More stories

  • in

    Computers that power self-driving cars could be a huge driver of global carbon emissions

    In the future, the energy needed to run the powerful computers on board a global fleet of autonomous vehicles could generate as many greenhouse gas emissions as all the data centers in the world today.

    That is one key finding of a new study from MIT researchers that explored the potential energy consumption and related carbon emissions if autonomous vehicles are widely adopted.

    The data centers that house the physical computing infrastructure used for running applications are widely known for their large carbon footprint: They currently account for about 0.3 percent of global greenhouse gas emissions, or about as much carbon as the country of Argentina produces annually, according to the International Energy Agency. Realizing that less attention has been paid to the potential footprint of autonomous vehicles, the MIT researchers built a statistical model to study the problem. They determined that 1 billion autonomous vehicles, each driving for one hour per day with a computer consuming 840 watts, would consume enough energy to generate about the same amount of emissions as data centers currently do.

    The researchers also found that in over 90 percent of modeled scenarios, to keep autonomous vehicle emissions from zooming past current data center emissions, each vehicle must use less than 1.2 kilowatts of power for computing, which would require more efficient hardware. In one scenario — where 95 percent of the global fleet of vehicles is autonomous in 2050, computational workloads double every three years, and the world continues to decarbonize at the current rate — they found that hardware efficiency would need to double faster than every 1.1 years to keep emissions under those levels.

    “If we just keep the business-as-usual trends in decarbonization and the current rate of hardware efficiency improvements, it doesn’t seem like it is going to be enough to constrain the emissions from computing onboard autonomous vehicles. This has the potential to become an enormous problem. But if we get ahead of it, we could design more efficient autonomous vehicles that have a smaller carbon footprint from the start,” says first author Soumya Sudhakar, a graduate student in aeronautics and astronautics.

    Sudhakar wrote the paper with her co-advisors Vivienne Sze, associate professor in the Department of Electrical Engineering and Computer Science (EECS) and a member of the Research Laboratory of Electronics (RLE); and Sertac Karaman, associate professor of aeronautics and astronautics and director of the Laboratory for Information and Decision Systems (LIDS). The research appears today in the January-February issue of IEEE Micro.

    Modeling emissions

    The researchers built a framework to explore the operational emissions from computers on board a global fleet of electric vehicles that are fully autonomous, meaning they don’t require a back-up human driver.

    The model is a function of the number of vehicles in the global fleet, the power of each computer on each vehicle, the hours driven by each vehicle, and the carbon intensity of the electricity powering each computer.

    “On its own, that looks like a deceptively simple equation. But each of those variables contains a lot of uncertainty because we are considering an emerging application that is not here yet,” Sudhakar says.

    For instance, some research suggests that the amount of time driven in autonomous vehicles might increase because people can multitask while driving and the young and the elderly could drive more. But other research suggests that time spent driving might decrease because algorithms could find optimal routes that get people to their destinations faster.

    In addition to considering these uncertainties, the researchers also needed to model advanced computing hardware and software that doesn’t exist yet.

    To accomplish that, they modeled the workload of a popular algorithm for autonomous vehicles, known as a multitask deep neural network because it can perform many tasks at once. They explored how much energy this deep neural network would consume if it were processing many high-resolution inputs from many cameras with high frame rates, simultaneously.

    When they used the probabilistic model to explore different scenarios, Sudhakar was surprised by how quickly the algorithms’ workload added up.

    For example, if an autonomous vehicle has 10 deep neural networks processing images from 10 cameras, and that vehicle drives for one hour a day, it will make 21.6 million inferences each day. One billion vehicles would make 21.6 quadrillion inferences. To put that into perspective, all of Facebook’s data centers worldwide make a few trillion inferences each day (1 quadrillion is 1,000 trillion).

    “After seeing the results, this makes a lot of sense, but it is not something that is on a lot of people’s radar. These vehicles could actually be using a ton of computer power. They have a 360-degree view of the world, so while we have two eyes, they may have 20 eyes, looking all over the place and trying to understand all the things that are happening at the same time,” Karaman says.

    Autonomous vehicles would be used for moving goods, as well as people, so there could be a massive amount of computing power distributed along global supply chains, he says. And their model only considers computing — it doesn’t take into account the energy consumed by vehicle sensors or the emissions generated during manufacturing.

    Keeping emissions in check

    To keep emissions from spiraling out of control, the researchers found that each autonomous vehicle needs to consume less than 1.2 kilowatts of energy for computing. For that to be possible, computing hardware must become more efficient at a significantly faster pace, doubling in efficiency about every 1.1 years.

    One way to boost that efficiency could be to use more specialized hardware, which is designed to run specific driving algorithms. Because researchers know the navigation and perception tasks required for autonomous driving, it could be easier to design specialized hardware for those tasks, Sudhakar says. But vehicles tend to have 10- or 20-year lifespans, so one challenge in developing specialized hardware would be to “future-proof” it so it can run new algorithms.

    In the future, researchers could also make the algorithms more efficient, so they would need less computing power. However, this is also challenging because trading off some accuracy for more efficiency could hamper vehicle safety.

    Now that they have demonstrated this framework, the researchers want to continue exploring hardware efficiency and algorithm improvements. In addition, they say their model can be enhanced by characterizing embodied carbon from autonomous vehicles — the carbon emissions generated when a car is manufactured — and emissions from a vehicle’s sensors.

    While there are still many scenarios to explore, the researchers hope that this work sheds light on a potential problem people may not have considered.

    “We are hoping that people will think of emissions and carbon efficiency as important metrics to consider in their designs. The energy consumption of an autonomous vehicle is really critical, not just for extending the battery life, but also for sustainability,” says Sze.

    This research was funded, in part, by the National Science Foundation and the MIT-Accenture Fellowship. More

  • in

    A new way to assess radiation damage in reactors

    A new method could greatly reduce the time and expense needed for certain important safety checks in nuclear power reactors. The approach could save money and increase total power output in the short run, and it might increase plants’ safe operating lifetimes in the long run.

    One of the most effective ways to control greenhouse gas emissions, many analysts argue, is to prolong the lifetimes of existing nuclear power plants. But extending these plants beyond their originally permitted operating lifetimes requires monitoring the condition of many of their critical components to ensure that damage from heat and radiation has not led, and will not lead, to unsafe cracking or embrittlement.

    Today, testing of a reactor’s stainless steel components — which make up much of the plumbing systems that prevent heat buildup, as well as many other parts — requires removing test pieces, known as coupons, of the same kind of steel that are left adjacent to the actual components so they experience the same conditions. Or, it requires the removal of a tiny piece of the actual operating component. Both approaches are done during costly shutdowns of the reactor, prolonging these scheduled outages and costing millions of dollars per day.

    Now, researchers at MIT and elsewhere have come up with a new, inexpensive, hands-off test that can produce similar information about the condition of these reactor components, with far less time required during a shutdown. The findings are reported today in the journal Acta Materiala in a paper by MIT professor of nuclear science and engineering Michael Short; Saleem Al Dajani ’19 SM ’20, who did his master’s work at MIT on this project and is now a doctoral student at the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia; and 13 others at MIT and other institutions.

    The test involves aiming laser beams at the stainless steel material, which generates surface acoustic waves (SAWs) on the surface. Another set of laser beams is then used to detect and measure the frequencies of these SAWs. Tests on material aged identically to nuclear power plants showed that the waves produced a distinctive double-peaked spectral signature when the material was degraded.

    Short and Al Dajani embarked on the process in 2018, looking for a more rapid way to detect a specific kind of degradation, called spinodal decomposition, that can take place in austenitic stainless steel, which is used for components such as the 2- to 3-foot wide pipes that carry coolant water to and from the reactor core. This process can lead to embrittlement, cracking, and potential failure in the event of an emergency.

    While spinodal decomposition is not the only type of degradation that can occur in reactor components, it is a primary concern for the lifetime and sustainability of nuclear reactors, Short says.

    “We were looking for a signal that can link material embrittlement with properties we can measure, that can be used to estimate lifetimes of structural materials,” Al Dajani says.

    They decided to try a technique Short and his students and collaborators had expanded upon, called transient grating spectroscopy, or TGS, on samples of reactor materials known to have experienced spinodal decomposition as a result of their reactor-like thermal aging history. The method uses laser beams to stimulate, and then measure, SAWs on a material. The idea was that the decomposition should slow down the rate of heat flow through the material, that slowdown would be detectable by the TGS method.

    However, it turns out there was no such slowdown. “We went in with a hypothesis about what we would see, and we were wrong,” Short says.

    That’s often the way things work out in science, he says. “You go in guns blazing, looking for a certain thing, for a great reason, and you turn out to be wrong. But if you look carefully, you find other patterns in the data that reveal what nature actually has to say.”

    Instead, what showed up in the data was that, while a material would usually produce a single frequency peak for the material’s SAWs, in the degraded samples there was a splitting into two peaks.

    “It was a very clear pattern in the data,” Short recalls. “We just didn’t expect it, but it was right there screaming at us in the measurements.”

    Cast austenitic stainless steels like those used in reactor components are what’s known as duplex steels, actually a mixture of two different crystal structures in the same material by design. But while one of the two types is quite impervious to spinodal decomposition, the other is quite vulnerable to it. When the material starts to degrade, the difference shows up in the different frequency responses of the material, which is what the team found in their data.

    That finding was a total surprise, though. “Some of my current and former students didn’t believe it was happening,” Short says. “We were unable to convince our own team this was happening, with the initial statistics we had.” So, they went back and carried out further tests, which continued to strengthen the significance of the results. They reached a point where the confidence level was 99.9 percent that spinodal decomposition was indeed coincident with the wave peak separation.

    “Our discussions with those who opposed our initial hypotheses ended up taking our work to the next level,” Al Dajani says.

    The tests they did used large lab-based lasers and optical systems, so the next step, which the researchers are hard at work on, is miniaturizing the whole system into something that can be an easily portable test kit to use to check reactor components on-site, reducing the length of shutdowns. “We’re making great strides, but we still have some way to go,” he says.

    But when they achieve that next step, he says, it could make a significant difference. “Every day that your nuclear plant goes down, for a typical gigawatt-scale reactor, you lose about $2 million a day in lost electricity,” Al Dajani says, “so shortening outages is a huge thing in the industry right now.”

    He adds that the team’s goal was to find ways to enable existing plants to operate longer: “Let them be down for less time and be as safe or safer than they are right now — not cutting corners, but using smart science to get us the same information with far less effort.” And that’s what this new technique seems to offer.

    Short hopes that this could help to enable the extension of power plant operating licenses for some additional decades without compromising safety, by enabling frequent, simple and inexpensive testing of the key components. Existing, large-scale plants “generate just shy of a billion dollars in carbon-free electricity per plant each year,” he says, whereas bringing a new plant online can take more than a decade. “To bridge that gap, keeping our current nukes online is the single biggest thing we can do to fight climate change.”

    The team included researchers at MIT, Idaho National Laboratory, Manchester University and Imperial College London in the UK, Oak Ridge National Laboratory, the Electric Power Research Institute, Northeastern University, the University of California at Berkeley, and KAUST. The work was supported by the International Design Center at MIT and the Singapore University of Technology and Design, the U.S. Nuclear Regulatory Commission, and the U.S. National Science Foundation. More

  • in

    New MIT internships expand research opportunities in Africa

    With new support from the Office of the Associate Provost for International Activities, MIT International Science and Technology Initiatives (MISTI) and the MIT-Africa program are expanding internship opportunities for MIT students at universities and leading academic research centers in Africa. This past summer, MISTI supported 10 MIT student interns at African universities, significantly more than in any previous year.

    “These internships are an opportunity to better merge the research ecosystem of MIT with academia-based research systems in Africa,” says Evan Lieberman, the Total Professor of Political Science and Contemporary Africa and faculty director for MISTI.

    For decades, MISTI has helped MIT students to learn and explore through international experiential learning opportunities and internships in industries like health care, education, agriculture, and energy. MISTI’s MIT-Africa Seed Fund supports collaborative research between MIT faculty and Africa-based researchers, and the new student research internship opportunities are part of a broader vision for deeper engagement between MIT and research institutions across the African continent.

    While Africa is home to 12.5 percent of the world’s population, it generates less than 1 percent of scientific research output in the form of academic journal publications, according to the African Academy of Sciences. Research internships are one way that MIT can build mutually beneficial partnerships across Africa’s research ecosystem, to advance knowledge and spawn innovation in fields important to MIT and its African counterparts, including health care, biotechnology, urban planning, sustainable energy, and education.

    Ari Jacobovits, managing director of MIT-Africa, notes that the new internships provide additional funding to the lab hosting the MIT intern, enabling them to hire a counterpart student research intern from the local university. This support can make the internships more financially feasible for host institutions and helps to grow the research pipeline.

    With the support of MIT, State University of Zanzibar (SUZA) lecturers Raya Ahmada and Abubakar Bakar were able to hire local students to work alongside MIT graduate students Mel Isidor and Rajan Hoyle. Together the students collaborated over a summer on a mapping project designed to plan and protect Zanzibar’s coastal economy.

    “It’s been really exciting to work with research peers in a setting where we can all learn alongside one another and develop this project together,” says Hoyle.

    Using low-cost drone technology, the students and their local counterparts worked to create detailed maps of Zanzibar to support community planning around resilience projects designed to combat coastal flooding and deforestation and assess climate-related impacts to seaweed farming activities. 

    “I really appreciated learning about how engagement happens in this particular context and how community members understand local environmental challenges and conditions based on research and lived experience,” says Isidor. “This is beneficial for us whether we’re working in an international context or in the United States.”

    For biology major Shaida Nishat, her internship at the University of Cape Town allowed her to work in a vital sphere of public health and provided her with the chance to work with a diverse, international team headed by Associate Professor Salome Maswine, head of the global surgery division and a widely-renowned expert in global surgery, a multidisciplinary field in the sphere of global health focused on improved and equitable surgical outcomes.

    “It broadened my perspective as to how an effort like global surgery ties so many nations together through a common goal that would benefit them all,” says Nishat, who plans to pursue a career in public health.

    For computer science sophomore Antonio L. Ortiz Bigio, the MISTI research internship in Africa was an incomparable experience, culturally and professionally. Bigio interned at the Robotics Autonomous Intelligence and Learning Laboratory at the University of Witwatersrand in Johannesburg, led by Professor Benjamin Rosman, where he developed software to enable a robot to play chess. The experience has inspired Bigio to continue to pursue robotics and machine learning.

    Participating faculty at the host institutions welcomed their MIT interns, and were impressed by their capabilities. Both Rosman and Maswime described their MIT interns as hard-working and valued team members, who had helped to advance their own work.  

    Building strong global partnerships, whether through faculty research, student internships, or other initiatives, takes time and cultivation, explains Jacobovits. Each successful collaboration helps to seed future exchanges and builds interest at MIT and peer institutions in creative partnerships. As MIT continues to deepen its connections to institutions and researchers across Africa, says Jacobovits, “students like Shaida, Rajan, Mel, and Antonio are really effective ambassadors in building those networks.” More

  • in

    Ian Hutchinson: A lifetime probing plasma, on Earth and in space

    Ordinary folks gazing at the night sky can readily spot Earth’s close neighbors and the light of distant stars. But when Ian Hutchinson scans the cosmos, he takes in a great deal more. There is, for instance, the constant rush of plasma — highly charged ionized gases — from the sun. As this plasma flows by solid bodies such as the moon, it interacts with them electromagnetically, sometimes generating a phenomenon called an electron hole — a perturbation in the gaseous solar tide that forms a solitary, long-lived wave. Hutchinson, a professor in the MIT Department of Nuclear Science and Engineering (NSE), knows they exist because he found a way to measure them.

    “When I look up at the moon with my sweetheart, my wife of 48 years, I imagine that streaming from its dark side are electron holes that my students and I predicted, and that we then discovered,” he says. “It’s quite sentimental to me.”

    Hutchinson’s studies of these wave phenomena, summed up in a paper, “Electron holes in phase space: What they are and why they matter,” recently earned the 2022 Ronald C. Davidson Award for Plasma Physics presented by the American Physical Society’s Division of Plasma Physics.

    Measuring perturbations in plasma

    Hutchinson’s exploration of electron holes was sparked by his work over many decades in fusion energy, another branch of plasma physics. He has made many contributions to the design, operation, and experimental investigation of tokamaks — a toroidal magnetic confinement device — intended to replicate and harness the fiery thermonuclear reactions in the plasma of stars for carbon-free energy on Earth. Hutchinson took a particular interest in how to measure the plasma, notably the flow at the edges of tokamaks.

    Heat generated from fusion reactions may escape magnetic confinement and build up along these edges, leading to potential temperature spikes that impact the performance of the confinement device. Hutchinson discovered how to interpret signals from small probes to measure and track plasma velocity at the tokamak’s edge.

    “My theoretical work also showed that these probes quite likely induce electron holes,” he says. But proving this contention required experiments at resolutions in time and space beyond what tokamaks allow. That’s when Hutchinson had an important insight.

    “I realized that the phenomena we were trying to investigate can actually be measured with exquisite accuracy by satellites that travel through plasma surrounding Earth and other solid bodies,” he says. Although plasmas in space are at a much larger scale than the plasmas generated in the laboratory, measurements of these gases by a satellite is analogous “to a situation where we fly a tiny micron-sized spacecraft through the wakes of probes at the edge of tokamaks,” says Hutchinson.

    Using satellite data provided by NASA, Hutchinson set about analyzing solar plasma as it whips by the moon. “We predicted instabilities and the generation of electron holes,” he recounts. “Our theory passed with flying colors: We saw lots of holes in the wake of the moon, and few elsewhere.”

    Developing tokamaks

    Hutchinson grew up in the English midlands and attended Cambridge University, where he became “intrigued by plasma physics in a course taught by an entertaining and effective teacher,” he says.

    Hutchinson headed for doctoral studies at Australian National University on fellowship. The experience afforded him his first opportunity for research on plasma confinement. “There I was at the ends of the Earth, and I was one of very few scientists worldwide with a tokamak almost to myself,” he says. “It was a device that had risen to the top of everyone’s agenda in fusion research as something we really needed to understand.”

    His dissertation, which examined instabilities in plasma, and his hands-on experience with the device, brought him to the attention of Ronald Parker SM ’63, PhD ’67, now emeritus professor of nuclear science and engineering and electrical engineering and computer science, who was building MIT’s Alcator tokamak program.

    In 1976, Hutchinson joined this group, spending three years as a research scientist. After an interval in Britain, he returned to MIT with a faculty position in NSE, and soon, a leadership role in developing the next phase of the Institute’s fusion experiment, the Alcator-C Mod tokamak.

    “This was a major development of the high-magnetic field approach to fusion,” says Hutchinson. Powerful magnets are essential for containing the superhot plasma; the MIT group developed an experiment with a magnetic field more than 150,000 times the strength of the Earth’s magnetic field. “We were in the business of determining whether tokamaks had sufficiently good confinement to function as fusion reactors,” he says.

    Hutchinson oversaw the nearly six-year construction of the device, which was funded by the U.S. Department of Energy. He then led its operation starting in 1993, creating a national facility for experiments that drew scientists and students from around the world. At the time, it was the largest research group on campus at MIT.

    In their studies, scientists employed novel heating and sustainment techniques using radio waves and microwaves. They also discovered new methods for performing diagnostics inside the tokamak. “Alcator C-Mod demonstrated excellent confinement in a more compact and cost-effective device,” says Hutchinson. “It was unique in the world.”

    Hutchinson is proud of Alcator C-Mod’s technological achievements, including its record for highest plasma pressure for a magnetic confinement device. But this large-scale project holds even greater significance for him. “Alcator C-Mod helped beat a new path in fusion research, and has become the basis for the SPARC tokamak now under construction,” he says.

    SPARC is a compact, high-magnetic field fusion energy device under development through a collaboration between MIT’s Plasma Science and Fusion Center and startup Commonwealth Fusions Systems. Its goal is to demonstrate net energy gain from fusion, prove the viability of fusion as a source of carbon-free energy, and tip the scales in the race against climate change. A number of SPARC’s leaders are students Hutchinson taught. “This is a source of considerable satisfaction,” he says. “Some of their down-to-Earth realism comes from me, and perhaps some of their aspirations have been molded by their work with me.” 

    A new phase

    After leading Alcator C-Mod for 15 years and generating hundreds of journal articles, Hutchinson served as NSE’s department head from 2003 to 2009. He wrote the standard textbook on measuring plasmas, and has more recently written “A Student’s Guide to Numerical Methods” (2015), which evolved from a course he taught to introduce graduate students to computational problem-solving in physics and engineering.

    After this, his 40th year on the MIT faculty, Hutchinson will be stepping back from teaching. “It’s important for new generations of students to be taught by people at the pinnacle of their mental and intellectual capacity, and when you reach my age, you’re aware of the fact that you’re slowing down,” he says.

    Hutchinson’s at no loss for ways to spend his time. As a devout Christian, he speaks and writes about the relationship between religion and science, trying to help skeptics on both sides find common ground. He sings in two choral groups, and is very busy grandparenting four grandsons. For a complete change of pace, Hutchinson goes fly fishing.

    But he still has plans to explore new frontiers in plasma physics. “I’m gratified to say I still do important research,” he says. “I’ve solved most of the problems in electron holes, and now I need to say something about ion holes!” More

  • in

    Strengthening electron-triggered light emission

    The way electrons interact with photons of light is a key part of many modern technologies, from lasers to solar panels to LEDs. But the interaction is inherently a weak one because of a major mismatch in scale: A wavelength of visible light is about 1,000 times larger than an electron, so the way the two things affect each other is limited by that disparity.

    Now, researchers at MIT and elsewhere have come up with an innovative way to make much stronger interactions between photons and electrons possible, in the process producing a hundredfold increase in the emission of light from a phenomenon called Smith-Purcell radiation. The finding has potential implications for both commercial applications and fundamental scientific research, although it will require more years of research to make it practical.

    The findings are reported today in the journal Nature, in a paper by MIT postdocs Yi Yang (now an assistant professor at the University of Hong Kong) and Charles Roques-Carmes, MIT professors Marin Soljačić and John Joannopoulos, and five others at MIT, Harvard University, and Technion-Israel Institute of Technology.

    In a combination of computer simulations and laboratory experiments, the team found that using a beam of electrons in combination with a specially designed photonic crystal — a slab of silicon on an insulator, etched with an array of nanometer-scale holes — they could theoretically predict stronger emission by many orders of magnitude than would ordinarily be possible in conventional Smith-Purcell radiation. They also experimentally recorded a one hundredfold increase in radiation in their proof-of-concept measurements.

    Unlike other approaches to producing sources of light or other electromagnetic radiation, the free-electron-based method is fully tunable — it can produce emissions of any desired wavelength, simply by adjusting the size of the photonic structure and the speed of the electrons. This may make it especially valuable for making sources of emission at wavelengths that are difficult to produce efficiently, including terahertz waves, ultraviolet light, and X-rays.

    The team has so far demonstrated the hundredfold enhancement in emission using a repurposed electron microscope to function as an electron beam source. But they say that the basic principle involved could potentially enable far greater enhancements using devices specifically adapted for this function.

    The approach is based on a concept called flatbands, which have been widely explored in recent years for condensed matter physics and photonics but have never been applied to affecting the basic interaction of photons and free electrons. The underlying principle involves the transfer of momentum from the electron to a group of photons, or vice versa. Whereas conventional light-electron interactions rely on producing light at a single angle, the photonic crystal is tuned in such a way that it enables the production of a whole range of angles.

    The same process could also be used in the opposite direction, using resonant light waves to propel electrons, increasing their velocity in a way that could potentially be harnessed to build miniaturized particle accelerators on a chip. These might ultimately be able to perform some functions that currently require giant underground tunnels, such as the 30-kilometer-wide Large Hadron Collider in Switzerland.

    “If you could actually build electron accelerators on a chip,” Soljačić says, “you could make much more compact accelerators for some of the applications of interest, which would still produce very energetic electrons. That obviously would be huge. For many applications, you wouldn’t have to build these huge facilities.”

    The new system could also potentially provide a highly controllable X-ray beam for radiotherapy purposes, Roques-Carmes says.

    And the system could be used to generate multiple entangled photons, a quantum effect that could be useful in the creation of quantum-based computational and communications systems, the researchers say. “You can use electrons to couple many photons together, which is a considerably hard problem if using a purely optical approach,” says Yang. “That is one of the most exciting future directions of our work.”

    Much work remains to translate these new findings into practical devices, Soljačić cautions. It may take some years to develop the necessary interfaces between the optical and electronic components and how to connect them on a single chip, and to develop the necessary on-chip electron source producing a continuous wavefront, among other challenges.

    “The reason this is exciting,” Roques-Carmes adds, “is because this is quite a different type of source.” While most technologies for generating light are restricted to very specific ranges of color or wavelength, and “it’s usually difficult to move that emission frequency. Here it’s completely tunable. Simply by changing the velocity of the electrons, you can change the emission frequency. … That excites us about the potential of these sources. Because they’re different, they offer new types of opportunities.”

    But, Soljačić concludes, “in order for them to become truly competitive with other types of sources, I think it will require some more years of research. I would say that with some serious effort, in two to five years they might start competing in at least some areas of radiation.”

    The research team also included Steven Kooi at MIT’s Institute for Soldier Nanotechnologies, Haoning Tang and Eric Mazur at Harvard University, Justin Beroz at MIT, and Ido Kaminer at Technion-Israel Institute of Technology. The work was supported by the U.S. Army Research Office through the Institute for Soldier Nanotechnologies, the U.S. Air Force Office of Scientific Research, and the U.S. Office of Naval Research. More

  • in

    Manufacturing a cleaner future

    Manufacturing had a big summer. The CHIPS and Science Act, signed into law in August, represents a massive investment in U.S. domestic manufacturing. The act aims to drastically expand the U.S. semiconductor industry, strengthen supply chains, and invest in R&D for new technological breakthroughs. According to John Hart, professor of mechanical engineering and director of the Laboratory for Manufacturing and Productivity at MIT, the CHIPS Act is just the latest example of significantly increased interest in manufacturing in recent years.

    “You have multiple forces working together: reflections from the pandemic’s impact on supply chains, the geopolitical situation around the world, and the urgency and importance of sustainability,” says Hart. “This has now aligned incentives among government, industry, and the investment community to accelerate innovation in manufacturing and industrial technology.”

    Hand-in-hand with this increased focus on manufacturing is a need to prioritize sustainability.

    Roughly one-quarter of greenhouse gas emissions came from industry and manufacturing in 2020. Factories and plants can also deplete local water reserves and generate vast amounts of waste, some of which can be toxic.

    To address these issues and drive the transition to a low-carbon economy, new products and industrial processes must be developed alongside sustainable manufacturing technologies. Hart sees mechanical engineers as playing a crucial role in this transition.

    “Mechanical engineers can uniquely solve critical problems that require next-generation hardware technologies, and know how to bring their solutions to scale,” says Hart.

    Several fast-growing companies founded by faculty and alumni from MIT’s Department of Mechanical Engineering offer solutions for manufacturing’s environmental problem, paving the path for a more sustainable future.

    Gradiant: Cleantech water solutions

    Manufacturing requires water, and lots of it. A medium-sized semiconductor fabrication plant uses upward of 10 million gallons of water a day. In a world increasingly plagued by droughts, this dependence on water poses a major challenge.

    Gradiant offers a solution to this water problem. Co-founded by Anurag Bajpayee SM ’08, PhD ’12 and Prakash Govindan PhD ’12, the company is a pioneer in sustainable — or “cleantech” — water projects.

    As doctoral students in the Rohsenow Kendall Heat Transfer Laboratory, Bajpayee and Govindan shared a pragmatism and penchant for action. They both worked on desalination research — Bajpayee with Professor Gang Chen and Govindan with Professor John Lienhard.

    Inspired by a childhood spent during a severe drought in Chennai, India, Govindan developed for his PhD a humidification-dehumidification technology that mimicked natural rainfall cycles. It was with this piece of technology, which they named Carrier Gas Extraction (CGE), that the duo founded Gradiant in 2013.

    The key to CGE lies in a proprietary algorithm that accounts for variability in the quality and quantity in wastewater feed. At the heart of the algorithm is a nondimensional number, which Govindan proposes one day be called the “Lienhard Number,” after his doctoral advisor.

    “When the water quality varies in the system, our technology automatically sends a signal to motors within the plant to adjust the flow rates to bring back the nondimensional number to a value of one. Once it’s brought back to a value of one, you’re running in optimal condition,” explains Govindan, who serves as chief operating officer of Gradiant.

    This system can treat and clean the wastewater produced by a manufacturing plant for reuse, ultimately conserving millions of gallons of water each year.

    As the company has grown, the Gradiant team has added new technologies to their arsenal, including Selective Contaminant Extraction, a cost-efficient method that removes only specific contaminants, and a brine-concentration method called Counter-Flow Reverse Osmosis. They now offer a full technology stack of water and wastewater treatment solutions to clients in industries including pharmaceuticals, energy, mining, food and beverage, and the ever-growing semiconductor industry.

    “We are an end-to-end water solutions provider. We have a portfolio of proprietary technologies and will pick and choose from our ‘quiver’ depending on a customer’s needs,” says Bajpayee, who serves as CEO of Gradiant. “Customers look at us as their water partner. We can take care of their water problem end-to-end so they can focus on their core business.”

    Gradiant has seen explosive growth over the past decade. With 450 water and wastewater treatment plants built to date, they treat the equivalent of 5 million households’ worth of water each day. Recent acquisitions saw their total employees rise to above 500.

    The diversity of Gradiant’s solutions is reflected in their clients, who include Pfizer, AB InBev, and Coca-Cola. They also count semiconductor giants like Micron Technology, GlobalFoundries, Intel, and TSMC among their customers.

    “Over the last few years, we have really developed our capabilities and reputation serving semiconductor wastewater and semiconductor ultrapure water,” says Bajpayee.

    Semiconductor manufacturers require ultrapure water for fabrication. Unlike drinking water, which has a total dissolved solids range in the parts per million, water used to manufacture microchips has a range in the parts per billion or quadrillion.

    Currently, the average recycling rate at semiconductor fabrication plants — or fabs — in Singapore is only 43 percent. Using Gradiant’s technologies, these fabs can recycle 98-99 percent of the 10 million gallons of water they require daily. This reused water is pure enough to be put back into the manufacturing process.

    “What we’ve done is eliminated the discharge of this contaminated water and nearly eliminated the dependence of the semiconductor fab on the public water supply,” adds Bajpayee.

    With new regulations being introduced, pressure is increasing for fabs to improve their water use, making sustainability even more important to brand owners and their stakeholders.

    As the domestic semiconductor industry expands in light of the CHIPS and Science Act, Gradiant sees an opportunity to bring their semiconductor water treatment technologies to more factories in the United States.

    Via Separations: Efficient chemical filtration

    Like Bajpayee and Govindan, Shreya Dave ’09, SM ’12, PhD ’16 focused on desalination for her doctoral thesis. Under the guidance of her advisor Jeffrey Grossman, professor of materials science and engineering, Dave built a membrane that could enable more efficient and cheaper desalination.

    A thorough cost and market analysis brought Dave to the conclusion that the desalination membrane she developed would not make it to commercialization.

    “The current technologies are just really good at what they do. They’re low-cost, mass produced, and they worked. There was no room in the market for our technology,” says Dave.

    Shortly after defending her thesis, she read a commentary article in the journal Nature that changed everything. The article outlined a problem. Chemical separations that are central to many manufacturing processes require a huge amount of energy. Industry needed more efficient and cheaper membranes. Dave thought she might have a solution.

    After determining there was an economic opportunity, Dave, Grossman, and Brent Keller PhD ’16 founded Via Separations in 2017. Shortly thereafter, they were chosen as one of the first companies to receive funding from MIT’s venture firm, The Engine.

    Currently, industrial filtration is done by heating chemicals at very high temperatures to separate compounds. Dave likens it to making pasta by boiling all of the water off until it evaporates and all you are left with is the pasta noodles. In manufacturing, this method of chemical separation is extremely energy-intensive and inefficient.

    Via Separations has created the chemical equivalent of a “pasta strainer.” Rather than using heat to separate, their membranes “strain” chemical compounds. This method of chemical filtration uses 90 percent less energy than standard methods.

    While most membranes are made of polymers, Via Separations’ membranes are made with graphene oxide, which can withstand high temperatures and harsh conditions. The membrane is calibrated to the customer’s needs by altering the pore size and tuning the surface chemistry.

    Currently, Dave and her team are focusing on the pulp and paper industry as their beachhead market. They have developed a system that makes the recovery of a substance known as “black liquor” more energy efficient.

    “When tree becomes paper, only one-third of the biomass is used for the paper. Currently the most valuable use for the remaining two-thirds not needed for paper is to take it from a pretty dilute stream to a pretty concentrated stream using evaporators by boiling off the water,” says Dave.

    This black liquor is then burned. Most of the resulting energy is used to power the filtration process.

    “This closed-loop system accounts for an enormous amount of energy consumption in the U.S. We can make that process 84 percent more efficient by putting the ‘pasta strainer’ in front of the boiler,” adds Dave.

    VulcanForms: Additive manufacturing at industrial scale

    The first semester John Hart taught at MIT was a fruitful one. He taught a course on 3D printing, broadly known as additive manufacturing (AM). While it wasn’t his main research focus at the time, he found the topic fascinating. So did many of the students in the class, including Martin Feldmann MEng ’14.

    After graduating with his MEng in advanced manufacturing, Feldmann joined Hart’s research group full time. There, they bonded over their shared interest in AM. They saw an opportunity to innovate with an established metal AM technology, known as laser powder bed fusion, and came up with a concept to realize metal AM at an industrial scale.

    The pair co-founded VulcanForms in 2015.

    “We have developed a machine architecture for metal AM that can build parts with exceptional quality and productivity,” says Hart. “And, we have integrated our machines in a fully digital production system, combining AM, postprocessing, and precision machining.”

    Unlike other companies that sell 3D printers for others to produce parts, VulcanForms makes and sells parts for their customers using their fleet of industrial machines. VulcanForms has grown to nearly 400 employees. Last year, the team opened their first production factory, known as “VulcanOne,” in Devens, Massachusetts.

    The quality and precision with which VulcanForms produces parts is critical for products like medical implants, heat exchangers, and aircraft engines. Their machines can print layers of metal thinner than a human hair.

    “We’re producing components that are difficult, or in some cases impossible to manufacture otherwise,” adds Hart, who sits on the company’s board of directors.

    The technologies developed at VulcanForms may help lead to a more sustainable way to manufacture parts and products, both directly through the additive process and indirectly through more efficient, agile supply chains.

    One way that VulcanForms, and AM in general, promotes sustainability is through material savings.

    Many of the materials VulcanForms uses, such as titanium alloys, require a great deal of energy to produce. When titanium parts are 3D-printed, substantially less of the material is used than in a traditional machining process. This material efficiency is where Hart sees AM making a large impact in terms of energy savings.

    Hart also points out that AM can accelerate innovation in clean energy technologies, ranging from more efficient jet engines to future fusion reactors.

    “Companies seeking to de-risk and scale clean energy technologies require know-how and access to advanced manufacturing capability, and industrial additive manufacturing is transformative in this regard,” Hart adds.

    LiquiGlide: Reducing waste by removing friction

    There is an unlikely culprit when it comes to waste in manufacturing and consumer products: friction. Kripa Varanasi, professor of mechanical engineering, and the team at LiquiGlide are on a mission to create a frictionless future, and substantially reduce waste in the process.

    Founded in 2012 by Varanasi and alum David Smith SM ’11, LiquiGlide designs custom coatings that enable liquids to “glide” on surfaces. Every last drop of a product can be used, whether it’s being squeezed out of a tube of toothpaste or drained from a 500-liter tank at a manufacturing plant. Making containers frictionless substantially minimizes wasted product, and eliminates the need to clean a container before recycling or reusing.

    Since launching, the company has found great success in consumer products. Customer Colgate utilized LiquiGlide’s technologies in the design of the Colgate Elixir toothpaste bottle, which has been honored with several industry awards for design. In a collaboration with world- renowned designer Yves Béhar, LiquiGlide is applying their technology to beauty and personal care product packaging. Meanwhile, the U.S. Food and Drug Administration has granted them a Device Master Filing, opening up opportunities for the technology to be used in medical devices, drug delivery, and biopharmaceuticals.

    In 2016, the company developed a system to make manufacturing containers frictionless. Called CleanTanX, the technology is used to treat the surfaces of tanks, funnels, and hoppers, preventing materials from sticking to the side. The system can reduce material waste by up to 99 percent.

    “This could really change the game. It saves wasted product, reduces wastewater generated from cleaning tanks, and can help make the manufacturing process zero-waste,” says Varanasi, who serves as chair at LiquiGlide.

    LiquiGlide works by creating a coating made of a textured solid and liquid lubricant on the container surface. When applied to a container, the lubricant remains infused within the texture. Capillary forces stabilize and allow the liquid to spread on the surface, creating a continuously lubricated surface that any viscous material can slide right down. The company uses a thermodynamic algorithm to determine the combinations of safe solids and liquids depending on the product, whether it’s toothpaste or paint.

    The company has built a robotic spraying system that can treat large vats and tanks at manufacturing plants on site. In addition to saving companies millions of dollars in wasted product, LiquiGlide drastically reduces the amount of water needed to regularly clean these containers, which normally have product stuck to the sides.

    “Normally when you empty everything out of a tank, you still have residue that needs to be cleaned with a tremendous amount of water. In agrochemicals, for example, there are strict regulations about how to deal with the resulting wastewater, which is toxic. All of that can be eliminated with LiquiGlide,” says Varanasi.

    While the closure of many manufacturing facilities early in the pandemic slowed down the rollout of CleanTanX pilots at plants, things have picked up in recent months. As manufacturing ramps up both globally and domestically, Varanasi sees a growing need for LiquiGlide’s technologies, especially for liquids like semiconductor slurry.

    Companies like Gradiant, Via Separations, VulcanForms, and LiquiGlide demonstrate that an expansion in manufacturing industries does not need to come at a steep environmental cost. It is possible for manufacturing to be scaled up in a sustainable way.

    “Manufacturing has always been the backbone of what we do as mechanical engineers. At MIT in particular, there is always a drive to make manufacturing sustainable,” says Evelyn Wang, Ford Professor of Engineering and former head of the Department of Mechanical Engineering. “It’s amazing to see how startups that have an origin in our department are looking at every aspect of the manufacturing process and figuring out how to improve it for the health of our planet.”

    As legislation like the CHIPS and Science Act fuels growth in manufacturing, there will be an increased need for startups and companies that develop solutions to mitigate the environmental impact, bringing us closer to a more sustainable future. More

  • in

    Evelyn Wang appointed as director of US Department of Energy’s Advanced Research Projects Agency-Energy

    On Thursday, the United States Senate confirmed the appointment of Evelyn Wang, the Ford Professor of Engineering and head of the Department of Mechanical Engineering, as director of the Department of Energy’s (DOE) Advanced Research Projects Agency-Energy (ARPA-E).

    “I am deeply honored by the opportunity to serve as the director of ARPA-E. I’d like to thank President Biden, for his nomination to this important role, and Secretary Granholm, for her confidence in my abilities. I am thrilled to be joining the incredibly talented team at ARPA-E and look forward to helping bring innovative energy technologies that bolster our nation’s economy and national security to market,” says Wang. 

    An internationally recognized leader in applying nanotechnology to heat transfer, Wang has developed a number of high-efficiency, clean energy, and clean water solutions. Wang received a bachelor’s degree in mechanical engineering from MIT in 2000. After receiving her master’s degree and PhD from Stanford University, she returned to MIT as a faculty member in 2007. In 2018, she was named department head of MIT’s Department of Mechanical Engineering.

    As director of ARPA-E, Wang will advance the agency’s mission to fund and support early-stage energy research that has the potential to impact energy generation, storage, and use. The agency helps researchers commercialize innovative technologies that, according to ARPA-E, “have the potential to radically improve U.S. economic prosperity, national security, and environmental well-being.”

    “I am so grateful to the Senate for confirming Dr. Evelyn Wang to serve as Director of DOE’s Advanced Research Projects Agency-Energy,” U.S. Secretary of Energy Jennifer M. Granholm said in a statement today. “Now more than ever, we rely on ARPA-E to support early-stage energy technologies that will help us tackle climate change and strengthen American competitiveness. Dr. Wang’s experience and expertise with groundbreaking research will ensure that ARPA-E continues its role as a key engine of innovation and climate action. I am deeply grateful for Dr. Wang’s willingness to serve the American people, and we’re so excited to welcome her to DOE.” 

    Wang has served as principal investigator of MIT’s Device Research Lab. She and her team have developed a number of devices that offer solutions to the world’s many energy and water challenges. These devices include an aerogel that drastically improves window insulation, a high-efficiency solar powered desalination system, a radiative cooling device that requires no electricity, and a system that pulls potable water out of air, even in arid conditions.

    Throughout her career, Wang has been recognized with multiple awards and honors. In 2021, she was elected as a Fellow of the American Association for the Advancement of Science. She received the American Society of Mechanical Engineering (ASME) Gustus L. Memorial Award for outstanding achievement in mechanical engineering in 2017 and was named an ASME Fellow in 2015. Having mentored and advised hundreds of students at MIT, Wang was honored with a MIT Committed to Caring Award for her commitment to mentoring graduate students. She has also served as co-chair of the inaugural Rising Stars in Mechanical Engineering program to encourage women graduate students and postdocs considering future careers in academia.

    As department head, Wang has led and implemented a variety of strategic research, educational, and community initiatives in MIT’s Department of Mechanical Engineering. Alongside other departmental leaders, she led a focus on groundbreaking research advances that help address several “grand challenges” that our world faces. She worked closely with faculty and teaching staff on developing educational offerings that prepare the next generation of mechanical engineers for the workforce. She also championed new initiatives to make the department a more diverse, equitable, and inclusive community for students, faculty, and staff. 

    Wang, who is stepping down as department head effective immediately in light of her confirmation, will be taking a temporary leave as a faculty member at MIT while she serves in this role. MIT School of Engineering Dean Anantha Chandrakasan will share plans for the search for her replacement with the mechanical engineering community in the coming days.

    Once sworn in, Wang will officially assume her role as director of ARPA-E. More

  • in

    MIT scientists contribute to National Ignition Facility fusion milestone

    On Monday, Dec. 5, at around 1 a.m., a tiny sphere of deuterium-tritium fuel surrounded by a cylindrical can of gold called a hohlraum was targeted by 192 lasers at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) in California. Over the course of billionths of a second, the lasers fired, generating X-rays inside the gold can, and imploding the sphere of fuel.

    On that morning, for the first time ever, the lasers delivered 2.1 megajoules of energy and yielded 3.15 megajoules in return, achieving a historic fusion energy gain well above 1 — a result verified by diagnostic tools developed by the MIT Plasma Science and Fusion Center (PSFC). The use of these tools and their importance was referenced by Arthur Pak, a LLNL staff scientist who spoke at a U.S. Department of Energy press event on Dec. 13 announcing the NIF’s success.

    Johan Frenje, head of the PSFC High-Energy-Density Physics division, notes that this milestone “will have profound implications for laboratory fusion research in general.”

    Since the late 1950s, researchers worldwide have pursued fusion ignition and energy gain in a laboratory, considering it one of the grand challenges of the 21st century. Ignition can only be reached when the internal fusion heating power is high enough to overcome the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop that very rapidly increases the plasma temperature. In the case of inertial confinement fusion, the method used at the NIF, ignition can initiate a “fuel burn propagation” into the surrounding dense and cold fuel, and when done correctly, enable fusion-energy gain.

    Frenje and his PSFC division initially designed dozens of diagnostic systems that were implemented at the NIF, including the vitally important magnetic recoil neutron spectrometer (MRS), which measures the neutron energy spectrum, the data from which fusion yield, plasma ion temperature, and spherical fuel pellet compression (“fuel areal density”) can be determined. Overseen by PSFC Research Scientist Maria Gatu Johnson since 2013, the MRS is one of two systems at the NIF relied upon to measure the absolute neutron yield from the Dec. 5 experiment because of its unique ability to accurately interpret an implosion’s neutron signals.

    “Before the announcement of this historic achievement could be made, the LLNL team wanted to wait until Maria had analyzed the MRS data to an adequate level for a fusion yield to be determined,” says Frenje.

    Response around MIT to NIF’s announcement has been enthusiastic and hopeful. “This is the kind of breakthrough that ignites the imagination,” says Vice President for Research Maria Zuber, “reminding us of the wonder of discovery and the possibilities of human ingenuity. Although we have a long, hard path ahead of us before fusion can deliver clean energy to the electrical grid, we should find much reason for optimism in today’s announcement. Innovation in science and technology holds great power and promise to address some of the world’s biggest challenges, including climate change.”

    Frenje also credits the rest of the team at the PSFC’s High-Energy-Density Physics division, the Laboratory for Laser Energetics at the University of Rochester, LLNL, and other collaborators for their support and involvement in this research, as well as the National Nuclear Security Administration of the Department of Energy, which has funded much of their work since the early 1990s. He is also proud of the number of MIT PhDs that have been generated by the High-Energy-Density Physics Division and subsequently hired by LLNL, including the experimental lead for this experiment, Alex Zylstra PhD ’15.

    “This is really a team effort,” says Frenje. “Without the scientific dialogue and the extensive know-how at the HEDP Division, the critical contributions made by the MRS system would not have happened.” More