marttinen, P., Siren, J. & Tang, J. Enhanced Bayesian modelling in BAPS software for learning genetic structures of populations. BMC Bioinform. 9, 539 (2008).
    Google Scholar 

    69.
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155(2), 945–959 (2000).
    CAS  PubMed  PubMed Central  Google Scholar 

    70.
    Earl, D. A. & vonHoldt, B. M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resourc. 4(2), 359–361 (2012).
    Google Scholar 

    71.
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).
    CAS  Google Scholar 

    72.
    Cavalli-Sforza, L. L. & Edwards, A. W. F. Phylogenetic analysis. Models and estimation procedures. Am. J. Hum. Genet. 19(3 Pt 1), 233–257 (1967).
    CAS  PubMed  PubMed Central  Google Scholar 

    73.
    Takezaki, N. & Nei, M. Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144(1), 389–399 (1996).
    CAS  PubMed  PubMed Central  Google Scholar 

    74.
    Goudet, J. FSTAT (Version 1.2): A computer program to calculate F-statistics. J. Hered. 86(6), 485–486 (1995).
    Google Scholar 

    75.
    Benjamini, Y. & Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 29(4), 1165–1188 (2001).
    MathSciNet  MATH  Google Scholar 

    76.
    Wright, S. The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution 19(3), 395–420 (1965).
    Google Scholar 

    77.
    Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38(6), 1358–1370 (1984).
    CAS  PubMed  Google Scholar 

    78.
    Goudet, J., Raymond, M., De Meeûs, T. & Rousset, F. Testing differentiation in diploid populations. Genetics 20, 144 (1996).
    Google Scholar 

    79.
    De Meeûs, T. et al. Population genetics and molecular epidemiology or how to “débusquer la bête”. Infect. Genet. Evol. 20, 7 (2007).
    Google Scholar 

    80.
    Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. & Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes. 4(3), 535–538 (2004).
    Google Scholar 

    81.
    Brookfield, J. F. A simple new method for estimating null allele frequency from heterozygote deficiency. Mol. Ecol. 5(3), 453–455 (1996).
    CAS  PubMed  Google Scholar 

    82.
    Frontier, S. Étude de la décroissance des valeurs propres dans une analyse en composantes principales: Comparaison avec le modèle du bâton brisé. J. Exp. Mar. Biol. Ecol. 25, 67–75 (1976).
    Google Scholar 

    83.
    Fox, J. & The, R. Commander: A basic-statistics graphical user interface to R. J. Stat. Softw. 14(9), 1–42 (2005).
    Google Scholar 

    84.
    Fox, J. Extending the R Commander by “Plug-In” Packages. R News 7(3), 46–52 (2007).
    Google Scholar 

    85.
    Akaïke, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974).
    ADS  MathSciNet  MATH  Google Scholar 

    86.
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 20, 8 (2008).
    Google Scholar 

    87.
    Séré, M., Thevenon, S., Belem, A. M. G. & De Meeus, T. Comparison of different genetic distances to test isolation by distance between populations. Heredity 119(2), 55–63 (2017).
    PubMed  PubMed Central  Google Scholar 

    88.
    Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 27(2), 209–220 (1967).
    CAS  PubMed  Google Scholar 

    89.
    De Meeûs, T. Statistical decision from k test series with particular focus on population genetics tools: A DIY notice. Infect. Genet. Evol. 22, 91–93 (2014).
    PubMed  Google Scholar 

    90.
    Do, C. et al. NeEstimator v2: Re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14(1), 209–214 (2014).
    CAS  PubMed  Google Scholar 

    91.
    Waples, R. S. A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci*. Conserv. Genet. 7(2), 167–184 (2006).
    Google Scholar 

    92.
    Waples, R. S. & Do, C. ldne: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8(4), 753–756 (2008).
    PubMed  Google Scholar 

    93.
    Peel, D., Waples, R. S., Macbeth, G. M., Do, C. & Ovenden, J. R. Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol. Ecol. Resour. 13(2), 243–253 (2013).
    CAS  PubMed  Google Scholar 

    94.
    Nomura, T. Estimation of effective number of breeders from molecular coancestry of single cohort sample. Evol. Appl. 1(3), 462–474 (2008).
    PubMed  PubMed Central  Google Scholar 

    95.
    Vitalis, R. & Couvet, D. Estimation of effective population size and migration rate from one- and two-locus identity measures. Genetics 157(2), 911–925 (2001).
    CAS  PubMed  PubMed Central  Google Scholar 

    96.
    Vitalis, R. & Couvet, D. Estim 1.0: A computer program to infer population parameters from one- and two-locus gene identity probabilities. Mol. Ecol. Notes 1(4), 354–356 (2005).
    Google Scholar  More

  • in

    Accelerating homogenization of the global plant–frugivore meta-network

    1.
    Helmus, M. R., Mahler, D. L. & Losos, J. B. Island biogeography of the Anthropocene. Nature 513, 543–546 (2014).
    ADS  CAS  PubMed  Google Scholar 
    2.
    Capinha, C., Essl, F., Seebens, H., Moser, D. & Pereira, H. M. Biogeography. The dispersal of alien species redefines biogeography in the Anthropocene. Science 348, 1248–1251 (2015).
    ADS  CAS  PubMed  Google Scholar 

    3.
    Seebens, H. et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 8, 14435 (2017).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    4.
    David, P. et al. Impacts of invasive species on food webs: a review of empirical data. Adv. Ecol. Res. 56, 1–60 (2017).
    Google Scholar 

    5.
    Traveset, A. & Richardson, D. M. Mutualistic interactions and biological invasions. Annu. Rev. Ecol. Evol. Syst. 45, 89–113 (2014).
    Google Scholar 

    6.
    Guimarães, P. R. Jr, Pires, M. M., Jordano, P., Bascompte, J. & Thompson, J. N. Indirect effects drive coevolution in mutualistic networks. Nature 550, 511–514 (2017).
    ADS  PubMed  Google Scholar 

    7.
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).
    CAS  PubMed  Google Scholar 

    8.
    Wallace, A. R. The Geographical Distribution of Animals and Plants (Harper & Brothers, 1876).

    9.
    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).
    ADS  CAS  PubMed  Google Scholar 

    10.
    Vizentin-Bugoni, J. et al. Structure, spatial dynamics, and stability of novel seed dispersal mutualistic networks in Hawai’i. Science 364, 78–82 (2019).
    ADS  CAS  PubMed  Google Scholar 

    11.
    Jordano, P. in Seeds: The Ecology of Regeneration in Plant Communities 2nd edn (ed. Fenner, M.) 18–61 (CABI, 2000).

    12.
    Nathan, R. & Muller-Landau, H. C. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends Ecol. Evol. 15, 278–285 (2000).
    CAS  PubMed  Google Scholar 

    13.
    Herrera, C. M. in Plant–Animal Interactions: An Evolutionary Approach (eds Herrera, C. M. & Pellmyr, O.) 185–208 (Blackwell, 2002).

    14.
    Jordano, P. Patterns of mutualistic interactions in pollination and seed dispersal: connectance, dependence asymmetries, and coevolution. Am. Nat. 129, 657–677 (2002).
    Google Scholar 

    15.
    Tiffney, B. H. Vertebrate dispersal of seed plants through time. Annu. Rev. Ecol. Evol. Syst. 35, 1–29 (2004).
    Google Scholar 

    16.
    McConkey, K. R. et al. Seed dispersal in changing landscapes. Biol. Conserv. 146, 1–13 (2012).
    Google Scholar 

    17.
    Terborgh, J. et al. Tree recruitment in an empty forest. Ecology 89, 1757–1768 (2008).
    PubMed  Google Scholar 

    18.
    Galetti, M. et al. Functional extinction of birds drives rapid evolutionary changes in seed size. Science 340, 1086–1090 (2013).
    ADS  CAS  PubMed  Google Scholar 

    19.
    Rogers, H. S. et al. Effects of an invasive predator cascade to plants via mutualism disruption. Nat. Commun. 8, 14557 (2017).
    ADS  PubMed  PubMed Central  Google Scholar 

    20.
    Aslan, C. E., Zavaleta, E. S., Tershy, B. & Croll, D. Mutualism disruption threatens global plant biodiversity: a systematic review. PLoS One 8, e66993 (2013).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    22.
    Thompson, J. The Geographic Mosaic of Coevolution (Univ. Chicago Press, 2005).

    23.
    Watts, D. J. & Strogatz, S. H. Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).
    ADS  CAS  PubMed  MATH  Google Scholar 

    24.
    Medeiros, L. P., Garcia, G., Thompson, J. N. & Guimarães, P. R. Jr. The geographic mosaic of coevolution in mutualistic networks. Proc. Natl Acad. Sci. USA 115, 12017–12022 (2018).
    CAS  PubMed  Google Scholar 

    25.
    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).
    PubMed  Google Scholar 

    26.
    Wang, S. & Loreau, M. Biodiversity and ecosystem stability across scales in metacommunities. Ecol. Lett. 19, 510–518 (2016).
    PubMed  PubMed Central  Google Scholar 

    27.
    Simberloff, D. & Von Holle, B. Positive interactions of nonindigenous species: invasional meltdown? Biol. Invasions 1, 21–32 (1999).
    Google Scholar 

    28.
    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. (2010).

    29.
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: a shift in conservation priorities based on the global human modification gradient. Glob. Chang. Biol. 25, 811–826 (2019).
    Google Scholar 

    30.
    Bastin, J.-F. et al. The global tree restoration potential. Science 365, 76–79 (2019).
    ADS  CAS  PubMed  Google Scholar 

    31.
    Rezende, E. L., Lavabre, J. E., Guimarães, P. R., Jordano, P. & Bascompte, J. Non-random coextinctions in phylogenetically structured mutualistic networks. Nature 448, 925–928 (2007).
    ADS  CAS  PubMed  Google Scholar 

    32.
    Mello, M. A. R. et al. The missing part of seed dispersal networks: structure and robustness of bat-fruit interactions. PLoS One 6, e17395 (2011).
    ADS  CAS  PubMed  PubMed Central  Google Scholar 

    33.
    Schleuning, M. et al. Ecological, historical and evolutionary determinants of modularity in weighted seed-dispersal networks. Ecol. Lett. 17, 454–463 (2014).
    PubMed  Google Scholar 

    34.
    Chen, S. C. & Moles, A. T. A mammoth mouthful? A test of the idea that larger animals ingest larger seeds. Glob. Ecol. Biogeogr. 24, 1269–1280 (2015).

    35.
    Dalsgaard, B. et al. Opposed latitudinal patterns of network-derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40, 1395–1401 (2016).
    Google Scholar 

    36.
    de Assis Bomfim, J., Guimarães, P. R., Peres, C. A., Carvalho, G. & Cazetta, E. Local extinctions of obligate frugivores and patch size reduction disrupt the structure of seed dispersal networks. Ecography 41, 1899–1909 (2018).
    Google Scholar 

    37.
    Castaño, J. H., Carranza, J. A. & Pérez-Torres, J. Diet and trophic structure in assemblages of montane frugivorous phyllostomid bats. Acta Oecol. 91, 81–90 (2018).
    ADS  Google Scholar 

    38.
    Escribano-Avila, G., Lara-Romero, C., Heleno, R. & Traveset, A. in Ecological Networks in the Tropics (eds Dáttilo, W. & Rico-Gray, V.) 93–110 (Springer, 2018).

    39.
    Laurindo, R. S., Novaes, R. L. M., Vizentin-Bugoni, J. & Gregorin, R. The effects of habitat loss on bat-fruit networks. Biodivers. Conserv. 28, 589–601 (2019).
    Google Scholar 

    40.
    Dugger, P. J. et al. Seed-dispersal networks are more specialized in the Neotropics than in the Afrotropics. Glob. Ecol. Biogeogr. 28, 248–261 (2019).
    Google Scholar 

    41.
    Cayuela, L., Granzow-de la Cerda, Í., Albuquerque, F. S. & Golicher, D. J. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).
    Google Scholar 

    42.
    Boyle, B. et al. The taxonomic name resolution service: an online tool for automated standardization of plant names. BMC Bioinformatics 14, 16 (2013).
    PubMed  PubMed Central  Google Scholar 

    43.
    Trøjelsgaard, K., Heleno, R. & Traveset, A. Native and alien flower visitors differ in partner fidelity and network integration. Ecol. Lett. 22, 1264–1273 (2019).
    PubMed  Google Scholar 

    44.
    Aslan, C. E. Implications of non-native species for mutualistic network resistance and resilience. PLoS One 14, e0217498 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    45.
    Araujo, A. C. et al. Spatial distance and climate determine modularity in a cross-biomes plant–hummingbird interaction network in Brazil. J. Biogeogr. 45, 1846–1858 (2018).
    Google Scholar 

    46.
    Emer, C. et al. Seed-dispersal interactions in fragmented landscapes—a metanetwork approach. Ecol. Lett. 21, 484–493 (2018).
    PubMed  Google Scholar 

    47.
    Nnakenyi, C. A., Traveset, A., Heleno, R., Minoarivelo, H. O. & Hui, C. Fine-tuning the nested structure of pollination networks by adaptive interaction switching, biogeography and sampling effect in the Galápagos Islands. Oikos 128, 1413–1423 (2019).
    Google Scholar 

    48.
    Dunne, J. A. in Ecological Networks: Linking Structure to Dynamics in Food Webs (eds Pascual, M. & Dunne, J. A.) 27–86 (Oxford Univ. Press, 2006).

    49.
    Briatte, F. ggnetwork: geometries to plot networks with ‘ggplot2’. R package v.0.5.1. (R Foundation for Statistical Computing, 2016).

    50.
    Becker, R. A., Wilks, A. R., Brownrigg, R., Minka, T. P. & Deckmyn, A. maps: draw geographical maps. R package v.3 (R Foundation for Statistical Computing, 2013).

    51.
    Clauset, A., Newman, M. E. J. & Moore, C. Finding community structure in very large networks. Phys. Rev. E. 70, 066111 (2004).
    ADS  Google Scholar 

    52.
    Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal 1695 (2006).

    53.
    Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).
    PubMed  PubMed Central  Google Scholar 

    54.
    Warton, D. I., Duursma, R. A., Falster, D. S. & Taskinen, S. smatr 3—an R package for estimation and inference about allometric lines. Methods Ecol. Evol. 3, 257–259 (2012).
    Google Scholar 

    55.
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).

    56.
    Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. Interaction 1, 0.2413793 (2008).
    Google Scholar 

    57.
    Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant-animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).
    ADS  CAS  PubMed  Google Scholar 

    58.
    Marquitti, F. M. D., Guimarães, P. R., Pires, M. M. & Bittencourt, L. F. MODULAR: software for the autonomous computation of modularity in large network sets. Ecography 37, 221–224 (2014).
    Google Scholar 

    59.
    Newman, M. E. J. & Girvan, M. Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004).
    ADS  CAS  Google Scholar 

    60.
    Geraci, M. Linear quantile mixed models: the lqmm package for Laplace quantile regression. J. Stat. Softw. 57, 1–29 (2014). More

  • in

    Subclonal reconstruction of tumors by using machine learning and population genetics

    1.
    Greaves, M. & Maley, C. C. Clonal evolution in cancer. Nature 481, 306–313 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 
    2.
    Turajlic, S., Sottoriva, A., Graham, T. & Swanton, C. Resolving genetic heterogeneity in cancer. Nat. Rev. Genet. 20, 404–416 (2019).
    CAS  PubMed  Google Scholar 

    3.
    Nik-Zainal, S. et al. The life history of 21 breast cancers. Cell 149, 994–1007 (2012).
    CAS  PubMed  PubMed Central  Google Scholar 

    4.
    Dentro, S. C., Wedge, D. C. & Van Loo, P. Principles of reconstructing the subclonal architecture of cancers. Cold Spring Harb. Perspect. Med. 7, a026625 (2017).
    PubMed  PubMed Central  Google Scholar 

    5.
    Roth, A. et al. PyClone: statistical inference of clonal population structure in cancer. Nat. Meth. 11, 396–398 (2014).
    CAS  Google Scholar 

    6.
    Deshwar, A. G. et al. PhyloWGS: reconstructing subclonal composition and evolution from whole-genome sequencing of tumors. Genome Biol. 16, 35 (2015).
    PubMed  PubMed Central  Google Scholar 

    7.
    Miller, C. A. et al. SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput. Biol. 10, e1003665 (2014).
    PubMed  PubMed Central  Google Scholar 

    8.
    Lynch, M. et al. Genetic drift, selection and the evolution of the mutation rate. Nat. Rev. Genet. 17, 704–714 (2016).
    CAS  PubMed  Google Scholar 

    9.
    Williams, M. J., Werner, B., Barnes, C. P., Graham, T. A. & Sottoriva, A. Identification of neutral tumor evolution across cancer types. Nat. Genet. 48, 238–244 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    10.
    Kessler, D. A. & Levine, H. Large population solution of the stochastic Luria–Delbruck evolution model. Proc. Natl Acad. Sci. USA 110, 11682–11687 (2013).
    CAS  PubMed  Google Scholar 

    11.
    Kessler, D. A. & Levine, H. Scaling solution in the large population limit of the general asymmetric stochastic Luria–Delbrück evolution process. J. Stat. Phys. 158, 783–805 (2015).
    PubMed  Google Scholar 

    12.
    Durrett, R. Population genetics of neutral mutations in exponentially growing cancer cell populations. Ann. Appl. Probabil. 23, 230–250 (2013).
    Google Scholar 

    13.
    Nicholson, M. D. & Antal, T. Universal asymptotic clone size distribution for general population growth. Bull. Math. Biol. 78, 2243–2276 (2016).
    PubMed  PubMed Central  Google Scholar 

    14.
    Griffiths, R. C. & Tavaré, S. The age of a mutation in a general coalescent. Stoch. Models 14, 273–295 (1998).
    Google Scholar 

    15.
    Sun, R. et al. Between-region genetic divergence reflects the mode and tempo of tumor evolution. Nat. Genet. 49, 1015–1024 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    16.
    Williams, M. J. et al. Quantification of subclonal selection in cancer from bulk sequencing data. Nat. Genet. 50, 895–903 (2018).
    CAS  PubMed  PubMed Central  Google Scholar 

    17.
    Hartl, D. L. & Clark, A. G. Principles of Population Genetics (Sinauer Associates, Inc., 2006).

    18.
    Luria, S. E. & Delbrück, M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28, 491–511 (1943).
    CAS  PubMed  PubMed Central  Google Scholar 

    19.
    Graham, T. A. & Sottoriva, A. Measuring cancer evolution from the genome. J. Pathol. 241, 183–191 (2017).
    PubMed  Google Scholar 

    20.
    Griffith, M. et al. Optimizing cancer genome sequencing and analysis. Cell Systems 1, 210–223 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    21.
    Cross, W. et al. The evolutionary landscape of colorectal tumorigenesis. Nat. Ecol. Evol. 2, 1661–1672 (2018).
    PubMed  PubMed Central  Google Scholar 

    22.
    Martincorena, I. et al. Universal patterns of selection in cancer and somatic tissues. Cell 171, 1–13 (2017).
    Google Scholar 

    23.
    Zapata, L. et al. Negative selection in tumor genome evolution acts on essential cellular functions and the immunopeptidome. Genome Biol. 19, 924 (2018).
    Google Scholar 

    24.
    Lee, J. J.-K. et al. Tracing oncogene rearrangements in the mutational history of lung adenocarcinoma. Cell 177, 1842–1857.e21 (2019).
    CAS  PubMed  Google Scholar 

    25.
    The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
    CAS  Google Scholar 

    26.
    Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    27.
    Williams, M. J. et al. Measuring the distribution of fitness effects in somatic evolution by combining clonal dynamics with dN/dS ratios. eLife Sci. 9, 612 (2020).
    Google Scholar 

    28.
    Körber, V. et al. Evolutionary trajectories of IDHWT glioblastomas reveal a common path of early tumorigenesis instigated years ahead of initial diagnosis. Cancer Cell 35, 692–704.e12 (2019).
    PubMed  Google Scholar 

    29.
    Barthel, F. P. et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature 576, 112–120 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    30.
    Shah, S. P. et al. The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486, 395–399 (2012).
    CAS  PubMed  Google Scholar 

    31.
    Andor, N. et al. Pan-cancer analysis of the extent and consequences of intratumor heterogeneity. Nat. Med. 22, 105–113 (2016).
    CAS  PubMed  Google Scholar 

    32.
    Morris, L. G. T. et al. Pan-cancer analysis of intratumor heterogeneity as a prognostic determinant of survival. Oncotarget 7, 10051–10063 (2016).
    PubMed  PubMed Central  Google Scholar 

    33.
    Jamal-Hanjani, M. et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 376, 2109–2121 (2017).
    CAS  PubMed  Google Scholar 

    34.
    Espiritu, S. M. G. et al. The evolutionary landscape of localized prostate cancers drives clinical aggression. Cell 173, 1003–1013.e15 (2018).
    CAS  PubMed  Google Scholar 

    35.
    Salcedo, A. et al. A community effort to create standards for evaluating tumor subclonal reconstruction. Nat. Biotechnol. 38, 97–107 (2020).
    CAS  PubMed  PubMed Central  Google Scholar 

    36.
    Yang, L. et al. An enhanced genetic model of colorectal cancer progression history. Genome Biol. 20, 168 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    37.
    Yates, L. R. et al. Genomic evolution of breast cancer metastasis and relapse. Cancer Cell 32, 169–184.e7 (2017).
    CAS  PubMed  PubMed Central  Google Scholar 

    38.
    Gundem, G. et al. The evolutionary history of lethal metastatic prostate cancer. Nature 520, 353–357 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    39.
    Noorani, A. et al. Genomic evidence supports a clonal diaspora model for metastases of esophageal adenocarcinoma. Nat. Genet. 347, 1–10 (2020).
    Google Scholar 

    40.
    Navin, N. E. The first five years of single-cell cancer genomics and beyond. Genome Res. 25, 1499–1507 (2015).
    CAS  PubMed  PubMed Central  Google Scholar 

    41.
    Chkhaidze, K. et al. Spatially constrained tumour growth affects the patterns of clonal selection and neutral drift in cancer genomic data. PLoS Comput. Biol. 15, e1007243 (2019).
    CAS  PubMed  PubMed Central  Google Scholar 

    42.
    Fusco, D., Gralka, M., Kayser, J., Anderson, A. & Hallatschek, O. Excess of mutational jackpot events in expanding populations revealed by spatial Luria–Delbrück experiments. Nat. Commun. 7, 12760 (2016).
    CAS  PubMed  PubMed Central  Google Scholar 

    43.
    Teh, Y. W. Dirichlet processes. in Encyclopedia of Machine Learning (eds Sammut, C. & Webb, G.) 280–287 (Springer, 2011).

    44.
    Ghahramani, Z., Jordan, M. I. & Adams, R. P. Tree-structured stick breaking for hierarchical data. in Advances in Neural Information Processing Systems (eds Lafferty, J. D. et al.) 2319–2327 (Neural Information Processing Systems, 2010).

    45.
    Ma, Z. & Leijon, A. Bayesian estimation of beta mixture models with variational inference. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2160–2173 (2011).
    PubMed  Google Scholar 

    46.
    Clauset, A., Shalizi, C. R. & Newman, M. E. J. Power-law distributions in empirical data. SIAM Rev. 51, 661–703 (2009).
    Google Scholar 

    47.
    Schröder, C. & Rahmann, S. A hybrid parameter estimation algorithm for beta mixtures and applications to methylation state classification. Algorithms Mol. Biol. 12, 21 (2017).
    PubMed  PubMed Central  Google Scholar 

    48.
    Biernacki, C., Celeux, G. & Govaert, G. Assessing a mixture model for clustering with the integrated completed likelihood. IEEE Trans. Pattern Anal. Mach. Intell. 22, 719–725 (2000).
    Google Scholar  More

  • in

    Flow-through stable isotope probing (Flow-SIP) minimizes cross-feeding in complex microbial communities

    1.
    Boschker HTS, Nold SC, Wellsbury P, Bos D, De Graaf W, Pel R, et al. Direct linking of microbial populations to specific biogeochemical processes by 13C-labelling of biomarkers. Nature. 1998;392:801–4.
    CAS  Article  Google Scholar 
    2.
    Radajewski S, Ineson P, Parekh NR, Murrell JC. Stable-isotope probing as a tool in microbial ecology. Nature. 2000;403:646–9.
    CAS  Article  Google Scholar 

    3.
    Orphan VJ, House CH, Hinrichs K-U, McKeegan K, Delong EF. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science. 2001;293:484–6.
    CAS  Article  Google Scholar 

    4.
    Manefield M, Whiteley AS, Griffiths RI, Bailey MJ. RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol. 2002;68:5367–73.
    CAS  Article  Google Scholar 

    5.
    Daebeler A, Bodelier PLE, Yan Z, Hefting MM, Jia Z, Laanbroek HJ. Interactions between Thaumarchaea, Nitrospira and methanotrophs modulate autotrophic nitrification in volcanic grassland soil. ISME J. 2014;8:1–14.
    Article  Google Scholar 

    6.
    Gülay A, Fowler JS, Tatari K, Thamdrup B, Albrechtsen HJ, Abu Al-Soud W, et al. DNA- and RNA-SIP Reveal Nitrospira spp. as Key Drivers of Nitrification in Groundwater-Fed Biofilter. MBio. 2019;10:e01870–19.
    Article  Google Scholar 

    7.
    Berg JS, Pjevac P, Sommer T, Buckner CRT, Philippi M, Hach PF, et al. Dark aerobic sulfide oxidation by anoxygenic phototrophs in anoxic waters. Environ Microbiol. 2019;21:1611–26.
    CAS  Article  Google Scholar 

    8.
    Middelburg JJ, Barranguet C, Boschker HTS, Herman PMJ, Moens T, Heip CHR. The fate of intertidal microphytobenthos carbon: An in situ 13C-labeling study. Limnol Oceanogr. 2000;45:1224–34.
    CAS  Article  Google Scholar 

    9.
    DeRito CM, Pumphrey GM, Madsen EL. Use of field-based stable isotope probing to identify adapted populations and track carbon flow through a phenol-degrading soil microbial community. Appl Environ Microbiol. 2005;71:7858–65.
    CAS  Article  Google Scholar 

    10.
    Dumont MG, Pommerenke B, Casper P, Conrad R. DNA-, rRNA- and mRNA-based stable isotope probing of aerobic methanotrophs in lake sediment. Environ Microbiol. 2011;13:1153–67.
    CAS  Article  Google Scholar 

    11.
    Dolinšek J, Lagkouvardos I, Wanek W, Wagner M, Daims H. Interactions of nitrifying bacteria and heterotrophs: Identification of a Micavibrio-like putative predator of Nitrospira spp. Appl Environ Microbiol. 2013;79:2027–37.
    Article  Google Scholar 

    12.
    Neufeld JD, Schäfer H, Cox MJ, Boden R, McDonald IR, Murrell JC. Stable-isotope probing implicates Methylophaga spp and novel Gammaproteobacteria in marine methanol and methylamine metabolism. ISME J. 2007;1:480–91.
    CAS  Article  Google Scholar 

    13.
    Ho A, Angel R, Veraart AJ, Daebeler A, Jia Z, Kim SY, et al. Biotic interactions in microbial communities as modulators of biogeochemical processes: Methanotrophy as a model system. Front Microbiol. 2016;7:1–11.
    Article  Google Scholar 

    14.
    Lueders T, Manefield M, Friedrich MW. Enhanced sensitivity of DNA- and rRNA-based stable isotope probing by fractionation and quantitative analysis of isopycnic centrifugation gradients. Environ Microbiol. 2004;6:73–78.
    CAS  Article  Google Scholar 

    15.
    Maxfield PJ, Hornibrook ERC, Evershed RP. Estimating high-affinity methanotrophic bacterial biomass, growth, and turnover in soil by phospholipid fatty acid 13C labeling. Appl Environ Microbiol. 2006;72:3901–7.
    CAS  Article  Google Scholar 

    16.
    Pan C, Fischer CR, Hyatt D, Bowen BP, Hettich RL, Banfield JF. Quantitative tracking of isotope flows in proteomes of microbial communities. Mol Cell Proteom. 2011;10:1–11.
    Google Scholar 

    17.
    Albertsen M, Hansen LBS, Saunders AM, Nielsen PH, Nielsen KL. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal. ISME J. 2012;6:1094–106.
    CAS  Article  Google Scholar 

    18.
    Munck C, Albertsen M, Telke A, Ellabaan M, Nielsen PH, Sommer MOA. Limited dissemination of the wastewater treatment plant core resistome. Nat Commun. 2015;6:8452.
    CAS  Article  Google Scholar 

    19.
    Krümmel A, Harms H. Effect of organic matter on growth and cell yield of ammonia-oxidizing bacteria. Arch Microbiol. 1982;133:50–54.
    Article  Google Scholar 

    20.
    Spieck E, Lipski A. Cultivation, growth physiology, and chemotaxonomy of nitrite-oxidizing bacteria. In: Klotz MG, editor. Methods in enzymology, 1st ed. San Diego, USA: Elsevier Inc.; 2011. pp 109–30.

    21.
    Li W. Estimating heterotrophic bacterial productivity by inorganic radiocarbon uptake: importance of establishing time courses of uptake. Mar Ecol Prog Ser. 1982;8:167–72.
    Article  Google Scholar 

    22.
    Roslev P, Larsen MB, Jørgensen D, Hesselsoe M. Use of heterotrophic CO2 assimilation as a measure of metabolic activity in planktonic and sessile bacteria. J Microbiol Methods. 2004;59:381–93.
    CAS  Article  Google Scholar 

    23.
    Okabe S, Kindaichi T, Ito T. Fate of 14C-labeled microbial products derived from nitrifying bacteria in autotrophic nitrifying biofilms. Appl Environ Microbiol. 2005;71:3987–94.
    CAS  Article  Google Scholar 

    24.
    Dirnhuber P, Schütz F. The isomeric transformation of urea into ammonium cyanate in aqueous solutions. Biochem J. 1948;42:628–32.
    CAS  Article  Google Scholar 

    25.
    Palatinszky M, Herbold C, Jehmlich N, Pogoda M, Han P, Von BergenM, et al. Cyanate as an energy source for nitrifiers. Nature. 2015;524:105–8.
    CAS  Article  Google Scholar 

    26.
    Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat Microbiol. 2019;4:234–43.
    CAS  Article  Google Scholar 

    27.
    Hatzenpichler R, Scheller S, Tavormina PL, Babin BM, Tirrell DA, Orphan VJ. In situ visualization of newly synthesized proteins in environmental microbes using amino acid tagging and click chemistry. Environ Microbiol. 2014;16:2568–90.
    CAS  Article  Google Scholar  More

  • in

    Centers of endemism of freshwater protists deviate from pattern of taxon richness on a continental scale

    1.
    Segawa, T. et al. Bipolar dispersal of red-snow algae. Nat. Commun. 9, 3094. https://doi.org/10.1038/s41467-018-05521-w (2018).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 
    2.
    Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science (New York, N.Y.) 346, 1256688. https://doi.org/10.1126/science.1256688 (2014).
    CAS  Article  Google Scholar 

    3.
    Dunthorn, M., Stoeck, T., Wolf, K., Breiner, H.-W. & Foissner, W. Diversity and endemism of ciliates inhabiting Neotropical phytotelmata. Syst. Biodivers. 10, 195–205. https://doi.org/10.1080/14772000.2012.685195 (2012).
    Article  Google Scholar 

    4.
    Siver, P. A. & Lott, A. M. Biogeographic patterns in scaled chrysophytes from the east coast of North. America 57, 451–466. https://doi.org/10.1111/j.1365-2427.2011.02711.x (2012).
    Article  Google Scholar 

    5.
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227. https://doi.org/10.1038/35012228 (2000).
    CAS  Article  PubMed  Google Scholar 

    6.
    Bass, D., Boenigk, J. & Fontaneto, D. In Biogeography of Microscopic Organisms (ed. Fontaneto, D.) 88–110 (Cambridge University Press, Cambridge, 2011).
    Google Scholar 

    7.
    Caron, D. A. Past President’s address: protistan biogeography: why all the fuss?. J. Eukaryot. Microbiol. 56, 105–112. https://doi.org/10.1111/j.1550-7408.2008.00381.x (2009).
    ADS  Article  PubMed  Google Scholar 

    8.
    Foissner, W. Biogeography and dispersal of micro-organisms: a review emphasizing protists (2006).

    9.
    Coesel, P. F. M. & Krienitz, L. Diversity and geographic distribution of desmids and other coccoid green algae. Biodivers. Conserv. 17, 381–392. https://doi.org/10.1007/s10531-007-9256-5 (2008).
    Article  Google Scholar 

    10.
    Darling, K. F. & Wade, C. M. The genetic diversity of planktic foraminifera and the global distribution of ribosomal RNA genotypes. Mar. Micropaleontol. 67, 216–238. https://doi.org/10.1016/j.marmicro.2008.01.009 (2008).
    ADS  Article  Google Scholar 

    11.
    Vanormelingen, P., Verleyen, E. & Vyverman, W. The diversity and distribution of diatoms: from cosmopolitanism to narrow endemism. Biodivers. Conserv. 17, 393–405. https://doi.org/10.1007/s10531-007-9257-4 (2008).
    Article  Google Scholar 

    12.
    Stoeck, T., Bruemmer, F. & Foissner, W. Evidence for local ciliate endemism in an alpine anoxic lake. Microbiol. Ecol. 54, 478–486. https://doi.org/10.1007/s00248-007-9213-6 (2007).
    Article  Google Scholar 

    13.
    Fernández, L. D., Hernández, C. E., Schiaffino, M. R., Izaguirre, I. & Lara, E. Geographical distance and local environmental conditions drive the genetic population structure of a freshwater microalga (Bathycoccaceae; Chlorophyta) in Patagonian lakes. FEMS Microbiol. Ecol. 93, 37. https://doi.org/10.1093/femsec/fix125 (2017).
    CAS  Article  Google Scholar 

    14.
    Filker, S., Sommaruga, R., Vila, I. & Stoeck, T. Microbial eukaryote plankton communities of high-mountain lakes from three continents exhibit strong biogeographic patterns. Mol. Ecol. 25, 2286–2301. https://doi.org/10.1111/mec.13633 (2016).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    15.
    de Vargas, C. et al. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. https://doi.org/10.1126/science.1261605 (2015).
    CAS  Article  PubMed  Google Scholar 

    16.
    Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084-1097.e21. https://doi.org/10.1016/j.cell.2019.10.008 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    17.
    Bock, C., Salcher, M., Jensen, M., Pandey, R. V. & Boenigk, J. Synchrony of eukaryotic and prokaryotic planktonic communities in three seasonally sampled Austrian lakes. Front. Microbiol. 9, 1290. https://doi.org/10.3389/fmicb.2018.01290 (2018).
    Article  PubMed  PubMed Central  Google Scholar 

    18.
    Boenigk, J. et al. Geographic distance and mountain ranges structure freshwater protist communities on a European scale. Metabarcoding and Metagenomics 2, e21519. https://doi.org/10.3897/mbmg.2.21519 (2018).
    Article  Google Scholar 

    19.
    He, F. et al. Elevation, aspect, and local environment jointly determine diatom and macroinvertebrate diversity in the Cangshan Mountain, Southwest China. Ecol. Indic. 108, 105618. https://doi.org/10.1016/j.ecolind.2019.105618 (2020).
    Article  Google Scholar 

    20.
    Shen, C. et al. Contrasting elevational diversity patterns between eukaryotic soil microbes and plants. Ecology 95, 3190–3202. https://doi.org/10.1890/14-0310.1 (2014).
    Article  Google Scholar 

    21.
    Bryant, J. A. et al. Colloquium paper: microbes on mountainsides: contrasting elevational patterns of bacterial and plant diversity. Proc. Natl. Acad. Sci. USA 105(Suppl 1), 11505–11511. https://doi.org/10.1073/pnas.0801920105 (2008).
    ADS  Article  PubMed  Google Scholar 

    22.
    McCain, C. M. Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Global Ecol. Biogeogr. 16, 1–13. https://doi.org/10.1111/j.1466-8238.2006.00263.x (2007).
    Article  Google Scholar 

    23.
    Desmond, A. Janet Browne, The secular ark. Studies in the history of biogeography, New Haven, Conn., and London, Yale University Press, 1983, 8vo, pp. x, 273, illus., £21.00. Med. Hist. 27, 452–453. https://doi.org/10.1017/s0025727300043611 (1983).
    Article  PubMed Central  Google Scholar 

    24.
    Nemcová, Y., Kreidlová, J., Kosová, A. & Neustupa, J. Lakes and pools of Aquitaine region (France)—a biodiversity hotspot of Synurales in Europe. Nova Hedw 95, 1–24. https://doi.org/10.1127/0029-5035/2012/0036 (2012).
    Article  Google Scholar 

    25.
    van de Vijver, B., Gremmen, N. J. M. & Beyens, L. The genus Stauroneis (Bacillariophyceae) in the Antarctic region. J. Biogeogr. 32, 1791–1798. https://doi.org/10.1111/j.1365-2699.2005.01325.x (2005).
    Article  Google Scholar 

    26.
    Martiny, J. B. H. et al. Microbial biogeography: putting microorganisms on the map. Nat. Rev. Microbiol. 4, 102–112. https://doi.org/10.1038/nrmicro1341 (2006).
    CAS  Article  PubMed  Google Scholar 

    27.
    Lepère, C. et al. Geographic distance and ecosystem size determine the distribution of smallest protists in lacustrine ecosystems. FEMS Microbiol. Ecol. 85, 85–94. https://doi.org/10.1111/1574-6941.12100 (2013).
    Article  PubMed  Google Scholar 

    28.
    Green, J. L. et al. Spatial scaling of microbial eukaryote diversity. Nature 432, 747–750. https://doi.org/10.1038/nature03034 (2004).
    ADS  CAS  Article  PubMed  Google Scholar 

    29.
    Lara, E., Roussel-Delif, L., Fournier, B., Wilkinson, D. M. & Mitchell, E. A. D. Soil microorganisms behave like macroscopic organisms: patterns in the global distribution of soil euglyphid testate amoebae. J. Biogeogr. 43, 520–532. https://doi.org/10.1111/jbi.12660 (2016).
    Article  Google Scholar 

    30.
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl. Acad. Sci. USA 106, 9322–9327. https://doi.org/10.1073/pnas.0810306106 (2009).
    ADS  Article  PubMed  Google Scholar 

    31.
    Orme, C. D. L. et al. Global hotspots of species richness are not congruent with endemism or threat. Nature 436, 1016–1019. https://doi.org/10.1038/nature03850 (2005).
    ADS  CAS  Article  PubMed  Google Scholar 

    32.
    Schmitt, T. Biogeographical and evolutionary importance of the European high mountain systems. Front. Zool. 6, 9. https://doi.org/10.1186/1742-9994-6-9 (2009).
    Article  PubMed  PubMed Central  Google Scholar 

    33.
    Vimercati, L., Darcy, J. L. & Schmidt, S. K. The disappearing periglacial ecosystem atop Mt. Kilimanjaro supports both cosmopolitan and endemic microbial communities. Sci. Rep. 9, 10676. https://doi.org/10.1038/s41598-019-46521-0 (2019).
    ADS  CAS  Article  PubMed  PubMed Central  Google Scholar 

    34.
    McCain, C. M. Elevational gradients in diversity of small mammals. Ecology 86, 366–372. https://doi.org/10.1890/03-3147 (2005).
    Article  Google Scholar 

    35.
    Malviya, S. et al. Insights into global diatom distribution and diversity in the world’s ocean. Proc. Natl. Acad. Sci. USA 113, E1516–E1525. https://doi.org/10.1073/pnas.1509523113 (2016).
    CAS  Article  PubMed  Google Scholar 

    36.
    Khomich, M., Kauserud, H., Logares, R., Rasconi, S. & Andersen, T. Planktonic protistan communities in lakes along a large-scale environmental gradient. FEMS Microbiol. Ecol. https://doi.org/10.1093/femsec/fiw231 (2017).
    Article  PubMed  Google Scholar 

    37.
    Škaloud, P. et al. Speciation in protists: Spatial and ecological divergence processes cause rapid species diversification in a freshwater chrysophyte. Mol. Ecol. 28, 1084–1095. https://doi.org/10.1111/mec.15011 (2019).
    Article  PubMed  Google Scholar 

    38.
    Godhe, A., McQuoid, M. R., Karunasagar, I., Karunasagar, I. & Rehnstam-Holm, A.-S. Comparison of three common molecular tools for distinguishing among geographically separated clones of the diatom Skeletonema marinoi sarno et zingone (Bacillariophyceae). J. Phycol. 42, 280–291. https://doi.org/10.1111/j.1529-8817.2006.00197.x (2006).
    CAS  Article  Google Scholar 

    39.
    Jobst, J., King, K. & Hemleben, V. Molecular evolution of the internal transcribed spacers (ITS1 and ITS2) and phylogenetic relationships among species of the family cucurbitaceae. Mol. Phylogenet. Evol. 9, 204–219. https://doi.org/10.1006/mpev.1997.0465 (1998).
    CAS  Article  PubMed  Google Scholar 

    40.
    Lobo-Hajdu, G. Intragenomic, intra- and interspecific variation in the rDNA its of Porifera revealed by PCR-singlestrand conformation polymorphism (PCR-SSCP). Bollettino dei Musei e degli Istituti Biologici 68, 413–423 (2004).
    Google Scholar 

    41.
    Needham, D. M., Sachdeva, R. & Fuhrman, J. A. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 11, 1614–1629. https://doi.org/10.1038/ismej.2017.29 (2017).
    Article  PubMed  PubMed Central  Google Scholar 

    42.
    Derot, J. et al. Response of phytoplankton traits to environmental variables in French lakes: new perspectives for bioindication. Ecol. Indic. 108, 105659. https://doi.org/10.1016/j.ecolind.2019.105659 (2020).
    CAS  Article  Google Scholar 

    43.
    Boo, S. M. et al. Complex phylogeographic patterns in the freshwater alga Synura provide new insights into ubiquity vs. endemism in microbial eukaryotes. Mol. Ecol. 19, 4328–4338. https://doi.org/10.1111/j.1365-294X.2010.04813.x (2010).
    Article  PubMed  Google Scholar 

    44.
    Foissner, W. & Hawksworth, D. L. (eds) Protist Diversity and Geographical Distribution (Springer, Dordrecht, 2009).
    Google Scholar 

    45.
    Schiaffino, M. R. et al. Microbial eukaryote communities exhibit robust biogeographical patterns along a gradient of Patagonian and Antarctic lakes. Environ. Microbiol. 18, 5249–5264. https://doi.org/10.1111/1462-2920.13566 (2016).
    CAS  Article  PubMed  Google Scholar 

    46.
    Boenigk, J. et al. Evidence for geographic isolation and signs of endemism within a protistan morphospecies. Appl. Environ. Microbiol. 72, 5159–5164. https://doi.org/10.1128/AEM.00601-06 (2006).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    47.
    Foissner, W., Chao, A. & Katz, L. A. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 17, 345–363. https://doi.org/10.1007/s10531-007-9254-7 (2008).
    Article  Google Scholar 

    48.
    Payo, D. A. et al. Extensive cryptic species diversity and fine-scale endemism in the marine red alga Portieria in the Philippines. Proc. R. Soc. B 280, 20122660. https://doi.org/10.1098/rspb.2012.2660 (2013).
    Article  PubMed  Google Scholar 

    49.
    Siver, P. A., Skogstad, A. & Nemcová, Y. Endemism, palaeoendemism and migration: the case for the ‘European endemic’, Mallomonas intermedia. Eur. J. Phycol. 54, 222–234. https://doi.org/10.1080/09670262.2018.1544377 (2019).
    Article  Google Scholar 

    50.
    Cox, F., Newsham, K. K. & Robinson, C. H. Endemic and cosmopolitan fungal taxa exhibit differential abundances in total and active communities of Antarctic soils. Environ. Microbiol. 21, 1586–1596. https://doi.org/10.1111/1462-2920.14533 (2019).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    51.
    Ibelings, B. W. et al. Host parasite interactions between freshwater phytoplankton and chytrid fungi (Chytridiomycota). J. Phycol. 40, 437–453. https://doi.org/10.1111/j.1529-8817.2004.03117.x (2004).
    Article  Google Scholar 

    52.
    Logares, R. et al. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 17, 414–422. https://doi.org/10.1016/j.tim.2009.05.010 (2009).
    CAS  Article  PubMed  Google Scholar 

    53.
    Hewitt, G. M. The structure of biodiversity—insights from molecular phylogeography. Front. Zool. 1, 4. https://doi.org/10.1186/1742-9994-1-4 (2004).
    Article  PubMed  PubMed Central  Google Scholar 

    54.
    Vetaas, O. R. & Grytnes, J.-A. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecol. Biogeogr. 11, 291–301. https://doi.org/10.1046/j.1466-822X.2002.00297.x (2002).
    Article  Google Scholar 

    55.
    Nogués-Bravo, D., Araújo, M. B., Romdal, T. & Rahbek, C. Scale effects and human impact on the elevational species richness gradients. Nature 453, 216–219. https://doi.org/10.1038/nature06812 (2008).
    ADS  CAS  Article  PubMed  Google Scholar 

    56.
    Catalán, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnetica 25, 551–584 (2006).
    Google Scholar 

    57.
    Sommaruga, R. The role of solar UV radiation in the ecology of alpine lakes. J. Photochem. Photobiol. B Biol. 62, 35–42. https://doi.org/10.1016/S1011-1344(01)00154-3 (2001).
    CAS  Article  Google Scholar 

    58.
    Morris, D. P. et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol. Oceanogr. 40, 1381–1391. https://doi.org/10.4319/lo.1995.40.8.1381 (1995).
    ADS  CAS  Article  Google Scholar 

    59.
    Sommaruga, R. & Augustin, G. Seasonality in UV transparency of an alpine lake is associated to changes in phytoplankton biomass. Aquat. Sci. 68, 129–141. https://doi.org/10.1007/s00027-006-0836-3 (2006).
    Article  Google Scholar 

    60.
    Catalan, J. et al. High mountain lakes: extreme habitats and witnesses of environmental changes. Limnética 25, 551–584 (2006).
    Google Scholar 

    61.
    Ortiz-Álvarez, R., Triadó-Margarit, X., Camarero, L., Casamayor, E. O. & Catalan, J. High planktonic diversity in mountain lakes contains similar contributions of autotrophic, heterotrophic and parasitic eukaryotic life forms. Sci. Rep. 8, 302. https://doi.org/10.1038/s41598-018-22835-3 (2018).
    CAS  Article  Google Scholar 

    62.
    Kammerlander, B. et al. High diversity of protistan plankton communities in remote high mountain lakes in the European Alps and the Himalayan mountains. FEMS Microbiol. Ecol. 91, 429. https://doi.org/10.1093/femsec/fiv010 (2015).
    CAS  Article  Google Scholar 

    63.
    Tartarotti, B. et al. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes. J. Plankton Res. 36, 557–566. https://doi.org/10.1093/plankt/fbt109 (2014).
    CAS  Article  PubMed  Google Scholar 

    64.
    Brettum, P. & Halvorsen, G. The phytoplankton of Lake Atnsjøen, Norway—a long-term investigation. Hydrobiologia 521, 141–147. https://doi.org/10.1023/B:HYDR.0000026356.09421.e3 (2004).
    Article  Google Scholar 

    65.
    Karlsson, J. et al. Light limitation of nutrient-poor lake ecosystems. Nature 460, 506–509. https://doi.org/10.1038/nature08179 (2009).
    ADS  CAS  Article  PubMed  Google Scholar 

    66.
    Bergström, A.-K., Karlsson, D., Karlsson, J. & Vrede, T. N-limited consumer growth and low nutrient regeneration N: P ratios in lakes with low N deposition. Ecosphere 6, 9. https://doi.org/10.1890/ES14-00333.1 (2015).
    Article  Google Scholar 

    67.
    Kritzberg, E. S. et al. Browning of freshwaters: consequences to ecosystem services, underlying drivers, and potential mitigation measures. Ambio 49, 375–390. https://doi.org/10.1007/s13280-019-01227-5 (2020).
    Article  PubMed  Google Scholar 

    68.
    Gustafsson, B. G. & Westman, P. On the causes for salinity variations in the Baltic Sea during the last 8500 years. Paleoceanography 17, 12-1-12–14. https://doi.org/10.1029/2000PA000572 (2002).
    Article  Google Scholar 

    69.
    Filker, S., Kühner, S., Heckwolf, M., Dierking, J. & Stoeck, T. A fundamental difference between macrobiota and microbial eukaryotes: protistan plankton has a species maximum in the freshwater-marine transition zone of the Baltic Sea. Environ. Microbiol. 21, 603–617. https://doi.org/10.1111/1462-2920.14502 (2019).
    CAS  Article  PubMed  Google Scholar 

    70.
    Schiewer, U. In Ecology of Baltic Coastal Waters (ed. Schiewer, U.) 395–417 (Springer, Berlin, 2008).
    Google Scholar 

    71.
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science (New York, N.Y.) 305, 354–360. https://doi.org/10.1126/science.1095964 (2004).
    ADS  CAS  Article  Google Scholar 

    72.
    Cermeño, P., Falkowski, P. G., Romero, O. E., Schaller, M. F. & Vallina, S. M. Continental erosion and the Cenozoic rise of marine diatoms. Proc. Natl. Acad. Sci. USA 112, 4239–4244. https://doi.org/10.1073/pnas.1412883112 (2015).
    ADS  CAS  Article  PubMed  Google Scholar 

    73.
    Rothschild, L. J. The influence of UV radiation on protistan evolution. J. Eukaryot. Microbiol. https://doi.org/10.1111/j.1550-7408.1999.tb06074.x| (1999).
    Article  PubMed  Google Scholar 

    74.
    Rose, J. M. & Caron, D. A. Does low temperature constrain the growth rates of heterotrophic protists? Evidence and implications for algal blooms in cold waters. Limnol. Oceanogr. 52, 886–895. https://doi.org/10.4319/lo.2007.52.2.0886 (2007).
    ADS  Article  Google Scholar 

    75.
    Ægisdóttir, H. H., Kuss, P. & Stöcklin, J. Isolated populations of a rare alpine plant show high genetic diversity and considerable population differentiation. Ann. Bot. 104, 1313–1322. https://doi.org/10.1093/aob/mcp242 (2009).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    76.
    Cain, M. L., Milligan, B. G. & Strand, A. E. Long-distance seed dispersal in plant populations. Am. J. Bot. 87, 1217–1227. https://doi.org/10.2307/2656714 (2000).
    CAS  Article  PubMed  Google Scholar 

    77.
    Nemcová, Y. & Pichrtova, M. Shape dynamics of silica scales (Chrysophyceae, Stramenopiles) associated with pH. Fottea 12, 281–291. https://doi.org/10.5507/fot.2012.020 (2012).
    Article  Google Scholar 

    78.
    Leadbeater, B. S. C. & Green, J. C. Flagellates: Unity, Diversity and Evolution. Chapter 12: Functional Diversity of Heterotrophic Flagellates in Aquatic Ecosystems (CRC Press, Cambridge, 2000).
    Google Scholar 

    79.
    Lange, A. et al. AmpliconDuo: a split-sample filtering protocol for high-throughput amplicon sequencing of microbial communities. PLoS ONE 10, e0141590. https://doi.org/10.1371/journal.pone.0141590 (2015).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    80.
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152. https://doi.org/10.1093/bioinformatics/bts565 (2012).
    CAS  Article  PubMed  PubMed Central  Google Scholar 

    81.
    Jensen, M. V9_Clust.R. R-Scrift for modifying DNA-sequence-abundance-tables: clustering of related sequences (e.g. SSU-ITS1) according to 100% identical subsequences. https://github.com/manfred-uni-essen/V9-cluster (2017).

    82.
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm v2: highly-scalable and high-resolution amplicon clustering. PeerJ 3, e1420. https://doi.org/10.7717/peerj.1420 (2015).
    Article  PubMed  PubMed Central  Google Scholar 

    83.
    R Core Team. R: A language and environment for statistical computing (2019).

    84.
    Hijmans, R. J. Spherical Trigonometry [R package geosphere version 1.5–10] (2019).

    85.
    Kruskal, W. H. & Wallis, W. A. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47, 583–621. https://doi.org/10.1080/01621459.1952.10483441 (1952).
    Article  MATH  Google Scholar 

    86.
    Dunn, O. J. Multiple comparisons among means. J. Am. Stat. Assoc. 56, 52–64. https://doi.org/10.1080/01621459.1961.10482090 (1961).
    MathSciNet  Article  MATH  Google Scholar  More