More stories

  • in

    How the universe got its magnetic field

    When we look out into space, all of the astrophysical objects that we see are embedded in magnetic fields. This is true not only in the neighborhood of stars and planets, but also in the deep space between galaxies and galactic clusters. These fields are weak — typically much weaker than those of a refrigerator magnet — but they are dynamically significant in the sense that they have profound effects on the dynamics of the universe. Despite decades of intense interest and research, the origin of these cosmic magnetic fields remains one of the most profound mysteries in cosmology.

    In previous research, scientists came to understand how turbulence, the churning motion common to fluids of all types, could amplify preexisting magnetic fields through the so-called dynamo process. But this remarkable discovery just pushed the mystery one step deeper. If a turbulent dynamo could only amplify an existing field, where did the “seed” magnetic field come from in the first place?

    We wouldn’t have a complete and self-consistent answer to the origin of astrophysical magnetic fields until we understood how the seed fields arose. New work carried out by MIT graduate student Muni Zhou, her advisor Nuno Loureiro, a professor of nuclear science and engineering at MIT, and colleagues at Princeton University and the University of Colorado at Boulder provides an answer that shows the basic processes that generate a field from a completely unmagnetized state to the point where it is strong enough for the dynamo mechanism to take over and amplify the field to the magnitudes that we observe.

    Magnetic fields are everywhere

    Naturally occurring magnetic fields are seen everywhere in the universe. They were first observed on Earth thousands of years ago, through their interaction with magnetized minerals like lodestone, and used for navigation long before people had any understanding of their nature or origin. Magnetism on the sun was discovered at the beginning of the 20th century by its effects on the spectrum of light that the sun emitted. Since then, more powerful telescopes looking deep into space found that the fields were ubiquitous.

    And while scientists had long learned how to make and use permanent magnets and electromagnets, which had all sorts of practical applications, the natural origins of magnetic fields in the universe remained a mystery. Recent work has provided part of the answer, but many aspects of this question are still under debate.

    Amplifying magnetic fields — the dynamo effect

    Scientists started thinking about this problem by considering the way that electric and magnetic fields were produced in the laboratory. When conductors, like copper wire, move in magnetic fields, electric fields are created. These fields, or voltages, can then drive electrical currents. This is how the electricity that we use every day is produced. Through this process of induction, large generators or “dynamos” convert mechanical energy into the electromagnetic energy that powers our homes and offices. A key feature of dynamos is that they need magnetic fields in order to work.

    But out in the universe, there are no obvious wires or big steel structures, so how do the fields arise? Progress on this problem began about a century ago as scientists pondered the source of the Earth’s magnetic field. By then, studies of the propagation of seismic waves showed that much of the Earth, below the cooler surface layers of the mantle, was liquid, and that there was a core composed of molten nickel and iron. Researchers theorized that the convective motion of this hot, electrically conductive liquid and the rotation of the Earth combined in some way to generate the Earth’s field.

    Eventually, models emerged that showed how the convective motion could amplify an existing field. This is an example of “self-organization” — a feature often seen in complex dynamical systems — where large-scale structures grow spontaneously from small-scale dynamics. But just like in a power station, you needed a magnetic field to make a magnetic field.

    A similar process is at work all over the universe. However, in stars and galaxies and in the space between them, the electrically conducting fluid is not molten metal, but plasma — a state of matter that exists at extremely high temperatures where the electrons are ripped away from their atoms. On Earth, plasmas can be seen in lightning or neon lights. In such a medium, the dynamo effect can amplify an existing magnetic field, provided it starts at some minimal level.

    Making the first magnetic fields

    Where does this seed field come from? That’s where the recent work of Zhou and her colleagues, published May 5 in PNAS, comes in. Zhou developed the underlying theory and performed numerical simulations on powerful supercomputers that show how the seed field can be produced and what fundamental processes are at work. An important aspect of the plasma that exists between stars and galaxies is that it is extraordinarily diffuse — typically about one particle per cubic meter. That is a very different situation from the interior of stars, where the particle density is about 30 orders of magnitude higher. The low densities mean that the particles in cosmological plasmas never collide, which has important effects on their behavior that had to be included in the model that these researchers were developing.   

    Calculations performed by the MIT researchers followed the dynamics in these plasmas, which developed from well-ordered waves but became turbulent as the amplitude grew and the interactions became strongly nonlinear. By including detailed effects of the plasma dynamics at small scales on macroscopic astrophysical processes, they demonstrated that the first magnetic fields can be spontaneously produced through generic large-scale motions as simple as sheared flows. Just like the terrestrial examples, mechanical energy was converted into magnetic energy.

    An important output of their computation was the amplitude of the expected spontaneously generated magnetic field. What this showed was that the field amplitude could rise from zero to a level where the plasma is “magnetized” — that is, where the plasma dynamics are strongly affected by the presence of the field. At this point, the traditional dynamo mechanism can take over and raise the fields to the levels that are observed. Thus, their work represents a self-consistent model for the generation of magnetic fields at cosmological scale.

    Professor Ellen Zweibel of the University of Wisconsin at Madison notes that “despite decades of remarkable progress in cosmology, the origin of magnetic fields in the universe remains unknown. It is wonderful to see state-of-the-art plasma physics theory and numerical simulation brought to bear on this fundamental problem.”

    Zhou and co-workers will continue to refine their model and study the handoff from the generation of the seed field to the amplification phase of the dynamo. An important part of their future research will be to determine if the process can work on a time scale consistent with astronomical observations. To quote the researchers, “This work provides the first step in the building of a new paradigm for understanding magnetogenesis in the universe.”

    This work was funded by the National Science Foundation CAREER Award and the Future Investigators of NASA Earth and Space Science Technology (FINESST) grant. More

  • in

    MIT Climate and Sustainability Consortium announces recipients of inaugural MCSC Seed Awards

    The MIT Climate and Sustainability Consortium (MCSC) has awarded 20 projects a total of $5 million over two years in its first-ever 2022 MCSC Seed Awards program. The winning projects are led by principal investigators across all five of MIT’s schools.

    The goal of the MCSC Seed Awards is to engage MIT researchers and link the economy-wide work of the consortium to ongoing and emerging climate and sustainability efforts across campus. The program offers further opportunity to build networks among the awarded projects to deepen the impact of each and ensure the total is greater than the sum of its parts.

    For example, to drive progress under the awards category Circularity and Materials, the MCSC can facilitate connections between the technologists at MIT who are developing recovery approaches for metals, plastics, and fiber; the urban planners who are uncovering barriers to reuse; and the engineers, who will look for efficiency opportunities in reverse supply chains.

    “The MCSC Seed Awards are designed to complement actions previously outlined in Fast Forward: MIT’s Climate Action Plan for the Decade and, more specifically, the Climate Grand Challenges,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MIT Climate and Sustainability Consortium. “In collaboration with seed award recipients and MCSC industry members, we are eager to engage in interdisciplinary exploration and propel urgent advancements in climate and sustainability.” 

    By supporting MIT researchers with expertise in economics, infrastructure, community risk assessment, mobility, and alternative fuels, the MCSC will accelerate implementation of cross-disciplinary solutions in the awards category Decarbonized and Resilient Value Chains. Enhancing Natural Carbon Sinks and building connections to local communities will require associations across experts in ecosystem change, biodiversity, improved agricultural practice and engagement with farmers, all of which the consortium can begin to foster through the seed awards.

    “Funding opportunities across campus has been a top priority since launching the MCSC,” says Jeremy Gregory, MCSC executive director. “It is our honor to support innovative teams of MIT researchers through the inaugural 2022 MCSC Seed Awards program.”

    The winning projects are tightly aligned with the MCSC’s areas of focus, which were derived from a year of highly engaged collaborations with MCSC member companies. The projects apply across the member’s climate and sustainability goals.

    The MCSC’s 16 member companies span many industries, and since early 2021, have met with members of the MIT community to define focused problem statements for industry-specific challenges, identify meaningful partnerships and collaborations, and develop clear and scalable priorities. Outcomes from these collaborations laid the foundation for the focus areas, which have shaped the work of the MCSC. Specifically, the MCSC Industry Advisory Board engaged with MIT on key strategic directions, and played a critical role in the MCSC’s series of interactive events. These included virtual workshops hosted last summer, each on a specific topic that allowed companies to work with MIT and each other to align key assumptions, identify blind spots in corporate goal-setting, and leverage synergies between members, across industries. The work continued in follow-up sessions and an annual symposium.

    “We are excited to see how the seed award efforts will help our member companies reach or even exceed their ambitious climate targets, find new cross-sector links among each other, seek opportunities to lead, and ripple key lessons within their industry, while also deepening the Institute’s strong foundation in climate and sustainability research,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.

    As the seed projects take shape, the MCSC will provide ongoing opportunities for awardees to engage with the Industry Advisory Board and technical teams from the MCSC member companies to learn more about the potential for linking efforts to support and accelerate their climate and sustainability goals. Awardees will also have the chance to engage with other members of the MCSC community, including its interdisciplinary Faculty Steering Committee.

    “One of our mantras in the MCSC is to ‘amplify and extend’ existing efforts across campus; we’re always looking for ways to connect the collaborative industry relationships we’re building and the work we’re doing with other efforts on campus,” notes Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. “We feel the urgency as well as the potential, and we don’t want to miss opportunities to do more and go faster.”

    The MCSC Seed Awards complement the Climate Grand Challenges, a new initiative to mobilize the entire MIT research community around developing the bold, interdisciplinary solutions needed to address difficult, unsolved climate problems. The 27 finalist teams addressed four broad research themes, which align with the MCSC’s focus areas. From these finalist teams, five flagship projects were announced in April 2022.

    The parallels between MCSC’s focus areas and the Climate Grand Challenges themes underscore an important connection between the shared long-term research interests of industry and academia. The challenges that some of the world’s largest and most influential companies have identified are complementary to MIT’s ongoing research and innovation — highlighting the tremendous opportunity to develop breakthroughs and scalable solutions quickly and effectively. Special Presidential Envoy for Climate John Kerry underscored the importance of developing these scalable solutions, including critical new technology, during a conversation with MIT President L. Rafael Reif at MIT’s first Climate Grand Challenges showcase event last month.

    Both the MCSC Seed Awards and the Climate Grand Challenges are part of MIT’s larger commitment and initiative to combat climate change; this was underscored in “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021.

    The project titles and research leads for each of the 20 awardees listed below are categorized by MCSC focus area.

    Decarbonized and resilient value chains

    “Collaborative community mapping toolkit for resilience planning,” led by Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on Climate Grand Challenges flagship project) and Nicholas de Monchaux, professor and department head in the Department of Architecture
    “CP4All: Fast and local climate projections with scientific machine learning — towards accessibility for all of humanity,” led by Chris Hill, principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences and Dava Newman, director of the MIT Media Lab and the Apollo Program Professor in the Department of Aeronautics and Astronautics
    “Emissions reductions and productivity in U.S. manufacturing,” led by Mert Demirer, assistant professor of applied economics at the MIT Sloan School of Management and Jing Li, assistant professor and William Barton Rogers Career Development Chair of Energy Economics in the MIT Sloan School of Management
    “Logistics electrification through scalable and inter-operable charging infrastructure: operations, planning, and policy,” led by Alex Jacquillat, the 1942 Career Development Professor and assistant professor of operations research and statistics in the MIT Sloan School of Management
    “Powertrain and system design for LOHC-powered long-haul trucking,” led by William Green, the Hoyt Hottel Professor in Chemical Engineering in the Department of Chemical Engineering and postdoctoral officer, and Wai K. Cheng, professor in the Department of Mechanical Engineering and director of the Sloan Automotive Laboratory
    “Sustainable Separation and Purification of Biochemicals and Biofuels using Membranes,” led by John Lienhard, the Abdul Latif Jameel Professor of Water in the Department of Mechanical Engineering, director of the Abdul Latif Jameel Water and Food Systems Lab, and director of the Rohsenow Kendall Heat Transfer Laboratory; and Nicolas Hadjiconstantinou, professor in the Department of Mechanical Engineering, co-director of the Center for Computational Science and Engineering, associate director of the Center for Exascale Simulation of Materials in Extreme Environments, and graduate officer
    “Toolkit for assessing the vulnerability of industry infrastructure siting to climate change,” led by Michael Howland, assistant professor in the Department of Civil and Environmental Engineering

    Circularity and Materials

    “Colorimetric Sulfidation for Aluminum Recycling,” led by Antoine Allanore, associate professor of metallurgy in the Department of Materials Science and Engineering
    “Double Loop Circularity in Materials Design Demonstrated on Polyurethanes,” led by Brad Olsen, the Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering, and Kristala Prather, the Arthur Dehon Little Professor and department executive officer in the Department of Chemical Engineering
    “Engineering of a microbial consortium to degrade and valorize plastic waste,” led by Otto Cordero, associate professor in the Department of Civil and Environmental Engineering, and Desiree Plata, the Gilbert W. Winslow (1937) Career Development Professor in Civil Engineering and associate professor in the Department of Civil and Environmental Engineering
    “Fruit-peel-inspired, biodegradable packaging platform with multifunctional barrier properties,” led by Kripa Varanasi, professor in the Department of Mechanical Engineering
    “High Throughput Screening of Sustainable Polyesters for Fibers,” led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Brad Olsen, Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering
    “Short-term and long-term efficiency gains in reverse supply chains,” led by Yossi Sheffi, the Elisha Gray II Professor of Engineering Systems, professor in the Department of Civil and Environmental Engineering, and director of the Center for Transportation and Logistics
    The costs and benefits of circularity in building construction, led by Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at the MIT Center for Real Estate and Department of Urban Studies and Planning, faculty director of the MIT Center for Real Estate, and faculty director for the MIT Sustainable Urbanization Lab; and Randolph Kirchain, principal research scientist and co-director of MIT Concrete Sustainability Hub

    Natural carbon sinks

    “Carbon sequestration through sustainable practices by smallholder farmers,” led by Joann de Zegher, the Maurice F. Strong Career Development Professor and assistant professor of operations management in the MIT Sloan School of Management, and Karen Zheng the George M. Bunker Professor and associate professor of operations management in the MIT Sloan School of Management
    “Coatings to protect and enhance diverse microbes for improved soil health and crop yields,” led by Ariel Furst, the Raymond A. (1921) And Helen E. St. Laurent Career Development Professor of Chemical Engineering in the Department of Chemical Engineering, and Mary Gehring, associate professor of biology in the Department of Biology, core member of the Whitehead Institute for Biomedical Research, and graduate officer
    “ECO-LENS: Mainstreaming biodiversity data through AI,” led by John Fernández, professor of building technology in the Department of Architecture and director of MIT Environmental Solutions Initiative
    “Growing season length, productivity, and carbon balance of global ecosystems under climate change,” led by Charles Harvey, professor in the Department of Civil and Environmental Engineering, and César Terrer, assistant professor in the Department of Civil and Environmental Engineering

    Social dimensions and adaptation

    “Anthro-engineering decarbonization at the million-person scale,” led by Manduhai Buyandelger, professor in the Anthropology Section, and Michael Short, the Class of ’42 Associate Professor of Nuclear Science and Engineering in the Department of Nuclear Science and Engineering
    “Sustainable solutions for climate change adaptation: weaving traditional ecological knowledge and STEAM,” led by Janelle Knox-Hayes, the Lister Brothers Associate Professor of Economic Geography and Planning and head of the Environmental Policy and Planning Group in the Department of Urban Studies and Planning, and Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on a Climate Grand Challenges flagship project) More

  • in

    Expanding energy access in rural Lesotho

    Matt Orosz’s mission for the last 20 years can be explained with a single picture: a satellite image of the world at night, with major cities blazing with light and large swaths of land shrouded in darkness.

    The image reminds Orosz SM ’03, SM ’06, PhD ’12 of what he’s trying to change. Orosz is the CEO of OnePower, an MIT spinout building networks of minigrids powered by solar energy to bring electricity to rural regions of Lesotho.

    There are other companies building minigrids in Africa, but OnePower is the only one to have accomplished the feat in Lesotho, and it’s not hard to understand why. Known as the kingdom in the sky, Lesotho is a small, developing country crossed by mountain ranges and rivers, making it difficult to get electricity to rural regions. Recent estimates suggest that less than half of all households have electricity.

    OnePower’s first minigrid is a small system that has been serving around 200 customers for more than a year. The operation is part of an eight-minigrid project that will provide reliable electricity for the first time to more than 30,000 people, 13 health clinics, 25 schools, and over 100 small businesses.

    Construction on those sites is underway, and Orosz is currently working on a power transmission and road crossing over the Senqu river, the largest in southern Africa. During the project, the operators of a health clinic on the off-grid side of the river let Orosz stay there on the condition that he fix their diesel generator. He got the generator working again, but if everything goes according to plan, the clinic won’t need it for much longer.

    “If you don’t have power, then you don’t have lights, you don’t have computers, you don’t have communications,” Orosz says. “That means hospitals can’t refer patients or get expert opinions or run equipment, and schools can’t get internet. When the fundamental institutions for health and education don’t have power, their effectiveness is pretty limited, which affects quality of life for everybody that lives in the area.”

    Finding a spark

    The health clinic Orosz is staying in isn’t far from where he first learned about energy access problems in rural Africa. Between 2000 and 2002, Orosz lived in Lesotho, without electricity, as a member of the Peace Corps. The experience inspired him to help, but without an engineering background, he knew he’d need to gain more skills first.

    “I applied to MIT so that I could gain some knowledge and experience and apply it in this setting,” Orosz says, noting he spent a lot longer at MIT than he initially intended.

    Orosz first joined the research lab of Harry Hemond, the William E Leonhard Professor of Civil and Environmental Engineering, learning about topics like physics and fluid mechanics as part of his first year at MIT. After that, he enrolled in another master’s program in technology and policy. In 2007, he began a PhD at MIT studying solar thermal and photovoltaic hybrid power generation.

    The education wasn’t the only reason Orosz stayed at MIT. Throughout his time on campus, he also took advantage of funding opportunities presented by the IDEAS Social Innovation Challenge and the MIT $100K Entrepreneurship Competition (the $50K at the time). Orosz was also awarded a Fulbright scholarship while at MIT, and was selected for grants from the World Bank and the Environmental Protection Agency.

    Orosz also aligned himself closely with MIT D-Lab. During his second master’s, he led trips to Lesotho with other D-Lab students. Between his master’s and his PhD, Orosz spent a year living in Lesotho exploring energy solutions with three other MIT students, including Amy Mueller ’02, SM ’03, PhD ’12, who is currently chief financial officer of OnePower.

    In 2015, Orosz moved to Lesotho to work on OnePower full-time. The move coincided with OnePower’s successful bid to develop the first utility-scale solar project in Lesotho, a 20-megawatt project that will sell electricity to Lesotho’s central grid in addition to OnePower’s minigrid work. OnePower expects that project, named Neo 1, to start delivering power to Lesotho’s central electric grid next year.

    “It takes quite a lot of time and money to develop utility scale solar projects, but we’ve been told by investors and partners that seven years is not unusual,” Orosz says. “It kind of reminds me of the time it took to get a PhD — surprisingly long, but corroborated by others’ experiences.”

    In conjunction with the grid-scale project, OnePower also piloted the first privately financed, fully licensed minigrid in Lesotho. The company has also set up minigrids to help power six health care centers in the mountains of Lesotho.

    OnePower’s grid-scale project and its minigrids use industry standard, large-format bifacial solar panels, mounted on single axis tracking substructures designed and built in Lesotho by OnePower, but the minigrids send energy to a powerhouse filled with lithium-ion batteries. From there, transmission lines bring the electricity to different villages, where it powers homes, businesses, schools, health clinics, police stations, churches, and more. A smart meter at each customer’s building tracks electricity usage, and customers use a phone app to pay for their electricity.

    OnePower secured funding for the projects from a network of private investors rather than through grants and donations. By paying the investors back, Orosz says OnePower will be showing that funding such projects can be a profitable investment in addition to an impactful one.

    That’s important because grants and donations will only take minigrid operators so far. Orosz says in order to provide reliable electricity to the entire continent of Africa, a huge amount of private investment is needed.

    “The goal is ultimately to prove that you can make this work: that you can generate electricity and sell it to a customer in Africa, and that revenue enables you to pay back the financier that helped you build the infrastructure in the first place,” Orosz says. “Once you close that loop, then it can scale. That’s the holy grail of minigrids.”

    Orosz believes OnePower is differentiated from other minigrid companies in that it develops and owns more of the value chain, like the tracking substructures that allow solar panels to adjust with the sun, which has helped the company continue operations during the pandemic. The technical innovations his team developed at MIT ultimately help OnePower offer lower electricity prices to people in Lesotho.

    Turning the lights on

    OnePower has doubled its employees over the last year as construction on the eight minigrids ramps up. As his team stays busy rolling those projects out, Orosz is already exploring options for the next cluster of minigrids OnePower will build.

    “If we can solve the economics and logistics in Lesotho, then it should be a lot easier to replicate this in other markets,” Orosz says.

    The goal is to bring OnePower’s minigrids to the rural communities that would benefit from them the most. As the satellite image of earth at night shows, that includes many unelectrified community across sub-Saharan Africa.

    “We think Africans in rural areas should have the same quality of power as Africans in urban areas, and that should be the same quality power as everywhere else in the world,” Orosz says. More

  • in

    Energy storage important to creating affordable, reliable, deeply decarbonized electricity systems

    In deeply decarbonized energy systems utilizing high penetrations of variable renewable energy (VRE), energy storage is needed to keep the lights on and the electricity flowing when the sun isn’t shining and the wind isn’t blowing — when generation from these VRE resources is low or demand is high. The MIT Energy Initiative’s Future of Energy Storage study makes clear the need for energy storage and explores pathways using VRE resources and storage to reach decarbonized electricity systems efficiently by 2050.

    “The Future of Energy Storage,” a new multidisciplinary report from the MIT Energy Initiative (MITEI), urges government investment in sophisticated analytical tools for planning, operation, and regulation of electricity systems in order to deploy and use storage efficiently. Because storage technologies will have the ability to substitute for or complement essentially all other elements of a power system, including generation, transmission, and demand response, these tools will be critical to electricity system designers, operators, and regulators in the future. The study also recommends additional support for complementary staffing and upskilling programs at regulatory agencies at the state and federal levels. 

    Play video

    Why is energy storage so important?

    The MITEI report shows that energy storage makes deep decarbonization of reliable electric power systems affordable. “Fossil fuel power plant operators have traditionally responded to demand for electricity — in any given moment — by adjusting the supply of electricity flowing into the grid,” says MITEI Director Robert Armstrong, the Chevron Professor of Chemical Engineering and chair of the Future of Energy Storage study. “But VRE resources such as wind and solar depend on daily and seasonal variations as well as weather fluctuations; they aren’t always available to be dispatched to follow electricity demand. Our study finds that energy storage can help VRE-dominated electricity systems balance electricity supply and demand while maintaining reliability in a cost-effective manner — that in turn can support the electrification of many end-use activities beyond the electricity sector.”

    The three-year study is designed to help government, industry, and academia chart a path to developing and deploying electrical energy storage technologies as a way of encouraging electrification and decarbonization throughout the economy, while avoiding excessive or inequitable burdens.

    Focusing on three distinct regions of the United States, the study shows the need for a varied approach to energy storage and electricity system design in different parts of the country. Using modeling tools to look out to 2050, the study team also focuses beyond the United States, to emerging market and developing economy (EMDE) countries, particularly as represented by India. The findings highlight the powerful role storage can play in EMDE nations. These countries are expected to see massive growth in electricity demand over the next 30 years, due to rapid overall economic expansion and to increasing adoption of electricity-consuming technologies such as air conditioning. In particular, the study calls attention to the pivotal role battery storage can play in decarbonizing grids in EMDE countries that lack access to low-cost gas and currently rely on coal generation.

    The authors find that investment in VRE combined with storage is favored over new coal generation over the medium and long term in India, although existing coal plants may linger unless forced out by policy measures such as carbon pricing. 

    “Developing countries are a crucial part of the global decarbonization challenge,” says Robert Stoner, the deputy director for science and technology at MITEI and one of the report authors. “Our study shows how they can take advantage of the declining costs of renewables and storage in the coming decades to become climate leaders without sacrificing economic development and modernization.”

    The study examines four kinds of storage technologies: electrochemical, thermal, chemical, and mechanical. Some of these technologies, such as lithium-ion batteries, pumped storage hydro, and some thermal storage options, are proven and available for commercial deployment. The report recommends that the government focus R&D efforts on other storage technologies, which will require further development to be available by 2050 or sooner — among them, projects to advance alternative electrochemical storage technologies that rely on earth-abundant materials. It also suggests government incentives and mechanisms that reward success but don’t interfere with project management. The report calls for the federal government to change some of the rules governing technology demonstration projects to enable more projects on storage. Policies that require cost-sharing in exchange for intellectual property rights, the report argues, discourage the dissemination of knowledge. The report advocates for federal requirements for demonstration projects that share information with other U.S. entities.

    The report says many existing power plants that are being shut down can be converted to useful energy storage facilities by replacing their fossil fuel boilers with thermal storage and new steam generators. This retrofit can be done using commercially available technologies and may be attractive to plant owners and communities — using assets that would otherwise be abandoned as electricity systems decarbonize.  

    The study also looks at hydrogen and concludes that its use for storage will likely depend on the extent to which hydrogen is used in the overall economy. That broad use of hydrogen, the report says, will be driven by future costs of hydrogen production, transportation, and storage — and by the pace of innovation in hydrogen end-use applications. 

    The MITEI study predicts the distribution of hourly wholesale prices or the hourly marginal value of energy will change in deeply decarbonized power systems — with many more hours of very low prices and more hours of high prices compared to today’s wholesale markets. So the report recommends systems adopt retail pricing and retail load management options that reward all consumers for shifting electricity use away from times when high wholesale prices indicate scarcity, to times when low wholesale prices signal abundance. 

    The Future of Energy Storage study is the ninth in MITEI’s “Future of” series, exploring complex and vital issues involving energy and the environment. Previous studies have focused on nuclear power, solar energy, natural gas, geothermal energy, and coal (with capture and sequestration of carbon dioxide emissions), as well as on systems such as the U.S. electric power grid. The Alfred P. Sloan Foundation and the Heising-Simons Foundation provided core funding for MITEI’s Future of Energy Storage study. MITEI members Equinor and Shell provided additional support.  More

  • in

    Solar-powered desalination device wins MIT $100K competition

    The winner of this year’s MIT $100K Entrepreneurship Competition is commercializing a new water desalination technology.

    Nona Desalination says it has developed a device capable of producing enough drinking water for 10 people at half the cost and with 1/10th the power of other water desalination devices. The device is roughly the size and weight of a case of bottled water and is powered by a small solar panel.

    “Our mission is to make portable desalination sustainable and easy,” said Nona CEO and MIT MBA candidate Bruce Crawford in the winning pitch, delivered to an audience in the Kresge Auditorium and online.

    The traditional approach for water desalination relies on a power-intensive process called reverse osmosis. In contrast, Nona uses a technology developed in MIT’s Research Laboratory of Electronics that removes salt and bacteria from seawater using an electrical current.

    “Because we can do all this at super low pressure, we don’t need the high-pressure pump [used in reverse osmosis], so we don’t need a lot of electricity,” says Crawford, who co-founded the company with MIT Research Scientist Junghyo Yoon. “Our device runs on less power than a cell phone charger.”

    The founders cited problems like tropical storms, drought, and infrastructure crises like the one in Flint, Michigan, to underscore that clean water access is not just a problem in developing countries. In Houston, after Hurricane Harvey caused catastrophic flooding in 2017, some residents were advised not to drink their tap water for months.

    The company has already developed a small prototype that produces clean drinking water. With its winnings, Nona will build more prototypes to give to early customers.

    The company plans to sell its first units to sailors before moving into the emergency preparedness space in the U.S., which it estimates to be a $5 billion industry. From there, it hopes to scale globally to help with disaster relief. The technology could also possibly be used for hydrogen production, oil and gas separation, and more.

    The MIT $100K is MIT’s largest entrepreneurship competition. It began in 1989 and is organized by students with support from the Martin Trust Center for MIT Entrepreneurship and the MIT Sloan School of Management. Each team must include at least one current MIT student.

    The second-place $25,000 prize went to Inclusive.ly, a company helping people and organizations create a more inclusive environment.

    The company uses conversational artificial intelligence and natural language processing to detect words and phrases that contain bias, and can measure the level of bias or inclusivity in communication.

    “We’re here to create a world where everyone feels invited to the conversation,” said MBA candidate Yeti Khim, who co-founded the company with fellow MBA candidates Joyce Chen and Priya Bhasin.

    Inclusive.ly can scan a range of communications and make suggestions for improvement. The algorithm can detect discrimination, microaggression, and condescension, and the founders say it analyzes language in a more nuanced way than tools like Grammarly.

    The company is currently developing a plugin for web browsers and is hoping to partner with large enterprise customers later this year. It will work with internal communications like emails as well as external communications like sales and marketing material.

    Inclusive.ly plans to sell to organizations on a subscription model and notes that diversity and inclusion is becoming a higher priority in many companies. Khim cited studies showing that lack of inclusion hinders employee productivity, retention, and recruiting.

    “We could all use a little bit of help to create the most inclusive version of ourselves,” Khim said.

    The third-place prize went to RTMicrofluidics, which is building at-home tests for a range of diseases including strep throat, tuberculosis, and mononucleosis. The test is able to detect a host of bacterial and viral pathogens in saliva and provide accurate test results in less than 30 minutes.

    The audience choice award went to Sparkle, which has developed a molecular dye technology that can illuminate tumors, making them easier to remove during surgery.

    This year’s $100K event was the culmination of a process that began last March, when 60 teams applied for the program. Out of that pool, 20 semifinalists were given additional mentoring and support before eight finalists were selected to pitch.

    The other finalist teams were:

    Astrahl, which is developing high resolution and affordable X-ray systems by integrating nanotechnologies with scintillators;

    Encreto Therapeutics, which is discovering medications to satiate appetite for people with obesity;

    Iridence, which has patented a biomaterial to replace minerals like mica as a way to make the beauty industry more sustainable; and

    Mantel, which is developing a liquid material for more efficient carbon removal that operates at high temperatures. More

  • in

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    MIT’s Plasma Science and Fusion Center (PSFC) will substantially expand its fusion energy research and education activities under a new five-year agreement with Institute spinout Commonwealth Fusion Systems (CFS).

    “This expanded relationship puts MIT and PSFC in a prime position to be an even stronger academic leader that can help deliver the research and education needs of the burgeoning fusion energy industry, in part by utilizing the world’s first burning plasma and net energy fusion machine, SPARC,” says PSFC director Dennis Whyte. “CFS will build SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education.”

    Commercial fusion energy has the potential to play a significant role in combating climate change, and there is a concurrent increase in interest from the energy sector, governments, and foundations. The new agreement, administered by the MIT Energy Initiative (MITEI), where CFS is a startup member, will help PSFC expand its fusion technology efforts with a wider variety of sponsors. The collaboration enables rapid execution at scale and technology transfer into the commercial sector as soon as possible.

    This new agreement doubles CFS’ financial commitment to PSFC, enabling greater recruitment and support of students, staff, and faculty. “We’ll significantly increase the number of graduate students and postdocs, and just as important they will be working on a more diverse set of fusion science and technology topics,” notes Whyte. It extends the collaboration between PSFC and CFS that resulted in numerous advances toward fusion power plants, including last fall’s demonstration of a high-temperature superconducting (HTS) fusion electromagnet with record-setting field strength of 20 tesla.

    The combined magnetic fusion efforts at PSFC will surpass those in place during the operations of the pioneering Alcator C-Mod tokamak device that operated from 1993 to 2016. This increase in activity reflects a moment when multiple fusion energy technologies are seeing rapidly accelerating development worldwide, and the emergence of a new fusion energy industry that would require thousands of trained people.

    MITEI director Robert Armstrong adds, “Our goal from the beginning was to create a membership model that would allow startups who have specific research challenges to leverage the MITEI ecosystem, including MIT faculty, students, and other MITEI members. The team at the PSFC and MITEI have worked seamlessly to support CFS, and we are excited for this next phase of the relationship.”

    PSFC is supporting CFS’ efforts toward realizing the SPARC fusion platform, which facilitates rapid development and refinement of elements (including HTS magnets) needed to build ARC, a compact, modular, high-field fusion power plant that would set the stage for commercial fusion energy production. The concepts originated in Whyte’s nuclear science and engineering class 22.63 (Principles of Fusion Engineering) and have been carried forward by students and PSFC staff, many of whom helped found CFS; the new activity will expand research into advanced technologies for the envisioned pilot plant.

    “This has been an incredibly effective collaboration that has resulted in a major breakthrough for commercial fusion with the successful demonstration of revolutionary fusion magnet technology that will enable the world’s first commercially relevant net energy fusion device, SPARC, currently under construction,” says Bob Mumgaard SM ’15, PhD ’15, CEO of Commonwealth Fusion Systems. “We look forward to this next phase in the collaboration with MIT as we tackle the critical research challenges ahead for the next steps toward fusion power plant development.”

    In the push for commercial fusion energy, the next five years are critical, requiring intensive work on materials longevity, heat transfer, fuel recycling, maintenance, and other crucial aspects of power plant development. It will need innovation from almost every engineering discipline. “Having great teams working now, it will cut the time needed to move from SPARC to ARC, and really unleash the creativity. And the thing MIT does so well is cut across disciplines,” says Whyte.

    “To address the climate crisis, the world needs to deploy existing clean energy solutions as widely and as quickly as possible, while at the same time developing new technologies — and our goal is that those new technologies will include fusion power,” says Maria T. Zuber, MIT’s vice president for research. “To make new climate solutions a reality, we need focused, sustained collaborations like the one between MIT and Commonwealth Fusion Systems. Delivering fusion power onto the grid is a monumental challenge, and the combined capabilities of these two organizations are what the challenge demands.”

    On a strategic level, climate change and the imperative need for widely implementable carbon-free energy have helped orient the PSFC team toward scalability. “Building one or 10 fusion plants doesn’t make a difference — we have to build thousands,” says Whyte. “The design decisions we make will impact the ability to do that down the road. The real enemy here is time, and we want to remove as many impediments as possible and commit to funding a new generation of scientific leaders. Those are critically important in a field with as much interdisciplinary integration as fusion.” More

  • in

    Team creates map for production of eco-friendly metals

    In work that could usher in more efficient, eco-friendly processes for producing important metals like lithium, iron, and cobalt, researchers from MIT and the SLAC National Accelerator Laboratory have mapped what is happening at the atomic level behind a particularly promising approach called metal electrolysis.

    By creating maps for a wide range of metals, they not only determined which metals should be easiest to produce using this approach, but also identified fundamental barriers behind the efficient production of others. As a result, the researchers’ map could become an important design tool for optimizing the production of all these metals.

    The work could also aid the development of metal-air batteries, cousins of the lithium-ion batteries used in today’s electric vehicles.

    Most of the metals key to society today are produced using fossil fuels. These fuels generate the high temperatures necessary to convert the original ore into its purified metal. But that process is a significant source of greenhouse gases — steel alone accounts for some 7 percent of carbon dioxide emissions globally. As a result, researchers from around the world are working to identify more eco-friendly ways for the production of metals.

    One promising approach is metal electrolysis, in which a metal oxide, the ore, is zapped with electricity to create pure metal with oxygen as the byproduct. That is the reaction explored at the atomic level in new research reported in the April 8 issue of the journal Chemistry of Materials.

    Donald Siegel is department chair and professor of mechanical engineering at the University of Texas at Austin. Says Siegel, who was not involved in the Chemistry of Materials study: “This work is an important contribution to improving the efficiency of metal production from metal oxides. It clarifies our understanding of low-carbon electrolysis processes by tracing the underlying thermodynamics back to elementary metal-oxygen interactions. I expect that this work will aid in the creation of design rules that will make these industrially important processes less reliant on fossil fuels.”

    Yang Shao-Horn, the JR East Professor of Engineering in MIT’s Department of Materials Science and Engineering (DMSE) and Department of Mechanical Engineering, is a leader of the current work, with Michal Bajdich of SLAC.

    “Here we aim to establish some basic understanding to predict the efficiency of electrochemical metal production and metal-air batteries from examining computed thermodynamic barriers for the conversion between metal and metal oxides,” says Shao-Horn, who is on the research team for MIT’s new Center for Electrification and Decarbonization of Industry, a winner of the Institute’s first-ever Climate Grand Challenges competition. Shao-Horn is also affiliated with MIT’s Materials Research Laboratory and Research Laboratory of Electronics.

    In addition to Shao-Horn and Bajdich, other authors of the Chemistry of Materials paper are Jaclyn R. Lunger, first author and a DMSE graduate student; mechanical engineering senior Naomi Lutz; and DMSE graduate student Jiayu Peng.

    Other applications

    The work could also aid in developing metal-air batteries such as lithium-air, aluminum-air, and zinc-air batteries. These cousins of the lithium-ion batteries used in today’s electric vehicles have the potential to electrify aviation because their energy densities are much higher. However, they are not yet on the market due to a variety of problems including inefficiency.

    Charging metal-air batteries also involves electrolysis. As a result, the new atomic-level understanding of these reactions could not only help engineers develop efficient electrochemical routes for metal production, but also design more efficient metal-air batteries.

    Learning from water splitting

    Electrolysis is also used to split water into oxygen and hydrogen, which stores the resulting energy. That hydrogen, in turn, could become an eco-friendly alternative to fossil fuels. Since much more is known about water electrolysis, the focus of Bajdich’s work at SLAC, than the electrolysis of metal oxides, the team compared the two processes for the first time.

    The result: “Slowly, we uncovered the elementary steps involved in metal electrolysis,” says Bajdich. The work was challenging, says Lunger, because “it was unclear to us what those steps are. We had to figure out how to get from A to B,” or from a metal oxide to metal and oxygen.

    All of the work was conducted with supercomputer simulations. “It’s like a sandbox of atoms, and then we play with them. It’s a little like Legos,” says Bajdich. More specifically, the team explored different scenarios for the electrolysis of several metals. Each involved different catalysts, molecules that boost the speed of a reaction.

    Says Lunger, “To optimize the reaction, you want to find the catalyst that makes it most efficient.” The team’s map is essentially a guide for designing the best catalysts for each different metal.

    What’s next? Lunger noted that the current work focused on the electrolysis of pure metals. “I’m interested in seeing what happens in more complex systems involving multiple metals. Can you make the reaction more efficient if there’s sodium and lithium present, or cadmium and cesium?”

    This work was supported by a U.S. Department of Energy Office of Science Graduate Student Research award. It was also supported by an MIT Energy Initiative fellowship, the Toyota Research Institute through the Accelerated Materials Design and Discovery Program, the Catalysis Science Program of Department of Energy, Office of Basic Energy Sciences, and by the Differentiate Program through the U.S. Advanced Research Projects Agency — Energy.  More

  • in

    Absent legislative victory, the president can still meet US climate goals

    The most recent United Nations climate change report indicates that without significant action to mitigate global warming, the extent and magnitude of climate impacts — from floods to droughts to the spread of disease — could outpace the world’s ability to adapt to them. The latest effort to introduce meaningful climate legislation in the United States Congress, the Build Back Better bill, has stalled. The climate package in that bill — $555 billion in funding for climate resilience and clean energy — aims to reduce U.S. greenhouse gas emissions by about 50 percent below 2005 levels by 2030, the nation’s current Paris Agreement pledge. With prospects of passing a standalone climate package in the Senate far from assured, is there another pathway to fulfilling that pledge?

    Recent detailed legal analysis shows that there is at least one viable option for the United States to achieve the 2030 target without legislative action. Under Section 115 on International Air Pollution of the Clean Air Act, the U.S. Environmental Protection Agency (EPA) could assign emissions targets to the states that collectively meet the national goal. The president could simply issue an executive order to empower the EPA to do just that. But would that be prudent?

    A new study led by researchers at the MIT Joint Program on the Science and Policy of Global Change explores how, under a federally coordinated carbon dioxide emissions cap-and-trade program aligned with the U.S. Paris Agreement pledge and implemented through Section 115 of the Clean Air Act, the EPA might allocate emissions cuts among states. Recognizing that the Biden or any future administration considering this strategy would need to carefully weigh its benefits against its potential political risks, the study highlights the policy’s net economic benefits to the nation.

    The researchers calculate those net benefits by combining the estimated total cost of carbon dioxide emissions reduction under the policy with the corresponding estimated expenditures that would be avoided as a result of the policy’s implementation — expenditures on health care due to particulate air pollution, and on society at large due to climate impacts.

    Assessing three carbon dioxide emissions allocation strategies (each with legal precedent) for implementing Section 115 to return cap-and-trade program revenue to the states and distribute it to state residents on an equal per-capita basis, the study finds that at the national level, the economic net benefits are substantial, ranging from $70 to $150 billion in 2030. The results appear in the journal Environmental Research Letters.

    “Our findings not only show significant net gains to the U.S. economy under a national emissions policy implemented through the Clean Air Act’s Section 115,” says Mei Yuan, a research scientist at the MIT Joint Program and lead author of the study. “They also show the policy impact on consumer costs may differ across states depending on the choice of allocation strategy.”

    The national price on carbon needed to achieve the policy’s emissions target, as well as the policy’s ultimate cost to consumers, are substantially lower than those found in studies a decade earlier, although in line with other recent studies. The researchers speculate that this is largely due to ongoing expansion of ambitious state policies in the electricity sector and declining renewable energy costs. The policy is also progressive, consistent with earlier studies, in that equal lump-sum distribution of allowance revenue to state residents generally leads to net benefits to lower-income households. Regional disparities in consumer costs can be moderated by the allocation of allowances among states.

    State-by-state emissions estimates for the study are derived from MIT’s U.S. Regional Energy Policy model, with electricity sector detail of the Renewable Energy Development System model developed by the U.S. National Renewable Energy Laboratory; air quality benefits are estimated using U.S. EPA and other models; and the climate benefits estimate is based on the social cost of carbon, the U.S. federal government’s assessment of the economic damages that would result from emitting one additional ton of carbon dioxide into the atmosphere (currently $51/ton, adjusted for inflation). 

    “In addition to illustrating the economic, health, and climate benefits of a Section 115 implementation, our study underscores the advantages of a policy that imposes a uniform carbon price across all economic sectors,” says John Reilly, former co-director of the MIT Joint Program and a study co-author. “A national carbon price would serve as a major incentive for all sectors to decarbonize.” More