More stories

  • in

    What should countries do with their nuclear waste?

    One of the highest-risk components of nuclear waste is iodine-129 (I-129), which stays radioactive for millions of years and accumulates in human thyroids when ingested. In the U.S., nuclear waste containing I-129 is scheduled to be disposed of in deep underground repositories, which scientists say will sufficiently isolate it.Meanwhile, across the globe, France routinely releases low-level radioactive effluents containing iodine-129 and other radionuclides into the ocean. France recycles its spent nuclear fuel, and the reprocessing plant discharges about 153 kilograms of iodine-129 each year, under the French regulatory limit.Is dilution a good solution? What’s the best way to handle spent nuclear fuel? A new study by MIT researchers and their collaborators at national laboratories quantifies I-129 release under three different scenarios: the U.S. approach of disposing spent fuel directly in deep underground repositories, the French approach of dilution and release, and an approach that uses filters to capture I-129 and disposes of them in shallow underground waste repositories.The researchers found France’s current practice of reprocessing releases about 90 percent of the waste’s I-129 into the biosphere. They found low levels of I-129 in ocean water around France and the U.K.’s former reprocessing sites, including the English Channel and North Sea. Although the low level of I-129 in the water in Europe is not considered to pose health risks, the U.S. approach of deep underground disposal leads to far less I-129 being released, the researchers found.The researchers also investigated the effect of environmental regulations and technologies related to I-129 management, to illuminate the tradeoffs associated with different approaches around the world.“Putting these pieces together to provide a comprehensive view of Iodine-129 is important,” says MIT Assistant Professor Haruko Wainwright, a first author on the paper who holds a joint appointment in the departments of Nuclear Science and Engineering and of Civil and Environmental Engineering. “There are scientists that spend their lives trying to clean up iodine-129 at contaminated sites. These scientists are sometimes shocked to learn some countries are releasing so much iodine-129. This work also provides a life-cycle perspective. We’re not just looking at final disposal and solid waste, but also when and where release is happening. It puts all the pieces together.”MIT graduate student Kate Whiteaker SM ’24 led many of the analyses with Wainwright. Their co-authors are Hansell Gonzalez-Raymat, Miles Denham, Ian Pegg, Daniel Kaplan, Nikolla Qafoku, David Wilson, Shelly Wilson, and Carol Eddy-Dilek. The study appears today in Nature Sustainability.Managing wasteIodine-129 is often a key focus for scientists and engineers as they conduct safety assessments of nuclear waste disposal sites around the world. It has a half-life of 15.7 million years, high environmental mobility, and could potentially cause cancers if ingested. The U.S. sets a strict limit on how much I-129 can be released and how much I-129 can be in drinking water — 5.66 nanograms per liter, the lowest such level of any radionuclides.“Iodine-129 is very mobile, so it is usually the highest-dose contributor in safety assessments,” Wainwright says.For the study, the researchers calculated the release of I-129 across three different waste management strategies by combining data from current and former reprocessing sites as well as repository assessment models and simulations.The authors defined the environmental impact as the release of I-129 into the biosphere that humans could be exposed to, as well as its concentrations in surface water. They measured I-129 release per the total electrical energy generated by a 1-gigawatt power plant over one year, denoted as kg/GWe.y.Under the U.S. approach of deep underground disposal with barrier systems, assuming the barrier canisters fail at 1,000 years (a conservative estimate), the researchers found 2.14 x 10–8 kg/GWe.y of I-129 would be released between 1,000 and 1 million years from today.They estimate that 4.51 kg/GWe.y of I-129, or 91 percent of the total, would be released into the biosphere in the scenario where fuel is reprocessed and the effluents are diluted and released. About 3.3 percent of I-129 is captured by gas filters, which are then disposed of in shallow subsurfaces as low-level radioactive waste. A further 5.2 percent remains in the waste stream of the reprocessing plant, which is then disposed of as high-level radioactive waste.If the waste is recycled with gas filters to directly capture I-129, 0.05 kg/GWe.y of the I-129 is released, while 94 percent is disposed of in the low-level disposal sites. For shallow disposal, some kind of human disruption and intrusion is assumed to occur after government or institutional control expires (typically 100-1,000 years). That results in a potential release of the disposed amount to the environment after the control period.Overall, the current practice of recycling spent nuclear fuel releases the majority of I-129 into the environment today, while the direct disposal of spent fuel releases around 1/100,000,000 that amount over 1 million years. When the gas filters are used to capture I-129, the majority of I-129 goes to shallow underground repositories, which could be accidentally released through human intrusion down the line.The researchers also quantified the concentration of I-129 in different surface waters near current and former fuel reprocessing facilities, including the English Channel and the North Sea near reprocessing plants in France and U.K. They also analyzed the U.S. Columbia River downstream of a site in Washington state where material for nuclear weapons was produced during the Cold War, and they studied a similar site in South Carolina. The researchers found far higher concentrations of I-129 within the South Carolina site, where the low-level radioactive effluents were released far from major rivers and hence resulted in less dilution in the environment.“We wanted to quantify the environmental factors and the impact of dilution, which in this case affected concentrations more than discharge amounts,” Wainwright says. “Someone might take our results to say dilution still works: It’s reducing the contaminant concentration and spreading it over a large area. On the other hand, in the U.S., imperfect disposal has led to locally higher surface water concentrations. This provides a cautionary tale that disposal could concentrate contaminants, and should be carefully designed to protect local communities.”Fuel cycles and policyWainwright doesn’t want her findings to dissuade countries from recycling nuclear fuel. She says countries like Japan plan to use increased filtration to capture I-129 when they reprocess spent fuel. Filters with I-129 can be disposed of as low-level waste under U.S. regulations.“Since I-129 is an internal carcinogen without strong penetrating radiation, shallow underground disposal would be appropriate in line with other hazardous waste,” Wainwright says. “The history of environmental protection since the 1960s is shifting from waste dumping and release to isolation. But there are still industries that release waste into the air and water. We have seen that they often end up causing issues in our daily life — such as CO2, mercury, PFAS and others — especially when there are many sources or when bioaccumulation happens. The nuclear community has been leading in waste isolation strategies and technologies since the 1950s. These efforts should be further enhanced and accelerated. But at the same time, if someone does not choose nuclear energy because of waste issues, it would encourage other industries with much lower environmental standards.”The work was supported by MIT’s Climate Fast Forward Faculty Fund and the U.S. Department of Energy. More

  • in

    Using classic physical phenomena to solve new problems

    Quenching, a powerful heat transfer mechanism, is remarkably effective at transporting heat away. But in extreme environments, like nuclear power plants and aboard spaceships, a lot rides on the efficiency and speed of the process.It’s why Marco Graffiedi, a fifth-year doctoral student at MIT’s Department of Nuclear Science and Engineering (NSE), is researching the phenomenon to help develop the next generation of spaceships and nuclear plants.Growing up in small-town ItalyGraffiedi’s parents encouraged a sense of exploration, giving him responsibilities for family projects even at a young age. When they restored a countryside cabin in a small town near Palazzolo, in the hills between Florence and Bologna, the then-14-year-old Marco got a project of his own. He had to ensure the animals on the property had enough accessible water without overfilling the storage tank. Marco designed and built a passive hydraulic system that effectively solved the problem and is still functional today.His proclivity for science continued in high school in Lugo, where Graffiedi enjoyed recreating classical physics phenomena, through experiments. Incidentally, the high school is named after Gregorio Ricci-Curbastro, a mathematician who laid the foundation for the theory of relativity — history that is not lost on Graffiedi. After high school, Graffiedi attended the International Physics Olympiad in Bangkok, a formative event that cemented his love for physics.A gradual shift toward engineeringA passion for physics and basic sciences notwithstanding, Graffiedi wondered if he’d be a better fit for engineering, where he could use the study of physics, chemistry, and math as tools to build something.Following that path, he completed a bachelor’s and master’s in mechanical engineering — because an undergraduate degree in Italy takes only three years, pretty much everyone does a master’s, Graffiedi laughs — at the Università di Pisa and the Scuola Superiore Sant’Anna (School of Engineering). The Sant’Anna is a highly selective institution that most students attend to complement their university studies.Graffiedi’s university studies gradually moved him toward the field of environmental engineering. He researched concentrated solar power in order to reduce the cost of solar power by studying the associated thermal cycle and trying to improve solar power collection. While the project was not very successful, it reinforced Graffiedi’s impression of the necessity of alternative energies. Still firmly planted in energy studies, Graffiedi worked on fracture mechanics for his master’s thesis, in collaboration with (what was then) GE Oil and Gas, researching how to improve the effectiveness of centrifugal compressors. And a summer internship at Fermilab had Graffiedi working on the thermal characterization of superconductive coatings.With his studies behind him, Graffiedi was still unsure about this professional path. Through the Edison Program from GE Oil and Gas, where he worked shortly after graduation, Graffiedi got to test drive many fields — from mechanical and thermal engineering to exploring gas turbines and combustion. He eventually became a test engineer, coordinating a team of engineers to test a new upgrade to the company’s gas turbines. “I set up the test bench, understanding how to instrument the machine, collect data, and run the test,” Graffiedi remembers, “there was a lot you need to think about, from a little turbine blade with sensors on it to the location of safety exits on the test bench.”The move toward nuclear engineeringAs fun as the test engineering job was, Graffiedi started to crave more technical knowledge and wanted to pivot to science. As part of his exploration, he came across nuclear energy and, understanding it to be the future, decided to lean on his engineering background to apply to MIT NSE.He found a fit in Professor Matteo Bucci’s group and decided to explore boiling and quenching. The move from science to engineering, and back to science, was now complete.NASA, the primary sponsor of the research, is interested in preventing boiling of cryogenic fuels, because boiling leads to loss of fuel and the resulting vapor will need to be vented to avoid overpressurizing a fuel tank.Graffiedi’s primary focus is on quenching, which will play an important role in refueling in space — and in the cooling of nuclear cores. When a cryogen is used to cool down a surface, it undergoes what is known as the Leidenfrost effect, which means it first forms a thin vapor film that acts as an insulator and prevents further cooling. To facilitate rapid cooling, it’s important to accelerate the collapse of the vapor film. Graffiedi is exploring the mechanics of the quenching process on a microscopic level, studies that are important for land and space applications.Boiling can be used for yet another modern application: to improve the efficiency of cooling systems for data centers. The growth of data centers and electric transportation systems needs effective heat transfer mechanisms to avoid overheating. Immersion cooling using dielectric fluids — fluids that do not conduct electricity — is one way to do so. These fluids remove heat from a surface by leaning on the principle of boiling. For effective boiling, the fluid must overcome the Leidenfrost effect and break the vapor film that forms. The fluid must also have high critical heat flux (CHF), which is the maximum value of the heat flux at which boiling can effectively be used to transfer heat from a heated surface to a liquid. Because dielectric fluids have lower CHF than water, Graffiedi is exploring solutions to enhance these limits. In particular, he is investigating how high electric fields can be used to enhance CHF and even to use boiling as a way to cool electronic components in the absence of gravity. He published this research in Applied Thermal Engineering in June.Beyond boilingGraffiedi’s love of science and engineering shows in his commitment to teaching as well. He has been a teaching assistant for four classes at NSE, winning awards for his contributions. His many additional achievements include winning the Manson Benedict Award presented to an NSE graduate student for excellence in academic performance and professional promise in nuclear science and engineering, and a service award for his role as past president of the MIT Division of the American Nuclear Society.Boston has a fervent Italian community, Graffiedi says, and he enjoys being a part of it. Fittingly, the MIT Italian club is called MITaly. When he’s not at work or otherwise engaged, Graffiedi loves Latin dancing, something he makes time for at least a couple of times a week. While he has his favorite Italian restaurants in the city, Graffiedi is grateful for another set of skills his parents gave him when was just 11: making perfect pizza and pasta. More

  • in

    Battery-powered appliances make it easy to switch from gas to electric

    As batteries have gotten cheaper and more powerful, they have enabled the electrification of everything from vehicles to lawn equipment, power tools, and scooters. But electrifying homes has been a slower process. That’s because switching from gas appliances often requires ripping out drywall, running new wires, and upgrading the electrical box.Now the startup Copper, founded by Sam Calisch SM ’14, PhD ’19, has developed a battery-equipped kitchen range that can plug into a standard 120-volt wall outlet. The induction range features a lithium iron phosphate battery that charges when energy is cheapest and cleanest, then delivers power when you’re ready to cook.“We’re making ‘going electric’ like an appliance swap instead of a construction project,” says Calisch. “If you have a gas stove today, there is almost certainly an outlet within reach because the stove has an oven light, clock, or electric igniters. That’s big if you’re in a single-family home, but in apartments it’s an existential factor. Rewiring a 100-unit apartment building is such an expensive proposition that basically no one’s doing it.”Copper has shipped about 1,000 of its battery-powered ranges to date, often to developers and owners of large apartment complexes. The company also has an agreement with the New York City Housing Authority for at least 10,000 units.Once installed, the ranges can contribute to a distributed, cleaner, and more resilient energy network. In fact, Copper recently piloted a program in California to offer cheap, clean power to the grid from its home batteries when it would otherwise need to fire up a gas-powered plant to meet spiking electricity demand.“After these appliances are installed, they become a grid asset,” Calisch says. “We can manage the fleet of batteries to help provide firm power and help grids deliver more clean electricity. We use that revenue, in turn, to further drive down the cost of electrification.”Finding a missionCalisch has been working on climate technologies his entire career. It all started at the clean technology incubator Otherlab that was founded by Saul Griffith SM ’01, PhD ’04.“That’s where I caught the bug for technology and product development for climate impact,” Calisch says. “But I realized I needed to up my game, so I went to grad school in [MIT Professor] Neil Gershenfeld’s lab, the Center for Bits and Atoms. I got to dabble in software engineering, mechanical engineering, electrical engineering, mathematical modeling, all with the lens of building and iterating quickly.”Calisch stayed at MIT for his PhD, where he worked on approaches in manufacturing that used fewer materials and less energy. After finishing his PhD in 2019, Calisch helped start a nonprofit called Rewiring America focused on advocating for electrification. Through that work, he collaborated with U.S. Senate offices on the Inflation Reduction Act.The cost of lithium ion batteries has decreased by about 97 percent since their commercial debut in 1991. As more products have gone electric, the manufacturing process for everything from phones to drones, robots, and electric vehicles has converged around an electric tech stack of batteries, electric motors, power electronics, and chips. The countries that master the electric tech stack will be at a distinct manufacturing advantage.Calisch started Copper to boost the supply chain for batteries while contributing to the electrification movement.“Appliances can help deploy batteries, and batteries help deploy appliances,” Calisch says. “Appliances can also drive down the installed cost of batteries.”The company is starting with the kitchen range because its peak power draw is among the highest in the home. Flattening that peak brings big benefits. Ranges are also meaningful: It’s where people gather around and cook each night. People take pride in their kitchen ranges more than, say, a water heater.Copper’s 30-inch induction range heats up more quickly and reaches more precise temperatures than its gas counterpart. Installing it is as easy as swapping a fridge or dishwasher. Thanks to its 5-kilowatt-hour battery, the range even works when the power goes out.“Batteries have become 10 times cheaper and are now both affordable and create tangible improvements in quality of life,” Calisch says. “It’s a new notion of climate impact that isn’t about turning down thermostats and suffering for the planet, it’s about adopting new technologies that are better.”Scaling impactCalisch says there’s no way for the U.S. to maintain resilient energy systems in the future without a lot of batteries. Because of power transmission and regulatory limitations, those batteries can’t all be located out on the grid.“We see an analog to the internet,” Calisch says. “In order to deliver millions of times more information across the internet, we didn’t add millions of times more wires. We added local storage and caching across the network. That’s what increased throughput. We’re doing the same thing for the electric grid.”This summer, Copper raised $28 million to scale its production to meet growing demand for its battery equipped appliances. Copper is also working to license its technology to other appliance manufacturers to help speed the electric transition.“These electric technologies have the potential to improve people’s lives and, as a byproduct, take us off of fossil fuels,” Calisch says. “We’re in the business of identifying points of friction for that transition. We are not an appliance company; we’re an energy company.”Looking back, Calisch credits MIT with equipping him with the knowledge needed to run a technical business.“My time at MIT gave me hands-on experience with a variety of engineering systems,” Calisch. “I can talk to our embedded engineering team or electrical engineering team or mechanical engineering team and understand what they’re saying. That’s been enormously useful for running a company.”He adds: “I also developed an expansive view of infrastructure at MIT, which has been instrumental in launching Copper and thinking about the electrical grid not just as wires on the street, but all of the loads in our buildings. It’s about making homes not just consumers of electricity, but participants in this broader network.” More

  • in

    Burning things to make things

    Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is driving research into sustainable and efficient combustion technologies. More

  • in

    Burning things to make things

    Around 80 percent of global energy production today comes from the combustion of fossil fuels. Combustion, or the process of converting stored chemical energy into thermal energy through burning, is vital for a variety of common activities including electricity generation, transportation, and domestic uses like heating and cooking — but it also yields a host of environmental consequences, contributing to air pollution and greenhouse gas emissions.Sili Deng, the Doherty Chair in Ocean Utilization and associate professor of mechanical engineering at MIT, is leading research to drive the transition from the heavy dependence on fossil fuels to renewable energy with storage.“I was first introduced to flame synthesis in my junior year in college,” Deng says. “I realized you can actually burn things to make things, [and] that was really fascinating.”

    Play video

    Burning Things to Make ThingsVideo: Department of Mechanical Engineering

    Deng says she ultimately picked combustion as a focus of her work because she likes the intellectual challenge the concept offers. “In combustion you have chemistry, and you have fluid mechanics. Each subject is very rich in science. This also has very strong engineering implications and applications.”Deng’s research group targets three areas: building up fundamental knowledge on combustion processes and emissions; developing alternative fuels and metal combustion to replace fossil fuels; and synthesizing flame-based materials for catalysis and energy storage, which can bring down the cost of manufacturing battery materials.One focus of the team has been on low-cost, low-emission manufacturing of cathode materials for lithium-ion batteries. Lithium-ion batteries play an increasingly critical role in transportation electrification (e.g., batteries for electric vehicles) and grid energy storage for electricity that is generated from renewable energy sources like wind and solar. Deng’s team has developed a technology they call flame-assisted spray pyrolysis, or FASP, which can help reduce the high manufacturing costs associated with cathode materials.FASP is based on flame synthesis, a technology that dates back nearly 3,000 years. In ancient China, this was the primary way black ink materials were made. “[People burned] vegetables or woods, such that afterwards they can collect the solidified smoke,” Deng explains. “For our battery applications, we can try to fit in the same formula, but of course with new tweaks.”The team is also interested in developing alternative fuels, including looking at the use of metals like aluminum to power rockets. “We’re interested in utilizing aluminum as a fuel for civil applications,” Deng says, because aluminum is abundant in the earth, cheap, and it’s available globally. “What we are trying to do is to understand [aluminum combustion] and be able to tailor its ignition and propagation properties.”Among other accolades, Deng is a 2025 recipient of the Hiroshi Tsuji Early Career Researcher Award from the Combustion Institute, an award that recognizes excellence in fundamental or applied combustion science research. More