More stories

  • in

    Genetic basis of thiaminase I activity in a vertebrate, zebrafish Danio rerio

    Sequence analysisProtein sequence searches were conducted in the GenBank nr database with BLASTP42 using default parameters, including automatically adjusting parameters for short input sequences (Table S1). Conserved domain searches were run against the GenBank Conserved Domain Database (CDD)43. Sequence alignments were conducted in CLC Main Workbench 20.0.4 (Qiagen) with the fast alignment algorithm, gap open cost = 10, and gap extension cost = 1. Biochemical properties of the fish putative thiaminase I protein sequences were predicted with the Create Sequence Statistics function in CLC Main Workbench 20.0.4 (Qiagen, Hilden, Germany). The molecular weights were calculated from the sum of the amino acids in the sequence, and the isoelectric points (pIs) were calculated from the pKa values for the individual amino acids in the sequence.Bacteria culturePure cultures of P. thiaminolyticus strain 818822 were cultured at 37 °C in Terrific Broth (MO BIO Laboratories, Carlsbad, CA) in either a shaking incubator or in a beveled flask with a stir bar and were harvested after 48–80 h of culture. Upon harvest, cultures were processed immediately or frozen whole in 50 mL Falcon tubes at − 80 °C. Fresh or thawed cultures were spun at 14,000×g, and culture supernatant was concentrated using Amicon-ultra 10 kDa molecular weight cut-off (MWCO) filters (EMD Millipore, Billerica, MA).The zebrafish and alewife candidate thiaminase I genes were cloned and overexpressed in E. coli to determine whether they produced functional thiaminases. The recombinant thiaminase I gene from P. thiaminolyticus was overexpressed in E. coli as a positive control. Candidate and control genes were synthesized (Integrated DNA Technologies, Inc., Coralville, Iowa) and placed into the pET52b vector (EMD Millipore). Insert sequences are provided in Supplementary Figs. S10–S13. The empty pET52b vector was used as a negative control. The plasmid was transformed into E. coli (Rosetta 2(DE3)pLysS Singles Competent Cells, EMD Millipore) according to the manufacturer’s instructions, and expression of candidate genes was induced by the addition of IPTG. Cells were lysed in 1X BugBuster (Millipore) according to the manufacturer’s instructions in the presence of benzonase nuclease, and soluble and insoluble fractions were separated by centrifugation.Tissue collectionsAdult common carp were captured from Lake Erie using short-set gill nets. Adult alewife and quagga mussels (Dreissena bugensis) were collected from Sturgeon Bay, Lake Michigan using bottom trawls. Fish collections were completed during July 2007. Sex of sampled fish was not identified. Upon collection, unanesthetized animals were immediately euthanized by flash freezing between slabs of dry ice and stored at − 80 °C. Fish were harvested by the Great Lakes Science Center, U.S. Geological Survey (USGS). Laboratory use of frozen animal tissues and wild type and recombinant bacteria was in accordance with institutional guidelines and biosafety procedures at Oregon State University and USGS. Animal care and use procedures were approved by the Great Lakes Science Center, USGS. All USGS sampling and handling of fish during research are carried out in accordance with guidelines for the care and use of fishes by the American Fisheries Society44. All methods are reported in accordance with applicable ARRIVE guidelines (https://arriveguidelines.org). Zebrafish from OSU’s zebrafish facility were anesthetized and euthanized by overdose with waterborne 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) following protocols approved by the OSU Animal Institutional Care and Use Committee and were frozen at − 80 °C after euthanization. Gills, liver, spleen, and the intestinal tract were dissected, and gill tissue was homogenized separately from liver, spleen, and gut, which were homogenized together and designated “viscera.” Homogenization and protein preparation procedures were the same as that for alewife. Zebrafish from Columbia Environmental Research Center (CERC), USGS cultures were anesthetized and euthanized by overdose with 200 ppm ethyl 3-aminobenzoate methanesulfonate (MS-222, Sigma-Aldrich, St. Louis, MO) in water following protocols approved by CERC Institutional Animal Care and Use Committee (IACUC). Whole fish (0.2–0.6 g) were homogenized in 10 mL cold phosphate buffer, pH 6.5. Whole common carp and alewife were thawed until they could just be dissected. Preliminary trial extractions on alewife stomach and intestines, spleen, and gills revealed similar results and revealed that gills and spleen tissue produced the cleanest protein preparations. Therefore, subsequent extractions for common carp and alewife used gill tissue. Samples were pooled from 3 to 5 individual fish, haphazardly chosen from the sampled fish without exclusions. Quagga mussels were thawed just sufficiently to be husked from their shell and were used whole. Researchers were aware of the species and tissue designation of each sample throughout the experiments. Animal tissues were placed in ice-cold (4 °C) beakers containing cold extraction buffer (16 mM K3HPO4, 84 mM KH2PO4, 100 mM NaCl, pH 6.5 with 1 mM DTT, 2 mM EDTA, 3 mM Pepstatin, 1X Protease inhibitor cocktail (Sigma), and 1 mM AEBSF). All extractions were carried out at 4 °C in pre-chilled glassware. Samples were mechanically homogenized using a rotor–stator tissue grinder. Samples were stirred gently for several hours to overnight at 4 °C, centrifuged at 14,000×g to remove debris, and strained through cheesecloth to remove any insoluble lipids. Extracts were then subjected to 30–75% ammonium sulfate precipitation. Pellets from the precipitation were resuspended in buffer (83 mM KH2PO4, 17 mM K2HPO4, and 100 mM NaCl), centrifuged to remove any remaining debris, and stored in 30% glycerol at − 20 °C.Protein electrophoresisNative PAGE was run using either pre-cast TGX gels (BioRad, Hercules, California) of varying percentage (7.5% to 12% or 8–16% gradient gels) or on hand-cast gels (TGX FastCast, BioRad) made according to the manufacturer’s instructions.Blue-native PAGE was used to estimate the mass of thiaminases in their native conformation. Blue-native PAGE45 gels were run using the NativePage Novex Bis–Tris system (Life Technologies) or hand-cast equivalents46. Light blue cathode buffer was used to facilitate visualization of the activity stain.Standard denaturing SDS-PAGE was used to estimate the molecular mass of thiaminases after denaturation. Denaturing SDS-PAGE was run using one of three relatively equivalent methods: pre-cast TGX gels (BioRad) according to the manufacturer’s instructions, hand-cast Tris–HCl gels using standard Laemmli chemistry47 with an operating pH of approximately 9.5, or hand-cast Bis–Tris gels (MOPS buffer) with an operating pH of approximately 7. For all denaturing and non-denaturing SDS-PAGE applications, standard Laemmli sample buffer was used, and samples were heated to 75 °C for 15 min to facilitate denaturation followed by brief centrifugation to eliminate any precipitated debris.Non-denaturing PAGE was used as an alternative to denaturing PAGE for the common carp thiaminase that could not be renatured (i.e., activity could not be recovered) following a denaturing SDS-PAGE. Non-denaturing PAGE was conducted using any of the three aforementioned gel chemistries with SDS-containing running buffers including reductant (DTT), but samples were not heated prior to application to the gel. Samples for non-denaturing PAGE were allowed to incubate in sample buffer at room temperature for 30 min prior to gel loading. This preserves the charge-shift induced by SDS but does not result in protein denaturation, facilitating in-gel analysis of thiaminase I activity after separation.To visualize proteins following electrophoresis, gels were stained with Coomassie stain (CBR-250 at 1 g/L in methanol/acetic acid/water (4:5:1) and destained with methanol/acetic acid/water (1.7:1:11.5). Mini-gels were run on BioRad’s mini-protean gel rigs. Midi-gels (16 cm length) were run on Hoefer’s SE660, and large-format gels (32 cm length) were run on a BioRad’s Protean Slab Cell. Mini-gels were generally run at room temperature, and midi- and large-format gels were run at 4 °C. Blue-native PAGE was always run at 4 °C.Two-dimensional electrophoresis (2DE) separated proteins in the first dimension based on pI and in the second dimension based on mass (either native or denatured). 2DE was performed by combining in-gel IEF with either denaturing SDS-PAGE, non-denaturing SDS-PAGE, or native PAGE. IPG strips were incubated in TRIS-buffered equilibration solution48 either with 6 M urea, SDS, and iodacetamide (denaturing) or without urea, SDS, and iodacetamide (non-denaturing) for 20 min. Low melting point agarose was used to solidify IGP strips in place. Agarose was cooled to just above the gelling temperature, as hot agarose inactivated thiaminase I activity.Isoelectric focusingIsoelectric focusing (IEF) was conducted both in-gel and in-liquid. In-gel IEF was conducted in immobilized pH gradient (IPG) strips using a Multifor II (GE Healthcare Life Sciences). Prior to rehydration, all protein preparations were desalted in low-salt (~ 5 to 10 mM) sodium or potassium phosphate buffer (pH 6.5) using 10 kDA MWCO filters. All samples were applied using sample volumes and protein concentrations recommended by the manufacturer. For standard denaturing in-gel IEF, rehydration solution consisted of 8 M urea, 2% CHAPS, 2% IPG buffer of the appropriate pH-range, 1% bromophenol blue, and 18 mM DTT. The IEF was conducted at maximum of 2 mA total current and 5 W total power, with an EPS3500 XL power supply in gradient mode. Voltage gradients were based on standard protocols recommended by the manufacturer. In-gel IEF was also performed under native conditions to allow thiaminase I activity staining of IPG strips. Protocols were essentially the same as those for denaturing conditions, with the following exceptions: (1) urea was eliminated and the CHAPS concentration was reduced to 0.5% in the rehydration solution; (2) rehydration was conducted at 14 °C; and (3) the water in the cooling tray was cooled to 4 °C.In-liquid IEF was conducted using a Rotofor (BioRad) according to the manufacturer’s instructions. Non-denaturing in-liquid IEF was also conducted using a focusing solution including no urea, 2% pH 3–10 biolyte, 0.5% CHAPS, 20% glycerol, and 5 mM DTT. The addition of glycerol helped retain activity but also increased focusing times. The Rotofor was run at a constant 15 W with a maximum current of 20 mA and voltage set for a maximum of 2000 V. Samples containing 8 M urea were cooled to 14 °C during focusing to avoid urea precipitation, whereas samples lacking urea were cooled to 4 °C during focusing. Protein extracts in salt solutions greater than 10 mM were desalted directly in focusing solution using a 10 kDA MWCO filter. Focusing runs were allowed to proceed until the voltage stabilized and fractions were harvested with the needle array and vacuum pump. Ampholytes were removed by addition of NaCl to 1 M and then samples were desalted into phosphate buffer using a 10kD MWCO filter.Thiaminase I activity measurementsFor quantitative measurements of thiaminase I activity, we conducted a radiometric assay at CERC as previously described49. Zebrafish homogenates were diluted 1:8, 1:16, or 1:32 in cold phosphate buffer, pH 6.5. Two replicates per dilution were assayed. Activity was calculated from the greatest dilution that gave activity within the linear range of the assay and was reported as pmol thiamine consumed per g tissue (wet weight) per minute (pmol/g/min).Thiaminase I activity stainingAfter electrophoresis, gels were stained for thiaminase I activity using a previously described diazo-coupling reaction19,50. Briefly, gels were washed 3 times in water, twice in 25 mM sodium phosphate buffer with 1 mM DTT, and once in 25 mM sodium phosphate buffer without DTT. Gels were then incubated in 0.89 mM thiamine-HCl and co-substrate (1.45 mM pyridoxine, 24 mM nicotinic acid, or 20 mM pyridine) in 25 mM sodium phosphate buffer for 10 min. Gels were briefly rinsed in water and placed in a lidded container and incubated at 37 °C for 30 min to allow thiamine degradation by any thiaminases in the gel. The diazo stain19,50 was then applied to detect remaining thiamine in the gel for five minutes with gentle agitation. Stained gels were rinsed with water and photographed, and further stained with Coomassie to visualize proteins. More

  • in

    A comparative study of fifteen cover crop species for orchard soil management: water uptake, root density traits and soil aggregate stability

    Evapotranspiration measurements and above-ground biomassFigure 1 shows daily evapotranspiration (ET, mm day−1) of each CC tested before mowing (DOY, day of the year, 184) and at 2, 8, 17 and 25 days after mowing (DOY 190, 196, 205 and 213); bare soil was also included as a reference. Before mowing, ET rates showed significant differences between and within the three groups. CR plants had a mean ET of 8.1 mm day−1, which was lower, compared to the other two groups (10.6 and 18.6 mm day−1 for GR and LE, respectively) and the bare soil control (8.5 mm day−1). On DOY 184, values as high as 9.4 (Glechoma hederacea L., GH) and 9.8 mm day−1 (Trifolium subterraneum L. cv. Denmark, TS) were found (Fig. 1), while ranging around 7 mm day-1, Dichondra repens J.R.Forst. & G.Forst. (DR), Hieracium pilosella L. (HP), and Sagina subulata (Swartz) C. Presl (SS) ET were lower than soil evaporation itself.Figure 1Vertical bars represent the daily water use as referred to unit of soil (ET, mm day−1) for the bare soil (yellow) and all the cover crop species as divided into creeping plants (shades of blue), legumes (shades of green) and grasses (shades of orange). Evapotranspiration was measured though a gravimetric method before (i.e. − 4) and at 2, 8, 17 and 25 days after mowing. ET data are mean values ± SE (n = 4).Full size imageOn the same day, a large ET variation was recorded within the GR group as Festuca arundinacea Schreb. cv. Thor (FA) scored the highest daily ET values (13.4 mm day−1), whereas in Festuca ovina L. cv. Ridu (FO), water loss was reduced by 45% (7.5 mm day−1). Within the 15 CCs, LE registered the highest pre-mowing ET with Trifolium michelianum Savi cv. Bolta (TM) peaking at 22.6 mm day−1. However, within LE, Medicago polymorpha L. cv. Scimitar (MP) showed ET values as low as 12.1 mm day−1 (Fig. 1).Two days after mowing, all tested CCs recorded ET values lower than 9 mm day−1 (Fig. 1). Moreover, water use reduction among LE ranged between 56% (M. polymorpha, MP) and 73% (T. michelianum, TM), such that T. michelianum (TM, 6.1 mm day−1), Medicago truncatula Gaertn. cv. Paraggio (MT, 5.6 mm day−1) and M. polymorpha (MP, 5.2 mm day−1) registered ET values lower than the bare soil (7.0 mm day−1). Even though registering a consistent ET reduction after mowing, GR retained ET rates slightly higher than bare soil, except for F. ovina (FO), which recorded the lowest at 6.3 mm day−1. Subsequent samplings showed that most of the CCs had a progressive recovery in water use (Fig. 1) and data taken 17 days after mowing confirmed that Lotus corniculatus L. cv. Leo (LC) and all GR fetched pre-mowing ET rates. Medicago lupulina L. cv. Virgo (ML) registered a partial recovery with similar rates (about 13 mm day−1) at 17 and 25 days after the mowing event. F. ovina and all remaining LE stayed below 10 mm day−1 with ET values close to the control until the end of the trial. At 17 days from grass cutting, under a quite high exceeding-the-pot biomass, both G. hederacea (GH) and T. subterraneum (TS) reached ET values as high as 12.0 and 11.4 mm day−1, respectively. On the other hand, D. repens (DR), H. pilosella (HP), and S. subulata (SS) even though with slightly higher ET values than those registered at the beginning of the trial (DOY 184), remained close to the soil evaporation rates until DOY 213.Aboveground dry clipped biomass at the first mowing date (ADW_MW1, DOY 188) showed large differences among groups, as represented in Table 1. ADW_MW1 within LE was quite variable, as values ranged between 274.3 g m−2 (M. polymorpha, MP) and 750.0 g m−2 (T. michelianum, TM). With a mean value of 565.9 g m−2, LE aboveground biomass was 80% higher than the mean GR ADW_MW1 (110.2 g m-2). F. ovina (FO) scored the lowest value at 48.4 g m−2 among grasses, while within the creeping group, G. hederacea (GH) and T. subterraneum (TS) had biomass development outside the pot edges totalling 89.6 g m−2 and 23.2 g m−2, respectively.Table 1 Aboveground dry biomass clipped at the first mowing event (ADW _MW1), the corresponding leaf area surface index (LAI) and water use per leaf area unit (ETLEAF) of all cover crops tested.Full size tableLeaf area index (LAI, m2 m−2) at mowing showed the highest values in LE with LAI peaking at 12.4 (Table 1). Among GR, LAI did not show significant differences, being around 1.2. Concerning CR, LAI was assessed at 0.2 and 0.8 for T. subterraneum (TS) and G. hederacea (GH) respectively, while LAI estimated through photo analysis ranged between 1.3 (D. repens, DR) and 3.6 (T. subterraneum TS).Evapotranspiration per leaf area unit (ETLEAF) was notably higher in GR, ranging between 7.75 (F. ovina, FO) and 9.22 (Lolium perenne L. cv. Playfast, LP) mm m−2 day−1 (Table 1). In descending order, ETLEAF was the highest in D. repens (DR, 5.46 mm m−2 day−1). Similar ETLEAF was found when comparing some LE and CR species such as M. truncatula (MT, 3.40 mm m−2 day−1), M. lupulina (ML, 4.05 mm m−2 day−1), G. hederacea (GH, 3.68 mm m−2 day−1), H. pilosella (HP, 3.86 mm m-2 day-1) and T. subterraneum (TS, 2.74 mm m−2 day−1). T. michelianum (TM), with 1.81 mm m-2 day-1 scored the lowest ETLEAF of all species (Table 1).Plotting LAI versus the before-mowing ET yielded a significant quadratic relationship (R2  > 0.76) (Fig. 2a) which helped to distinguish two different data clouds. Till LAI values of about 6, the model was linear, having at its lower end all GR and CR species with the inclusion of M. polymorpha (MP) as a legume, while, at the other end, M. truncatula (MT), L. corniculatus (LC) and M. lupulina (ML) were grouped together. T. michelianum (TM) was isolated from all CCs at 22.56 mm day−1.Figure 2Panel (a): quadratic regression of leaf area index (LAI, m2 m−2) vs cover crop evapotranspiration per unit of soil (ET, mm day−1). Each data point is mean value ± SE (n = 4). The quadratic model equation is y = − 0.128×2 + 2.9968x + 5.4716, R2 = 0.76. Panel (b): the quadratic regression between LAI corresponding to the clipped biomass (m2 m−2) and cover crop ET reduction (%). Each data point is mean value ± SE (n = 4). Quadratic model equation is y = − 0.8985×2 + 16.503x + 5.1491, R2 = 0.94.Full size imageWhen regressing the fraction of ET reduction, compared to pre-mowing values vs LAI (Fig. 2b), the same quadratic model achieved a very close fit (R2 = 0.94, p  1 mm) root diameters as affected by soil cover.Full size tableThe highest values of diameter class length (DCL, mm cm−3) for very fine roots (DCL_VF,  1.0 mm) roots although, most notably, L. corniculatus roots showed the highest abundance for both DCL_M (23.08 cm cm−3) and DCL_C (0.54 cm cm−3).At the 10–20 cm soil depth, GR confirmed the highest values for both very fine and fine roots, with F. arundinacea reaching maximum DCL of 2.269 and 5.215 cm cm-3, respectively (Table 2). L. corniculatus largely outscored any other species for both medium and coarse root diameter (6.173 and 0.037 cm cm−3, respectively), with F. arundinacea ranking second (3.157 and 0.016 cm cm−3, respectively).The highest root dry weight (RDW, mg cm-3) within the topsoil layer was reached by L. corniculatus (8.7 mg cm−3) and F. arundinacea (7.6 mg cm-3). Notably, such values were significantly higher than those recorded on the remaining species, except for the F. arundinacea vs F. rubra commutata comparison (Table 2). At 10–20 depth, scant variation was recorded in RDW measured in grasses, whereas L. corniculatus held its supremacy within legumes (4.5 mg cm−3). Within the creeping type, D. repens (DR) and G. hederacea (GH) scored RDW values as high as those determined for grass species (namely F. arundinacea , P. pratensis and F. rubra commutata), whereas S. subulata (SS) essentially had no root development.Soil aggregates and mean weight diameter (MWD)Table 3 reports the proportional aggregate weight (g kg−1) for both 0–10 and 10–20 cm soil depths. Compared to bare soil, the largest increase in large macroaggregates (LM,  > 2000 µm) in the top 10 cm of soil was achieved by L. corniculatus with 461 g kg−1. L. corniculatus differed from the rest of the LE group, whose grand mean (90 g kg−1) was the lowest of the three tested groups. As a legume, T. subterraneum (TS, 122 g kg−1) recorded the lowest values compared to fellow CR species, ranging between 211 (D. repens, DR) and 316 g kg−1 (G. hederacea, GH). GR recorded LM values slightly lower than those of CR, with a mean value of 217 vs 224 g kg-1.Table 3 Proportional aggregate weight (g kg−1) of sand-free aggregate-size fractions acquired from wet sieving as affected by soil cover and mean weight diameter (MWD). Aggregate-size fraction divided as macroaggregates with large size ( > 2 mm, LM) and small size (2 mm—250 μm, sM), microaggregates (250 μm—53 μm, m), and silt and clay ( More

  • in

    Global patterns of climate change impacts on desert bird communities

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Chen, I.-C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Bowler, D. E. et al. Cross-realm assessment of climate change impacts on species’ abundance trends. Nat. Ecol. Evol. 1, 1–7 (2017).Article 

    Google Scholar 
    Barrett, J. E. et al. Persistent effects of a discrete warming event on a polar desert ecosystem. Glob. Change Biol. 14, 2249–2261 (2008).Article 
    ADS 

    Google Scholar 
    Gooseff, M. N. et al. Decadal ecosystem response to an anomalous melt season in a polar desert in Antarctica. Nat. Ecol. Evol. 1, 1334–1338 (2017).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. In transition: Avian biogeographic responses to a century of climate change across desert biomes. Glob. Change Biol. 26, 3268–3284 (2020).Article 
    ADS 

    Google Scholar 
    Conradie, S. R., Woodborne, S. M., Cunningham, S. J. & McKechnie, A. E. Chronic, sublethal effects of high temperatures will cause severe declines in southern African arid-zone birds during the 21st century. Proc. Natl Acad. Sci. USA 116, 14065–14070 (2019).Article 
    ADS 
    CAS 

    Google Scholar 
    du Plessis, K. L., Martin, R. O., Hockey, P. A. R., Cunningham, S. J. & Ridley, A. R. The costs of keeping cool in a warming world: implications of high temperatures for foraging, thermoregulation and body condition of an arid-zone bird. Glob. Change Biol. 18, 3063–3070 (2012).Article 
    ADS 

    Google Scholar 
    Ward, D. The Biology of Deserts (OUP Oxford, 2016).Reid, V. W. et al. Millennium Ecosystem Assessment, 2005. In Ecosystems and Human Well-being: Synthesis (Island Press, 2005).Zhou, L., Chen, H. & Dai, Y. Stronger warming amplification over drier ecoregions observed since 1979. Environ. Res. Lett. 10, 064012 (2015).Article 
    ADS 

    Google Scholar 
    Hoegh-Guldberg, O. et al. 2018: Impacts of 1.5ºC Global Warming on Natural and Human Systems. In: Global Warming of 1.5°C. An IPCC Special Report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty (eds Masson-Delmotte, V. et al.) Cambridge University Press, Cambridge, UK and New York, NY, USA, pp. 175-312, https://doi.org/10.1017/9781009157940.005.Albright, T. P. et al. Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc. Natl Acad. Sci. USA 114, 2283–2288 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Friedrich, T., Timmermann, A., Tigchelaar, M., Timm, O. E. & Ganopolski, A. Nonlinear climate sensitivity and its implications for future greenhouse warming. Sci. Adv. 2, e1501923 (2016).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR—an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Huey, R. B. et al. Predicting organismal vulnerability to climate warming: roles of behaviour, physiology and adaptation. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367, 1665–1679 (2012).Article 

    Google Scholar 
    Kearney, M. & Porter, W. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350 (2009).Article 

    Google Scholar 
    Bicudo, J. E. P., Buttemer, W. A., Chappell, M. A., Pearson, J. T. & Bech, C. Ecological and Environmental Physiology of Birds Vol. 2 (Oxford University Press, 2010).McKechnie, A. E. & Wolf, B. O. Climate change increases the likelihood of catastrophic avian mortality events during extreme heat waves. Biol. Lett. 6, 253–256 (2010).Article 

    Google Scholar 
    Riddell, E. A. et al. Exposure to climate change drives stability or collapse of desert mammal and bird communities. Science 371, 633–636 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Williams, J. B. & Tieleman, B. I. Physiological adaptation in desert birds. BioScience 55, 416–425 (2005).Article 

    Google Scholar 
    Iknayan, K. J. & Beissinger, S. R. Collapse of a desert bird community over the past century driven by climate change. Proc. Natl Acad. Sci. USA 115, 8597–8602 (2018).Article 
    ADS 
    CAS 

    Google Scholar 
    Albright, T. P. et al. Combined effects of heat waves and droughts on avian communities across the conterminous United States. Ecosphere 1, art12 (2010).Article 

    Google Scholar 
    Cruz-McDonnell, K. K. & Wolf, B. O. Rapid warming and drought negatively impact population size and reproductive dynamics of an avian predator in the arid southwest. Glob. Change Biol. 22, 237–253 (2016).Article 
    ADS 

    Google Scholar 
    Dawson, W. R. Temperature Regulation and Water Requirements of the Brown and Abert Towhees, Pipilo Fuscus and Pipilo Aberti.[With Plates.] (University of California Press, 1954).Riddell, E. A., Iknayan, K. J., Wolf, B. O., Sinervo, B. & Beissinger, S. R. Cooling requirements fueled the collapse of a desert bird community from climate change. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1908791116 (2019).Wolf, B. Global warming and avian occupancy of hot deserts; a physiological and behavioral perspective. Rev. Chil. Hist. Nat. 73, 395–400 (2000).Article 

    Google Scholar 
    Kier, G. et al. A global assessment of endemism and species richness across island and mainland regions. Proc. Natl Acad. Sci. USA 106, 9322–9327 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Ioffe, S. Improved consistent sampling, weighted Minhash and L1 sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining 246–255 (IEEE Computer Society, 2010).Losos, E., Hayes, J., Phillips, A., Wilcove, D. & Alkire, C. Taxpayer-subsidized resource extraction harms species. BioScience 45, 446–455 (1995).Article 

    Google Scholar 
    Rodríguez-Estrella, R. Land use changes affect distributional patterns of desert birds in the Baja California peninsula, Mexico. Divers. Distrib. 13, 877–889 (2007).Article 

    Google Scholar 
    Stralberg, D. et al. Climate-change refugia in boreal North America: what, where, and for how long? Front. Ecol. Environ. 18, 261–270 (2020).Article 

    Google Scholar 
    Hinkel, J. et al. Sea-level rise scenarios and coastal risk management. Nat. Clim. Change 5, 188–190 (2015).Article 
    ADS 

    Google Scholar 
    He, Q. & Silliman, B. R. Climate change, human impacts, and coastal ecosystems in the anthropocene. Curr. Biol. 29, R1021–R1035 (2019).Article 
    CAS 

    Google Scholar 
    C. B. D. Zero Draft of the Post-2020 Global Biodiversity Framework CBD/WG2020/2/3. https://www.cbd.int/doc/c/efb0/1f84/a892b98d2982a829962b6371/wg2020-02-03-en.pdf Convention on Biology Diversity, Montreal, Canada (2020).Jung, M. et al. A global map of terrestrial habitat types. Sci. Data 7, 256 (2020).Article 

    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Meigs, P. World distributions of arid and semi-arid homoclimates. In Review of Research on Arid Zone Hydrology (UNESCO, 1953).Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).Article 

    Google Scholar 
    Qin, Y. et al. Agricultural risks from changing snowmelt. Nat. Clim. Change 10, 459–465 (2020).Article 
    ADS 

    Google Scholar 
    Kearney, M. R. & Porter, W. P. NicheMapR – an R package for biophysical modelling: the microclimate model. Ecography 40, 664–674 (2017).Article 

    Google Scholar 
    Pattinson, N. B. et al. Heat dissipation behaviour of birds in seasonally hot arid-zones: are there global patterns? J. Avian Biol. 51, e02350 (2020).Smith, E. K., O’Neill, J., Gerson, A. R. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert doves and quail. J. Exp. Biol. 218, 3636–3646 (2015).Article 

    Google Scholar 
    Smith, E. K., O’Neill, J. J., Gerson, A. R., McKechnie, A. E. & Wolf, B. O. Avian thermoregulation in the heat: resting metabolism, evaporative cooling and heat tolerance in Sonoran Desert songbirds. J. Exp. Biol. 220, 3290–3300 (2017).
    Google Scholar 
    Kearney, M. NicheMapR: R implementation of Niche Mapper software for biophysical modelling. https://github.com/mrke/NicheMapR. (2020).Cunningham, S. J., Martin, R. O. & Hockey, P. A. Can behaviour buffer the impacts of climate change on an arid-zone bird? Ostrich 86, 119–126 (2015).Article 

    Google Scholar 
    Czenze, Z. J. et al. Regularly drinking desert birds have greater evaporative cooling capacity and higher heat tolerance limits than non-drinking species. Funct. Ecol. 34, 1589–1600 (2020).Article 

    Google Scholar 
    Smit, B. et al. Avian thermoregulation in the heat: phylogenetic variation among avian orders in evaporative cooling capacity and heat tolerance. J. Exp. Biol. 221, jeb174870 (2018).Worcester, S. E. The scaling of the size and stiffness of primary flight feathers. J. Zool. 239, 609–624 (1996).Article 

    Google Scholar 
    Wang, X., Nudds, R. L., Palmer, C. & Dyke, G. J. Size scaling and stiffness of avian primary feathers: implications for the flight of Mesozoic birds. J. Evol. Biol. 25, 547–555 (2012).Article 
    CAS 

    Google Scholar 
    McKechnie, A. E., Gerson, A. R. & Wolf, B. O. Thermoregulation in desert birds: scaling and phylogenetic variation in heat tolerance and evaporative cooling. J. Exp. Biol. 224, jeb229211 (2021).Flint, L. E., Flint, A. L., Thorne, J. H. & Boynton, R. Fine-scale hydrologic modeling for regional landscape applications: the California Basin Characterization Model development and performance. Ecol. Process. 2, 25 (2013).Article 

    Google Scholar 
    Handbook of the Birds of the World and BirdLife International. Handbook of the Birds of the World and BirdLife International digital checklist of the birds of the world. Version 5. http://datazone.birdlife.org/userfiles/file/Species/Taxonomy/HBW-BirdLife_Checklist_v5_Dec20.zip (2020).Brooks, T. M. et al. Measuring terrestrial Area of Habitat (AOH) and its utility for the IUCN red list. Trends Ecol. Evol. 34, 977–986 (2019).Article 

    Google Scholar 
    Pastore, M. Overlapping: a R package for estimating overlapping in empirical distributions. J. Open Source Softw. 3, 1023 (2018).Article 
    ADS 

    Google Scholar 
    UNEP-WCMC and IUCN, Protected Planet: The World Database on Protected Areas (WDPA) [Online], June 2021, Cambridge, UK: UNEP-WCMC and IUCN www.protectedplanet.net (2021).Butchart, S. H. M. et al. Shortfalls and solutions for meeting national and global conservation area targets. Conserv. Lett. 8, 329–337 (2015).Article 

    Google Scholar 
    Dudley, N. Guidelines for Applying Protected Area Management Categories (ICUN, 2008).Mangiafico, S. rcompanion: Functions to Support Extension Education Program Evaluation. https://CRAN.R-project.org/package=rcompanion. (2021).Crawford, C. L., Estes, L. D., Searchinger, T. D. & Wilcove, D. S. Consequences of underexplored variation in biodiversity indices used for land-use prioritization. Ecol. Appl. 31, e02396 (2021).Article 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020). More

  • in

    Similar adaptative mechanism but divergent demographic history of four sympatric desert rodents in Eurasian inland

    Species distribution modeling, spatial climate segregation and niche widthTo explore the selective regimes of the four species on external environmental factors, we first constructed species distribution modeling (SDM). We obtained a dataset including 22 environmental factors represented by climate, relief, and vegetation variables from 620 localities for DS, 1028 localities for OS, 581 localities for MM and 332 localities for PR, covering most of the species’ distribution ranges (Supplementary Fig. 1). The distribution areas of the four species overlapped widely. The contributions of environmental factors to SDMs showed similarities among the four species. The summer NDVI made important contributions for DS (41.0), OS (44.8), MM (32.5) and PR (8.1), and sand cover contributed significantly to PR (72.7) and DS (16.0) (Fig. 1c). Then, we assessed which set of environmental variables was most closely associated with species distribution via principal component analysis. The bioclimatic space occupied by the four species revealed a large overlap (Fig. 1d), which was consistent with SDM (Supplementary Fig. 1). The distribution of OS was more closely associated with higher-precipitation areas, whereas MM seemed to prefer areas with higher temperatures. Finally, we evaluated the macrohabitat niche breadth of each species. The breadths of environmental space occupation were similar for DS (0.527), MM (0.571), and PR (0.548) and slightly higher for OS (0.622), which suggests that niche selection among the four species is partially overlapping. In total, the four species are mostly similar in the selection of external environmental factors.High-quality genomic landscapes of the four desert rodentsTo investigate the genetic mechanism for desert adaptation of the four sympatric desert rodents, we generated four high-quality de novo genomes (Supplementary Fig. 2). The DS was sequenced using a combined strategy and generated 377.67 Gb of data from Illumina reads, 261.01 Gb from PacBio long reads, 299.51 Gb from 10X Genomics reads, and 389.13 Gb from Hi-C reads (Supplementary Table 1). The final genome size was 2.81 Gb with contig N50 of 31.41 Mb and ~472X mean coverage (Table 1, Supplementary Fig. 3, and Supplementary Tables 2, 3). The contigs for DS were further assembled into pseudochromosomes with lengths on the order of full chromosomes and a scaffold N50 size of 147.24 Mb (Fig. 2a, b, Table 1, and Supplementary Fig. 4). The OS, MM and PR were sequenced using the same hybrid strategy and generated 162.58 Gb, 172.22 Gb, and 214.34 Gb Illumina reads and 183.09 Gb, 161.34 Gb, and 186.45 Gb Oxford Nanopore Technologies long reads, respectively (Supplementary Table 1). The final assembly of OS, MM and PR was 2.83 Gb, 2.43 Gb, and 2.16 Gb with contig N50 of 25.87 Mb, 24.08 Mb, and 42.68 Mb, respectively (Table 1, Supplementary Fig. 4, and Supplementary Tables 2, 3).Table 1 Genome assembly statistics of the four desert rodents.Full size tableFig. 2: High-quality assembly of Dipus sagitta genome and genomic elements of the four sequenced desert rodents.a Hi-C heat map of Dipus sagitta genome assembly. b CIRCOS plot showing the distribution of GC content, transposable elements (TE), and coding sequences (CDS) in the D. sagitta genome. c Orthologous coding sequences composition inferred for thirteen rodents’ genomes. Mcar Mus caroli, Mmus Mus musculus, Mpah Mus Pahari, Mmer Meriones meridianus, Mung Meriones unguiculatus, Cgri Cricetulus griseus, Prob Phodopus roborovskii, Sgal Spalax galili, Osib Orientallactaga sibirica, Dsag Dipus sagitta, Jjac Jaculus jaculus, Hgla Heterocephalus glaber, Cpor Cavia porcellus. d Proportion of transposable elements (TEs). The barplots show the proportions of different types of TEs in corresponding species on the phylogenetic tree.Full size imageAnalyses of the four draft genomes showed that 92.9–95.9% of mammalian BUSCOs were complete, and the GC content was 41.38–42.16% (Table 1 and Supplementary Table 3). Whole-genome annotation was performed via three complementary methods: ab initio prediction, homology-based prediction and RNA-seq based prediction. A total of 23,482, 22,859, 22,533, and 22,314 protein-coding genes were annotated for DS, OS, MM, and PR, respectively (Fig. 2c, Supplementary Fig. 5, Supplementary Table 4). Approximately 98.8–99.1% of genes were functionally annotated for the four species (Supplementary Table 4). Transposable elements (TEs) accounted for 31.38–53.02% of genome assemblies, which predominantly consisted of long-terminal repeats (LTRs), long interspersed nuclear elements (LINEs) and other unknown TEs (Fig. 2d). DS and OS displayed significant LTR expansion of 47.39% and 50.88% in four sequenced genomes, while MM showed an unexpectedly high LINE expansion of 28.99% and sharp LTR contraction to 9.38% (Supplementary Table 5).Phylogenetic relationship and evolutionary historyUsing 5,102 single-copy orthologous groups, we constructed a high-confidence phylogenetic tree using the maximum-likelihood algorithm, including time calibrations based on fossil records and previous studies (Figs. 1b, 2c)22. The phylogenetic tree strongly supported nodes uniting the subfamilies Murinae and Gerbillinae, which together represented the family Muridae (Supplementary Fig. 6). This group was sister to a clade containing cricetids. Spalacidae was recovered as the earliest divergent lineage from Muridae and Cricetidae in the superfamily Muroidea. The split of the most recent common ancestor of Dipodoidea and Muroidea dated to ~56.5 Mya (Fig. 1b, Supplementary Fig. 7). In the Miocene epoch (23 Mya–5.3 Mya), accelerated global geotectonic movement aggravated global climate drying and cooling23. Geological disruptions that modified landscapes and offered new habitats favored the early adaptive radiation of extant desert rodents. The ancestors of four sequenced species emerged separately during this period (Supplementary Note 1). Our phylogenetic tree is consistent with previous evolutionary research on rodents22 and supports the independent evolution of desert adaptations in Jerboas, Gerbils and Hamsters.Expanded and contracted gene familiesComparative genomic analysis revealed 23/32, 4/22, 39/73, and 22/83 gene families exhibiting significant expansion/contraction in the genomes of DS, OS, MM, and PR, respectively (Fig. 1b and Supplementary Fig. 8). Genes belonging to the expanded/contracted families were functionally enriched (Fisher Exact  More

  • in

    Temperature fluctuation promotes the thermal adaptation of soil microbial respiration

    Auffret, M. D. et al. The role of microbial community composition in controlling soil respiration responses to temperature. PLoS ONE 11, e0165448 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Y. et al. A data-driven global soil heterotrophic respiration dataset and the drivers of its inter‐annual variability. Glob. Biogeochem. Cycle 35, e2020GB006918 (2021).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Janssens, I. A. & Luo, Y. On the variability of respiration in terrestrial ecosystems: moving beyond Q10. Glob. Change Biol. 12, 154–164 (2006).Article 

    Google Scholar 
    Wang, Q. et al. Soil microbial respiration rate and temperature sensitivity along a north–south forest transect in eastern China: patterns and influencing factors. J. Geophys. Res. Biogeosci. 121, 399–410 (2016).Article 

    Google Scholar 
    Sihi, D. et al. Merging a mechanistic enzymatic model of soil heterotrophic respiration into an ecosystem model in two AmeriFlux sites of northeastern USA. Agric. Meteorol. 252, 155–166 (2018).Article 

    Google Scholar 
    Shao, P., Zeng, X., Moore, D. J. P. & Zeng, X. Soil microbial respiration from observations and Earth system models. Environ. Res. Lett. 8, 034034 (2013).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Samanta, S., Caramori, S. S. & Savage, K. The dual Arrhenius and Michaelis–Menten kinetics model for decomposition of soil organic matter at hourly to seasonal time scales. Glob. Change Biol. 18, 371–384 (2012).Article 

    Google Scholar 
    Oechel, W. C. et al. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature 406, 978–981 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Alster, C. J., von Fischer, J. C., Allison, S. D. & Treseder, K. K. Embracing a new paradigm for temperature sensitivity of soil microbes. Glob. Change Biol. 26, 3221–3229 (2020).Article 

    Google Scholar 
    Nie, M. et al. Positive climate feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett. 16, 234–241 (2013).Article 
    PubMed 

    Google Scholar 
    Ji, F., Wu, Z., Huang, J. & Chassignet, E. P. Evolution of land surface air temperature trend. Nat. Clim. Change 4, 462–466 (2014).Article 

    Google Scholar 
    Huntingford, C., Jones, P. D., Livina, V. N., Lenton, T. M. & Cox, P. M. No increase in global temperature variability despite changing regional patterns. Nature 500, 327–330 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J., Sato, M. & Ruedy, R. Perception of climate change. Proc. Natl Acad. Sci. USA 109, E2415–E2423 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Byrne, M. P. Amplified warming of extreme temperatures over tropical land. Nat. Geosci. 14, 837–841 (2021).Article 
    CAS 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Chan, W. P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Biederbeck, V. O. & Campbell, C. A. Soil microbial activity as influenced by temperature trends and fluctuations. Can. J. Soil Sci. 53, 363–375 (1973).Article 

    Google Scholar 
    Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chen, H., Zhu, T., Li, B., Fang, C. & Nie, M. The thermal response of soil microbial methanogenesis decreases in magnitude with changing temperature. Nat. Commun. 11, 5733 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allison, S. D., Wallenstein, M. D. & Bradford, M. A. Soil-carbon response to warming dependent on microbial physiology. Nat. Geosci. 3, 336–340 (2010).Article 
    CAS 

    Google Scholar 
    Nottingham, A. T. et al. Microbial responses to warming enhance soil carbon loss following translocation across a tropical forest elevation gradient. Ecol. Lett. 22, 1889–1899 (2019).Article 
    PubMed 

    Google Scholar 
    Alster, C. J., Robinson, J. M., Arcus, V. L. & Schipper, L. A. Assessing thermal acclimation of soil microbial respiration using macromolecular rate theory. Biogeochemistry 158, 131–141 (2022).Article 
    CAS 

    Google Scholar 
    Moinet, G. Y. K. et al. Soil microbial sensitivity to temperature remains unchanged despite community compositional shifts along geothermal gradients. Glob. Change Biol. 27, 6217–6231 (2021).Article 

    Google Scholar 
    Feng, J. et al. Soil microbial trait-based strategies drive metabolic efficiency along an altitude gradient. ISME Commun. 1, 71 (2021).Article 

    Google Scholar 
    Li, J. et al. Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Sci. Bull. 66, 2036–2044 (2021).Article 
    CAS 

    Google Scholar 
    Trivedi, P. et al. Microbial regulation of the soil carbon cycle: evidence from gene–enzyme relationships. ISME J. 10, 2593–2604 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, B. & Cheng, W. Constant and diurnally-varying temperature regimes lead to different temperature sensitivities of soil organic carbon decomposition. Soil Biol. Biochem. 43, 866–869 (2011).Article 
    CAS 

    Google Scholar 
    Bradford, M. A. et al. Thermal adaptation of soil microbial respiration to elevated temperature. Ecol. Lett. 11, 1316–1327 (2008).Article 
    PubMed 

    Google Scholar 
    Hartley, I. P., Hopkins, D. W., Garnett, M. H., Sommerkorn, M. & Wookey, P. A. Soil microbial respiration in Arctic soil does not acclimate to temperature. Ecol. Lett. 11, 1092–1100 (2008).Article 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Cross-biome patterns in soil microbial respiration predictable from evolutionary theory on thermal adaptation. Nat. Ecol. Evol. 3, 223–231 (2019).Article 
    PubMed 

    Google Scholar 
    Tian, W. et al. Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Glob. Change Biol. 28, 2820–2829 (2022).Article 
    CAS 

    Google Scholar 
    Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).Article 

    Google Scholar 
    Walker, T. W. N. et al. Microbial temperature sensitivity and biomass change explain soil carbon loss with warming. Nat. Clim. Change 8, 885–889 (2018).Article 
    CAS 

    Google Scholar 
    Chen, H. et al. Microbial respiratory thermal adaptation is regulated by r-/K-strategy dominance. Ecol. Lett. 25, 2489–2499 (2022).Article 
    PubMed 

    Google Scholar 
    Wang, C. et al. The temperature sensitivity of soil: microbial biodiversity, growth, and carbon mineralization. ISME J. 15, 2738–2747 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramadhin, C., Yi, C. & Hendrey, G. Temperature variance portends and indicates the extent of abrupt climate shifts. IOP SciNotes 2, 014002 (2021).Article 

    Google Scholar 
    Sun, Y. Q. & Ge, Y. Temporal changes in the function of bacterial assemblages associated with decomposing earthworms. Front. Microbiol. 12, 682224 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, Z., Xu, J., Li, X., Li, R. & Li, Q. Links of extracellular enzyme activities, microbial metabolism, and community composition in the river-impacted coastal waters. J. Geophys. Res. Biogeosci. 124, 3507–3520 (2019).Article 

    Google Scholar 
    Razanamalala, K. et al. Soil microbial diversity drives the priming effect along climate gradients: a case study in Madagascar. ISME J. 12, 451–462 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, M. et al. High microbial diversity stabilizes the responses of soil organic carbon decomposition to warming in the subsoil on the Tibetan Plateau. Glob. Change Biol. 27, 2061–2075 (2021).Article 
    CAS 

    Google Scholar 
    Clemmensen, K. E. et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science 339, 1615–1618 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Qiao, N. et al. Labile carbon retention compensates for CO2 released by priming in forest soils. Glob. Change Biol. 20, 1943–1954 (2014).Article 

    Google Scholar 
    Ning, Q. et al. Carbon limitation overrides acidification in mediating soil microbial activity to nitrogen enrichment in a temperate grassland. Glob. Change Biol. 27, 5976–5988 (2021).Article 
    CAS 

    Google Scholar 
    Wan, S. & Luo, Y. Substrate regulation of soil respiration in a tallgrass prairie: results of a clipping and shading experiment. Glob. Biogeochem. Cycle 17, 1054 (2003).Article 

    Google Scholar 
    Gillabel, J., Cebrian-Lopez, B., Six, J. & Merckx, R. Experimental evidence for the attenuating effect of SOM protection on temperature sensitivity of SOM decomposition. Glob. Change Biol. 16, 2789–2798 (2010).Article 

    Google Scholar 
    Xia, J. et al. Terrestrial carbon cycle affected by non-uniform climate warming. Nat. Geosci. 7, 173–180 (2014).Article 
    CAS 

    Google Scholar 
    Balesdent, J. et al. Atmosphere–soil carbon transfer as a function of soil depth. Nature 559, 599–602 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Howard, D. M. & Howard, P. J. A. Relationships between CO2 evolution, moisture-content and temperature for a range of soil types. Soil Biol. Biochem. 25, 1537–1546 (1993).Article 

    Google Scholar 
    Hoyle, F. C., Murphy, D. V. & Brookes, P. C. Microbial response to the addition of glucose in low-fertility soils. Biol. Fertil. Soils 44, 571–579 (2008).Article 
    CAS 

    Google Scholar 
    Mau, R. L. et al. Linking soil bacterial biodiversity and soil carbon stability. ISME J. 9, 1477–1480 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tucker, C. L., Bell, J., Pendall, E. & Ogle, K. Does declining carbon-use efficiency explain thermal acclimation of soil respiration with warming? Glob. Change Biol. 19, 252–263 (2013).Article 

    Google Scholar 
    Billings, S. A. & Ballantyne, F. T. How interactions between microbial resource demands, soil organic matter stoichiometry, and substrate reactivity determine the direction and magnitude of soil respiratory responses to warming. Glob. Change Biol. 19, 90–102 (2013).Article 

    Google Scholar 
    Li, J. et al. Biogeographic variation in temperature sensitivity of decomposition in forest soils. Glob. Change Biol. 26, 1873–1885 (2020).Article 

    Google Scholar 
    Min, K. et al. Temperature sensitivity of biomass-specific microbial exo-enzyme activities and CO2 efflux is resistant to change across short- and long-term timescales. Glob. Change Biol. 5, 1793–1807 (2019).Article 

    Google Scholar 
    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & Garcia-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Field-Fote, E. E. Mediators and moderators, confounders and covariates: exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. J. Neurol. Phys. Ther. 43, 83–84 (2019).Article 
    PubMed 

    Google Scholar 
    Anderson, T. H. & Domsch, K. H. Soil microbial biomass: the eco-physiological approach. Soil Biol. Biochem. 12, 2039–2043 (2010).Article 

    Google Scholar 
    Vance, E. D., Brookes, P. C. & Jenkinson, D. S. Microbial biomass measurements in forest soils—the use of the chloroform fumigation incubation method in strongly acid soils. Soil Biol. Biochem. 19, 697–702 (1987).Article 
    CAS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).Article 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Koljalg, U. et al. UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. N. Phytol. 166, 1063–1068 (2005).Article 
    CAS 

    Google Scholar 
    German, D. P. et al. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43, 1387–1397 (2011).Article 
    CAS 

    Google Scholar 
    Mazerolle, M. Improving data analysis in herpetology: using Akaike’s information criterion (AIC) to assess the strength of biological hypotheses. Amphib. Reptil. 2, 169–180 (2006).Article 

    Google Scholar 
    Moinet, G. Y. K. et al. Temperature sensitivity of decomposition decreases with increasing soil organic matter stability. Sci. Total Environ. 704, 135460 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Moinet, G. Y. K. et al. The temperature sensitivity of soil organic matter decomposition is constrained by microbial access to substrates. Soil Biol. Biochem. 116, 333–339 (2018).Article 
    CAS 

    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).Article 

    Google Scholar  More

  • in

    Primates facing climate crisis in a tropical forest hotspot will lose climatic suitable geographical range

    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).Article 
    ADS 
    CAS 

    Google Scholar 
    Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334(6056), 660–664 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Scheffers, B. R. et al. The broad footprint of climate change from genes to biomes to people. Science https://doi.org/10.1126/science.aaf7671 (2016).Article 

    Google Scholar 
    Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to quaternary climate change. Science 292(5517), 673–679 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Lane, J. E., Kruuk, L. E. B., Charmantier, A., Murie, J. O. & Dobson, F. S. Delayed phenology and reduced fitness associated with climate change in a wild hibernator. Nature 489, 554–557 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Pecl, G. T. et al. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science https://doi.org/10.1126/science.aai9214 (2017).Article 

    Google Scholar 
    Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: Biodiversity conservation in a changing climate. Science https://doi.org/10.1126/science.1200303 (2011).Article 

    Google Scholar 
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Change 7, 205–208 (2017).Article 
    ADS 

    Google Scholar 
    Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. PNAS 109(22), 8606–8611 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308(5730), 1912–1915 (2005).Article 
    ADS 
    CAS 

    Google Scholar 
    Bradshaw, W. E., Zani, P. A. & Holzapfel, C. M. Adaptation to temperate climates. Evolution 58(8), 1748–1762 (2004).
    Google Scholar 
    Thomas, C. D. et al. Ecological and evolutionary processes at expanding range margins. Nature 411(6837), 577–581 (2001).Article 
    ADS 
    CAS 

    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348(6234), 571–573 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Waller, N. L., Gynther, I. C., Freeman, A. B., Lavery, T. H. & Leung, L. K. P. The bramble cay melomys Melomys rubicola (Rodentia:Muridae): A first mammalian extinction caused by human-induced climate change?. Wildl. Res. 44(1), 9–21 (2017).Article 

    Google Scholar 
    Murray, K. A., Rosauer, D., McCallum, H. & Skerratt, L. F. Integrating species traits with extrinsic threats: Closing the gap between predicting and preventing species declines. Proc. R. Soc. B: Biol. Sci. 278(1711), 1515–1523 (2011).Article 

    Google Scholar 
    Stevens, G. C. The latitudinal gradient in geographical range: How so many species coexist in the Tropics. Am. Nat. 133(2), 240–256 (1989).Article 

    Google Scholar 
    Hickling, R., Roy, D. B., Hill, J. K., Fox, R. & Thomas, C. D. The distributions of a wide range of taxonomic groups are expanding polewards. Glob. Change Biol. 12(3), 450–455 (2006).Article 
    ADS 

    Google Scholar 
    Virkkala, R., Heikkinen, R. K., Leikola, N. & Luoto, M. Projected large-scale range reductions of northern-boreal land bird species due to climate change. Biol. Conserv. 141(5), 1343–1353 (2008).Article 

    Google Scholar 
    Sales, L. P. et al. Niche conservatism and the invasive potential of the wild boar. J. Anim. Ecol. 86(5), 1214–1223 (2017).Article 

    Google Scholar 
    Gouveia, S. F. et al. Climate and land use changes will degrade the configuration of the landscape for titi monkeys in eastern Brazil. Glob. Change Biol. 22(6), 2003–2012 (2016).Article 
    ADS 

    Google Scholar 
    Pearson, R. G. & Dawson, T. P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful?. Glob. Ecol. Biogeogr. 12(5), 361–371 (2003).Article 

    Google Scholar 
    Engler, R. et al. Predicting future distributions of mountain plants under climate change: does dispersal capacity matter?. Ecography 32(1), 34–45 (2009).Article 

    Google Scholar 
    Ozinga, W. A. et al. Predictability of plant species composition from environmental conditions is constrained by dispersal limitation. Oikos 108(3), 555–561 (2005).Article 

    Google Scholar 
    Takahashi, K. & Kamitani, T. Effect of dispersal capacity on forest plant migration at a landscape scale. J. Ecol. 92(5), 778–785 (2004).Article 

    Google Scholar 
    Koo, K. A. & Park, S. U. The effect of interplays among climate change, land-use change, and dispersal capacity on plant redistribution. Ecol. Indic. 142, 109192 (2022).Article 

    Google Scholar 
    Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333(6045), 1024–1026 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Change 3(10), 919–925 (2013).Article 
    ADS 

    Google Scholar 
    Vanderwal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).Article 
    ADS 

    Google Scholar 
    Lira, A. F. de A., Badillo-Montaño, R., Lira-Noriega, A. & de Albuquerque, C. M. R. Potential distribution patterns of scorpions in north-eastern Brazil under scenarios of future climate change. Austral Ecol. 45(2), 215–228 (2020).Castro, M. B. et al. Will the emblematic southern conifer Araucaria angustifolia survive to climate change in Brazil?. Biodivers. Conserv. 29(2), 591–607 (2020).Article 

    Google Scholar 
    Wilson, O. J., Walters, R. J., Mayle, F. E., Lingner, D. V. & Vibrans, A. C. Cold spot microrefugia hold the key to survival for Brazil’s Critically Endangered Araucaria tree. Glob. Change Biol. 25(12), 4339–4351 (2019).Article 
    ADS 

    Google Scholar 
    Esser, L. F. et al. Future uncertainties for the distribution and conservation of Paubrasilia echinata under climate change. Acta Bot. Bras. 33(4), 770–776 (2019).Article 

    Google Scholar 
    Cabanne, G. S. et al. Effects of Pleistocene climate changes on species ranges and evolutionary processes in the Neotropical Atlantic Forest. Biol. J. Linn. Soc. 119(4), 856–872 (2016).Article 

    Google Scholar 
    Iturralde-Pólit, P., Dangles, O., Burneo, S. F. & Meynard, C. N. The effects of climate change on a mega-diverse country: predicted shifts in mammalian species richness and turnover in continental Ecuador. Biotropica 49(6), 821–831 (2017).Article 

    Google Scholar 
    Vu, T. T. et al. An assessment of the impact of climate change on the distribution of the grey-shanked douc Pygathrix cinerea using an ecological niche model. Primates 61(2), 267–275 (2020).Article 

    Google Scholar 
    Sales, L. P., Ribeiro, B. R., Pires, M. M., Chapman, C. A. & Loyola, R. Recalculating route: dispersal constraints will drive the redistribution of Amazon primates in the Anthropocene. Ecography 42(10), 1789–1801 (2019).Article 

    Google Scholar 
    Hill, S. E. & Winder, I. C. Predicting the impacts of climate change on Papio baboon biogeography: Are widespread, generalist primates ‘safe’?. J. Biogeogr. 46(7), 1380–1405 (2019).
    Google Scholar 
    Gillings, S., Balmer, D. E. & Fuller, R. J. Directionality of recent bird distribution shifts and climate change in Great Britain. Glob. Change Biol. 21(6), 2155–2168 (2015).Article 
    ADS 

    Google Scholar 
    Fernández, D. et al. The current status of the world’s primates: Mapping threats to understand priorities for primate conservation. Int. J. Primatol. 43, 15–39 (2022).Article 

    Google Scholar 
    Stewart, B. M., Turner, S. E. & Matthews, H. D. Climate change impacts on potential future ranges of non-human primate species. Clim. Change 162, 2301–2318 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Estrada, A. et al. Primates in peril: The significance of Brazil, Madagascar, Indonesia and the Democratic Republic of the Congo for global primate conservation. PeerJ 6, e4869; https://doi.org/10.7717/peerj.4869 (2018).Estrada, A. et al. Impending extinction crisis of the world’s primates: Why primates matter. Sci. Adv. https://doi.org/10.1126/sciadv.1600946 (2017).Article 

    Google Scholar 
    Graham, T. L., Matthews, H. D. & Turner, S. E. A global-scale evaluation of primate exposure and vulnerability to climate change. Int. J. Primatol. 37(2), 158–174 (2016).Article 

    Google Scholar 
    Meyer, A. L. S., Pie, M. R. & Passos, F. C. Assessing the exposure of lion tamarins (Leontopithecus spp.) to future climate change. Am. J. Primatol. 76(6), 551–562 (2014).Article 

    Google Scholar 
    Braz, A. G., Lorini, M. L. & Vale, M. M. Climate change is likely to affect the distribution but not parapatry of the Brazilian marmoset monkeys (Callithrix spp.). Divers. Distrib. 25(4), 536–550 (2019).Article 

    Google Scholar 
    Lima, A. A. de, Ribeiro, M. C., Grelle, C. E. de V. & Pinto, M. P. Impacts of climate changes on spatio-temporal diversity patterns of Atlantic Forest primates. Perspect. Ecol. Conserv. 17(2), 50–56 (2019).Colombo, A. F. & Joly, C. A. Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. Braz. J. Biol. 70(3), 697–708 (2010).Article 
    CAS 

    Google Scholar 
    Zwiener, V. P., Lira-Noriega, A., Grady, C. J., Padial, A. A. & Vitule, J. R. Climate change as a driver of biotic homogenization of woody plants in the Atlantic Forest. Glob. Ecol. Biogeogr. 27(3), 298–309 (2018).Article 

    Google Scholar 
    Lemes, P., Melo, A. S. & Loyola, R. D. Climate change threatens protected areas of the Atlantic Forest. Biodivers. Conserv. 23(2), 357–368 (2014).Article 

    Google Scholar 
    Rezende, G. C., Sobral-Souza, T. & Culot, L. Integrating climate and landscape models to prioritize areas and conservation strategies for an endangered arboreal primate. Am. J. Primatol. 82(12), e23202. https://doi.org/10.1002/ajp.23202 (2020).Article 

    Google Scholar 
    Silva, L. B. et al. How future climate change and deforestation can drastically affect the species of monkeys endemic to the eastern Amazon, and priorities for conservation. Biodivers. Conserv. 31, 971–988 (2022).Article 

    Google Scholar 
    Sales, L., Ribeiro, B. R., Chapman, C. A. & Loyola, R. Multiple dimensions of climate change on the distribution of Amazon primates. Perspect. Ecol. Conserv. 18(2), 83–90 (2020).
    Google Scholar 
    Moraes, B., Razgour, O., Souza-Alves, J., Boubli, J. & Bezerra, B. Habitat suitability for primate conservation in north-east Brazil. Oryx 54(6), 803–813 (2020).Article 

    Google Scholar 
    Hanson, J. O. et al. Global conservation of species’ niches. Nature 580, 232–234 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Hanson, J. O., Rhodes, J. R., Riginos, C. & Fuller, R. A. Environmental and geographic variables are effective surrogates for genetic variation in conservation planning. PNAS 114(48), 12755–12760 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Scheele, B. C., Foster, C. N., Banks, S. C. & Lindenmayer, D. B. Niche contractions in declining species: Mechanisms and consequences. Trends Ecol. Evol. 32(5), 346–355 (2017).Article 

    Google Scholar 
    Travis, J. M. J. et al. Dispersal and species’ responses to climate change. Oikos 122, 1532–1540 (2013).Article 

    Google Scholar 
    Lenoir, J. & Svenning, J.-C. Climate-related range shifts – a global multidimensional synthesis and new research directions. Ecography 38, 15–28 (2015).Article 

    Google Scholar 
    Raghunathan, N., François, L., Huynen, M. C., Oliveira, L. C. & Hambuckers, A. Modelling the distribution of key tree species used by lion tamarins in the Brazilian Atlantic forest under a scenario of future climate change. Reg. Environ. Change 15, 683–693 (2015).Article 

    Google Scholar 
    Lawler, J. J., Ruesch, A. S., Olden, J. D. & McRae, B. H. Projected climate-driven faunal movement routes. Ecol. Lett. 16(8), 1014–1022 (2013).Article 
    CAS 

    Google Scholar 
    Årevall, J., Early, R., Estrada, A., Wennergren, U. & Eklöf, A. C. Conditions for successful range shifts under climate change: The role of species dispersal and landscape configuration. Divers. Distrib. 24, 1598–1611 (2018).Article 

    Google Scholar 
    Carroll, C., Lawler, J. J., Roberts, D. R. & Hamann, A. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS ONE 10(10), e0142024. https://doi.org/10.1371/journal.pone.0140486 (2015).Article 
    CAS 

    Google Scholar 
    Davies, T. J., Purvis, A. & Gittleman, J. L. Quaternary climate change and the geographic ranges of mammals. Am. Nat. 174(3), 297–307 (2009).Article 

    Google Scholar 
    Gaston, K.J. The structure and dynamics of geographic ranges (Oxford University Press, 2003).Meyer, A. L. S. & Pie, M. R. Climate change estimates surpass rates of climatic niche evolution in primates. Int. J. Primatol. 43, 40–56 (2021).Article 

    Google Scholar 
    Zeigler, S. L., Fagan, W. F., DeFries, R. & Raboy, B. E. Identifying important forest patches for the long-term persistence of the endangered golden-headed lion tamarin (Leontopithecus chrysomelas). Trop. Conserv. Sci. 3(1), 63–77 (2010).Article 

    Google Scholar 
    Dosen, J., Fortin, M. J. & Raboy, B. E. Restoration strategies to improve connectivity for golden-headed lion tamarins (Leontopithecus chrysomelas) in the Bahian Atlantic Forest. Brazil. Int. J. Primatol. 38(5), 962–983 (2017).Article 

    Google Scholar 
    Piffer, P. R., Rosa, M. R., Tambosi, L. R., Metzger, J. P. & Uriarte, M. Turnover rates of regenerated forests challenge restoration efforts in the Brazilian Atlantic Forest. Environ. Res. Lett. 17(4), 045009. https://doi.org/10.1088/1748-9326/ac5ae1 (2022).Article 
    ADS 

    Google Scholar 
    Estrada, A., Raboy, B. E. & Oliveira, L. C. Agroecosystems and primate conservation in the tropics: A review. Am. J. Primatol. 74, 696–711 (2012).Article 

    Google Scholar 
    Galea, B., Humle, T. Identifying and mitigating the impacts on primates of transportation and service corridors. Conserv. Biol. 36, e13836; https://doi.org/10.1111/cobi.13836 (2022).Gouveia, S. F. et al. Functional planning units for the management of an endangered Brazilian titi monkey. Am. J. Primatol. 79(5), e22637; https://doi.org/10.1002/ajp.22637 (2017).Rezende, G. et al. Leontopithecus chrysopygus. The IUCN Red List of Threatened Species, e.T11505A17935400; https://doi.org/10.2305/IUCN.UK.2020-2.RLTS.T11505A17935400.en (2020).Culot, L. et al. ATLANTIC-PRIMATES: A dataset of communities and occurrences of primates in the Atlantic Forests of South America. Ecology 100(1), e02525; https://doi.org/10.1002/ecy.2525 (2018).Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37(12), 4302–4315 (2017).Article 

    Google Scholar 
    Quinn, G. P. & Keough, M. J. Experimental design and data analysis for biologists (Cambridge University Press, 2002).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1(1), 3–14 (2010).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17(1), 43–57 (2011).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190(3–4), 231–259 (2006).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29(2), 129–151 (2006).Article 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5(11), 1198–1205 (2014).Article 

    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: A test case using cryptic geckos in Madagascar. J. Biogeogr. 34(1), 102–117 (2007).Article 

    Google Scholar 
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).Article 

    Google Scholar 
    Wenger, S. J. & Olden, J. D. Assessing transferability of ecological models: An underappreciated aspect of statistical validation. Methods Ecol. Evol. 3(2), 260–267 (2012).Article 

    Google Scholar 
    Hidasi-Neto, J. et al. Climate change will drive mammal species loss and biotic homogenization in the Cerrado Biodiversity Hotspot. Perspect. Ecol. Conserv. 17(2), 57–63 (2019).
    Google Scholar 
    Bowman, J., Jaeger, J. A. G. & Fahrig, L. Dispersal distance of mammals is proportional to home range size. Ecology 83(7), 2049–2055 (2002).Article 

    Google Scholar 
    Galán-Acedo, C., Arroyo-Rodríguez, V., Andresen, E. & Arasa-Gisbert, R. Ecological traits of the world’s primates. Sci. Data 6, 55. https://doi.org/10.1038/s41597-019-0059-9 (2019).Article 

    Google Scholar 
    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing Vienna Austria (2017).QGIS Development Team. QGIS Geographic Information System (2016). More

  • in

    Anthropogenic edge effects and aging errors by hunters can affect the sustainability of lion trophy hunting

    Tilman, D. et al. Future threats to biodiversity and pathways to their prevention. Nature 546, 73. https://doi.org/10.1038/nature22900 (2017).Article 
    ADS 
    CAS 

    Google Scholar 
    Laurance, W. F., Sayer, J. & Cassman, K. G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 29, 107–116. https://doi.org/10.1016/j.tree.2013.12.001 (2014).Article 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: Entering the sixth mass extinction. J. Sci. Adv. 1, e1400253. https://doi.org/10.1126/sciadv.1400253 (2015).Article 
    ADS 

    Google Scholar 
    Cardillo, M. et al. Human population density and extinction risk in the world’s carnivores. PLoS Biol. 2, e197. https://doi.org/10.1371/journal.pbio.0020197 (2004).Article 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, 124–148 (2014).Article 

    Google Scholar 
    Bauer, H. et al. Lion (Panthera leo) populations are declining rapidly across Africa, except in intensively managed areas. Proc. Natl. Acad. Sci. 112, 14895–14899 (2015).Article 
    ADS 

    Google Scholar 
    Bauer, H., Page-Nicholson, S., Hinks, A. & Dickman, A. Guidelines for the Conservation of lion in Africa 17–24 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Lindsey, P. A., Roulet, P. A. & Romanach, S. S. Economic and conservation significance of the trophy hunting industry in sub-Saharan Africa. Biol. Conserv. 134, 455–469. https://doi.org/10.1016/j.biocon.2006.09.005 (2007).Article 

    Google Scholar 
    Vucetich, J. A. et al. The value of argument analysis for understanding ethical considerations pertaining to trophy hunting and lion conservation. Biol. Conserv. 235, 260–272. https://doi.org/10.1016/j.biocon.2019.04.012 (2019).Article 

    Google Scholar 
    Dube, N. Voices from the village on trophy hunting in Hwange district, Zimbabwe. Ecol. Econ. 159, 335–343. https://doi.org/10.1016/j.ecolecon.2019.02.006 (2019).Article 

    Google Scholar 
    Murombedzi, J. African wildlife and livelihoods. In The Promise and Performance of Community Conservation (eds Hulme, D. & Murphree, M.) 244–255 (James Currey, 2001).
    Google Scholar 
    Leader-Williams, N., Baldus, R. D. & Smith, R. J. Recreational hunting. In Conservation and Rural Livelihoods (eds Dickson, B. et al.) 296–316 (Blackwell Publishing Ltd., 2009).Chapter 

    Google Scholar 
    DiMinin, E., Leader-Williams, N. & Bradshaw, C. J. A. Banning trophy hunting will exacerbate biodiversity loss. Trends Ecol. Evol. 31, 99–102 (2016).Article 

    Google Scholar 
    Whitman, K., Starfield, A. M., Quadling, H. S. & Packer, C. Sustainable trophy hunting of African lions. Nature 428, 175–178 (2004).Article 
    ADS 
    CAS 

    Google Scholar 
    Packer, C. et al. Sport hunting, predator control and conservation of large carnivores. PLoS ONE 4, e5941. https://doi.org/10.1371/journal.pone.0005941 (2009).Article 
    ADS 
    CAS 

    Google Scholar 
    Mweetwa, T. et al. Quantifying lion (Panthera leo) demographic response following a three-year moratorium on trophy hunting. PLoS ONE 13, e0197030. https://doi.org/10.1371/journal.pone.0197030 (2018).Article 
    CAS 

    Google Scholar 
    Loveridge, A. J. et al. Conservation of large predator populations: Demographic and spatial responses of African lions to the intensity of trophy hunting. Biol. Conserv. 204, 247–254. https://doi.org/10.1016/j.biocon.2016.10.024 (2016).Article 

    Google Scholar 
    Starfield, A. M., Shiell, J. D. & Smuts, G. L. Simulation of lion control strategies in a large game reserve. Ecol. Model. 13, 17–28 (1981).Article 

    Google Scholar 
    Venter, J. & Hopkins, M. E. Use of a simulation model in the management of a lion population. S. Afr. J. Wildl. Res. 18, 126–130 (1988).
    Google Scholar 
    Starfield, A. M. & Bleloch, A. L. Modelling the effect of contraception on part of the lion population in Etosha National Park. Applied Mathematic Dept. Report R3/82, Witwaterstrand University, South Africa. 7 (1982).Dickman, A., Becker, M., Begg, C., Loveridge, A. J. & Macdonald, D. W. Guidelines for the Conservation of Lions in Africa, Ch. 6 69–75 (IUCN SSC Cat Specialist Group, 2018).
    Google Scholar 
    Creel, S. et al. Assessing the sustainability of lion trophy hunting with recomendations for policy. Ecol. Appl. 26, 2347–2357. https://doi.org/10.1002/eap.1377 (2016).Article 

    Google Scholar 
    Barthold, J., Loveridge, A. J., Macdonald, D. W., Packer, C. & Colchero, F. Bayesian estimates of male and female African lion mortality for future use in population management. J. Appl. Ecol. 53, 295–304 (2016).Article 

    Google Scholar 
    Loveridge, A. J., Valeix, M., Elliot, N. B. & Macdonald, D. W. The landscape of anthropogenic mortality: How African lions respond to spatial variation in risk. J. Appl. Ecol. 54, 815–825. https://doi.org/10.1111/1365-2664.12794 (2017).Article 

    Google Scholar 
    Loveridge, A. J. et al. Evaluating the spatial intensity and demographic impacts of wire-snare bush-meat poaching on large carnivores. Biol. Conserv. 244, 108504 (2020).Article 

    Google Scholar 
    Becker, M. S. et al. Estimating past and future male loss in three Zambian lion populations. J. Wildl. Manag. 77, 128–142 (2013).Article 

    Google Scholar 
    Kiffner, C., Meyer, B., Muhlenberg, M. & Waltert, M. Plenty of prey, few predators: What limits lions Panthera leo in Katavi National park, western Tanzania?. Oryx 43, 52–59 (2009).Article 

    Google Scholar 
    Loveridge, A. J., Searle, A. W., Murindagomo, F. & Macdonald, D. W. The impact of sport hunting on the population dynamics of an African lion population in a protected area. Biol. Conserv. 134, 548–558 (2007).Article 

    Google Scholar 
    Miller, J. R. B. et al. Aging traits and sustainable trophy hunting of African lions. Biol. Conserv. 201, 160–168 (2016).Article 

    Google Scholar 
    Woodroffe, R. & Ginsberg, J. R. Edge effects and the extinction of populations inside protected areas. Science 280, 2126–2128 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Gervasi, V., Linnell, J. D. C., Brøseth, H. & Gimenez, O. Failure to coordinate management in transboundary populations hinders the achievement of national management goals: The case of wolverines in Scandinavia. J. Appl. Ecol. 56, 1905–1915. https://doi.org/10.1111/1365-2664.13379 (2019).Article 

    Google Scholar 
    Breitenmoser, U. & Nobbe, C. Guidelines for the Conservation of Lions in Africa (ed IUCN CSG/SSC) 29–30 (IUCN, 2018).du Preez, B. & Lopez-Bao, J. V. Guidelines for the Conservation of the Lion in Africa (ed IUCN CSG/SSC) 76–78 (IUCN, 2018).Loveridge, A. J., Hemson, G., Davidson, Z. & Macdonald, D. W. African lions on the edge: reserve boundaries as ‘attractive sinks’ In Biology and Conservation of Wild Felids, Ch. 11 (eds Macdonald, D. W. & Loveridge, A. J.) 283–304 (Oxford University Press, London, 2010).

    Google Scholar 
    Borrego, N., Ozgul, A., Slotow, R. & Packer, C. Lion population dynamics: Do nomadic males matter?. Behav. Ecol. 29, 660–666. https://doi.org/10.1093/beheco/ary018%JBehavioralEcology (2018).Article 

    Google Scholar 
    Packer, C. et al. The case for fencing remains intact. Ecol. Lett. https://doi.org/10.1111/ele.12171 (2013).Balme, G. et al. Big cats at large: Density, structure, and spatio-temporal patterns of a leopard population free of anthropogenic mortality. Popul. Ecol. 61, 256–267. https://doi.org/10.1002/1438-390x.1023 (2019).Article 

    Google Scholar 
    Grünewald, C., Schleuning, M. & Böhning-Gaese, K. Biodiversity, scenery and infrastructure: Factors driving wildlife tourism in an African savannah national park. Biol. Conserv. 201, 60–68. https://doi.org/10.1016/j.biocon.2016.05.036 (2016).Article 

    Google Scholar 
    Pulliam, H. R. Sources, sinks, and population. Regulation 132, 652–661. https://doi.org/10.1086/284880 (1988).Article 

    Google Scholar 
    Lamb, C. T. et al. The ecology of human–carnivore coexistence. Proc. Natl. Acad. Sci. 117, 17876–17883. https://doi.org/10.1073/pnas.1922097117 (2020).Article 
    ADS 
    CAS 

    Google Scholar 
    Robinson, H. S., Weilgus, R. B., Cooley, H. & Cooley, S. Source—sink populations in carnivore management: cougar demography and immigration in a hunted population. Ecol. Appl. 18, 1028–1037 (2008).Article 

    Google Scholar 
    Creel, S. et al. Questionable policy for large carnivore hunting. Science 350, 1473–1475 (2015).Article 
    ADS 
    CAS 

    Google Scholar 
    Cushman, S. A. et al. Prioritizing core areas, corridors and conflict hotspots for lion conservation in southern Africa. PLoS ONE 13, e0196213. https://doi.org/10.1371/journal.pone.0196213 (2018).Article 
    CAS 

    Google Scholar 
    Kelly, M. J. & Durant, S. M. Viability of the Serengeti cheetah population. Conserv. Biol. 14, 786–797 (2000).Article 

    Google Scholar 
    Skalski, J. R., Ryding, K. & Millspaug, J. J. Wildlife Demography: Analysis of Sex, Age, and Count Data (Elsevier Academic Press, 2005).
    Google Scholar 
    Hamlin, K. L., Pac, D. F., Sime, C. A., DeSimone, R. M. & Dusek, G. L. Evaluating the accuracy of ages obtained by two methods for montana ungulates. J. Wildl. Manag. 64, 441–449. https://doi.org/10.2307/3803242 (2000).Article 

    Google Scholar 
    Storm, D. J. et al. Estimating ages of white-tailed deer: Age and sex patterns of error using tooth wear-and-replacement and consistency of cementum annuli. Wildl Soc Bull 38, 849–856. https://doi.org/10.1002/wsb.457 (2014).Article 
    ADS 

    Google Scholar 
    Balme, G. A., Hunter, L. & Braczkowski, A. R. Applicability of age-based hunting regulations for African Leopards. PLoS ONE 7, e35209. https://doi.org/10.1371/journal.pone.0035209 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Gipson, P. S., Ballard, W. B., Nowak, R. M. & Mech, L. D. Accuracy and precision of estimating age of gray wolves by tooth wear. J. Wildl. Manag. 64, 752–758. https://doi.org/10.2307/3802745 (2000).Article 

    Google Scholar 
    Hiller, T. L. Comparison of two age-estimation techniques for cougars. J. Northwest. Nat. 77–82, 76 (2014).
    Google Scholar 
    Begg, C. M., Miller, J. R. B. & Begg, K. S. Effective implementation of age restrictions increases selectivity of sport hunting of the African lion. J. Appl. Ecol. 55, 139–146. https://doi.org/10.1111/1365-2664.12951 (2018).Article 

    Google Scholar 
    Mandisodza-Chikerema, R., Jooste, D. & Funston, P. J. Lion aging and adaptive quota management report: Ages of lions hunted and recommended quotas for 2019 in Zimbabwe. 12 (Unpublished report, Zimbabwe Parks and Wildlife Management and Panthera, Harare, Zimbabwe, 2019).Smuts, G. L., Anderson, J. L. & Austin, J. C. Age determination of the African lion (Panthera leo). J. Zool. Lond. 185, 115–146 (1978).Article 

    Google Scholar 
    Lindsey, P. A. et al. The trophy hunting of African lions: Scale, current management practices and factors undermining sustainability. PLoS ONE 8, 1–11 (2013).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2022).Packer, C. et al. Effects of trophy hunting on lion and leopard populations in Tanzania. Conserv. Biol. 25, 142–153 (2011).Article 
    CAS 

    Google Scholar 
    Mace, G. M. & Reynolds, J. Exploitation as a conservation issue. In Conservation of Exploited Species, Ch. 1 (eds Reynolds, J. et al.) 3–15 (Cambridge University Press, Cambridge, 2001).
    Google Scholar 
    Struhsaker, T. T. A biologists perspective on the role of sustainable harvest in conservation. Conserv. Biol. 12, 930–932 (1998).Article 

    Google Scholar  More

  • in

    Accuracy of tropical peat and non-peat fire forecasts enhanced by simulating hydrology

    Edwards, R. B., Naylor, R. L., Higgins, M. M. & Falcon, W. P. Causes of Indonesia’s forest fires. World Dev. 127, 104717 (2020).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).Article 
    ADS 

    Google Scholar 
    Page, S., et al. Tropical Fire Ecology Ch. 9 (Springer, 2009).Page, S. E. & Hooijer, A. In the line of fire: the peatlands of Southeast Asia. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 371, 20150176 (2016).Huijnen, V. et al. Fire carbon emissions over maritime southeast Asia in 2015 largest since 1997. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    Kusumaningtyas, S. D. A. & Aldrian, E. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution. Environ. Res. Lett. 11, 075007 (2016).Article 
    ADS 

    Google Scholar 
    Gaveau, D. L. et al. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: Evidence from the 2013 Sumatran fires. Sci. Rep. 4, 1–7 (2014).Article 

    Google Scholar 
    Tacconi, L. Preventing fires and haze in Southeast Asia. Nat. Clim. Chang. 6, 640–643 (2016).Article 
    ADS 

    Google Scholar 
    Posa, M. R. C., Wijedasa, L. S. & Corlett, R. T. Biodiversity and conservation of tropical peat swamp forests. Bioscience 61, 49–57 (2011).Article 

    Google Scholar 
    Harrison, M. E. & Rieley, J. O. Tropical peatland biodiversity and conservation in Southeast Asia. Mires Peat 22, 1–7 (2018).
    Google Scholar 
    Purnomo, H. et al. Fire economy and actor network of forest and land fires in Indonesia. For. Policy Econ. 78, 21–31 (2017).Article 

    Google Scholar 
    Wösten, J. H. M., Clymans, E., Page, S. E., Rieley, J. O. & Limin, S. H. Peat–water interrelationships in a tropical peatland ecosystem in Southeast Asia. CATENA 73, 212–224 (2008).Article 

    Google Scholar 
    Taufik, M., Setiawan, B. I. & Van Lanen, H. A. Increased fire hazard in human-modified wetlands in Southeast Asia. Ambio 48, 363–373 (2019).Article 

    Google Scholar 
    Taufik, M. et al. Amplification of wildfire area burnt by hydrological drought in the humid tropics. Nat. Clim. Chang. 7, 428–431 (2017).Article 
    ADS 

    Google Scholar 
    Fanin, T. & Werf, G. R. Precipitation–fire linkages in Indonesia (1997–2015). Biogeosciences 14, 3995–4008 (2017).Article 
    ADS 

    Google Scholar 
    Field, R. D. et al. Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Niño-induced drought. Proc. Natl. Acad. Sci. U.S.A. 113, 9204–9209 (2016).Article 
    ADS 
    CAS 

    Google Scholar 
    Hirano, T. et al. Effects of disturbances on the carbon balance of tropical peat swamp forests. Glob. Chang. Biol. 18, 3410–3422 (2012).Article 
    ADS 

    Google Scholar 
    Ohkubo, S., Hirano, T. & Kusin, K. Influence of fire and drainage on evapotranspiration in a degraded peat swamp forest in Central Kalimantan Indonesia. J. Hydrol. 603, 126906 (2021).Article 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. D. & Mezbahuddin, S. Near-complete loss of fire-resistant primary tropical forest cover in Sumatra and Kalimantan. Commun. Earth Environ. 1, 1–8 (2020).Article 

    Google Scholar 
    Lin, Y., Wijedasa, L. S. & Chisholm, R. A. Singapore’s willingness to pay for mitigation of transboundary forest-fire haze from Indonesia. Environ. Res. Lett. 12, 024017 (2017).Article 
    ADS 

    Google Scholar 
    Nikonovas, T., Spessa, A., Doerr, S. H., Clay, G. & Mezbahuddin, S. ProbFire: A probabilistic fire early warning system for Indonesia. Nat. Hazards Earth Syst. Sci. 22, 303–322 (2022).Article 
    ADS 

    Google Scholar 
    Taufik, M., Veldhuizen, A. A., Wösten, J. H. M. & van Lanen, H. A. J. Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard. Geoderma 347, 160–169 (2019).Article 
    ADS 

    Google Scholar 
    Sloan, S., Tacconi, L. & Cattau, M. E. Fire prevention in managed landscapes: Recent success and challenges in Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 26, 1–30 (2021).Article 

    Google Scholar 
    Lestari, I., Murdiyarso, D. & Taufik, M. Rewetting tropical peatlands reduced net greenhouse gas emissions in Riau Province Indonesia. Forests 13, 505 (2022).Article 

    Google Scholar 
    Spessa, A. C. et al. Seasonal forecasting of fire over Kalimantan Indonesia. Nat. Hazards Earth Syst. Sci. 15, 429–442 (2015).Article 
    ADS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. How hydrology determines seasonal and interannual variations in water table depth, surface energy exchange, and water stress in a tropical peatland: Modeling versus measurements. J. Geophys. Res. Biogeosci. 120, 2132–2157 (2015).Article 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Hirano, T. Modelling effects of seasonal variation in water table depth on net ecosystem CO2 exchange of a tropical peatland. Biogeosciences 11, 577–599 (2014).Article 
    ADS 

    Google Scholar 
    Cobb, A. R. & Harvey, C. F. Scalar simulation and parameterization of water table dynamics in tropical peatlands. Water Resour. Res. 55, 9351–9377 (2019).Article 
    ADS 

    Google Scholar 
    Dadap, N. C., Cobb, A. R., Hoyt, A. M., Harvey, C. F. & Konings, A. G. Satellite soil moisture observations predict burned area in Southeast Asian peatlands. Environ. Res. Lett. 14, 094014 (2019).Article 
    ADS 

    Google Scholar 
    Evans, C. D. et al. Rates and spatial variability of peat subsidence in Acacia plantation and forest landscapes in Sumatra Indonesia. Geoderma 338, 410–421 (2019).Article 
    ADS 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Couwenberg, J. & Hooijer, A. Towards robust subsidence-based soil carbon emission factors for peat soils in south-east Asia, with special reference to oil palm plantations. Mires Peat 12, 1–13 (2013).
    Google Scholar 
    Khasanah, N. M. & van Noordwijk, M. Subsidence and carbon dioxide emissions in a smallholder peatland mosaic in Sumatra Indonesia. Mitig. Adapt. Strateg. Glob. Chang. 24, 147 (2019).Article 

    Google Scholar 
    Marwanto, S., Watanabe, T., Iskandar, W., Sabiham, S. & Funakawa, S. Effects of seasonal rainfall and water table movement on the soil solution composition of tropical peatland. Soil Sci. Plant Nutr. 64, 386–395 (2018).Article 
    CAS 

    Google Scholar 
    Lubis, M. E. S. et al. Changes in water table depth in an oil palm plantation and its surrounding regions in Sumatra Indonesia. J. Agron. 13, 140–146 (2014).Article 

    Google Scholar 
    Page, S. E., Rieley, J. O. & Wüst, R. Developments in Earth Surface Processes (Volume 9) Ch. 3 (Elsevier, 2006).Haffiez, N. et al. Exploration of machine learning algorithms for predicting the changes in abundance of antibiotic resistance genes in anaerobic digestion. Sci. Total Environ. 839, 156211 (2022).Article 
    ADS 
    CAS 

    Google Scholar 
    Grant, R. F., Desai, A. R. & Sulman, B. N. Modelling contrasting responses of wetland productivity to changes in water table depth. Biogeosciences 9, 4215–4231 (2012).Article 
    ADS 
    CAS 

    Google Scholar 
    Mezbahuddin, M., Grant, R. F. & Flanagan, L. B. Modeling hydrological controls on variations in peat water content, water table depth, and surface energy exchange of a boreal western Canadian fen peatland. J. Geophys. Res. Biogeosci. 121, 2216–2242 (2016).Article 

    Google Scholar 
    Dimitrov, D. D., Grant, R. F., Lafleur, P. M. & Humphreys, E. R. Modeling the effects of hydrology on gross primary productivity and net ecosystem productivity at Mer Bleue bog. J. Geophys. Res. Biogeosci. 116, G04010 (2011).Article 
    ADS 

    Google Scholar 
    Dimitrov, D. D., Bhatti, J. S. & Grant, R. F. The transition zones (ecotone) between boreal forests and peatlands: Modelling water table along a transition zone between upland black spruce forest and poor forested fen in central Saskatchewan. Ecol. Modell. 274, 57–70 (2014).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Hodnett, M. G. & Tomasella, J. Marked differences between van Genuchten soil water-retention parameters for temperate and tropical soils: A new water-retention pedo-transfer functions developed for tropical soils. Geoderma 108, 155–180 (2002).Article 
    ADS 
    CAS 

    Google Scholar 
    Funk, C. et al. The climate hazards infrared precipitation with stations-a new environmental record for monitoring extremes. Sci. Data 2, 1–21 (2015).Article 

    Google Scholar 
    Osaki, M., Hirose, K., Segah, H. & Helmy, F. Tropical Peatland Ecosystems Ch. 9 (Springer, 2016).Razavi, S. Deep learning, explained: Fundamentals, explainability, and bridgeability to process-based modelling. Environ. Modell. Softw. 144, 105159 (2021).Article 

    Google Scholar  More