More stories

  • in

    Elaine Liu: Charging ahead

    MIT senior Elaine Siyu Liu doesn’t own an electric car, or any car. But she sees the impact of electric vehicles (EVs) and renewables on the grid as two pieces of an energy puzzle she wants to solve.The U.S. Department of Energy reports that the number of public and private EV charging ports nearly doubled in the past three years, and many more are in the works. Users expect to plug in at their convenience, charge up, and drive away. But what if the grid can’t handle it?Electricity demand, long stagnant in the United States, has spiked due to EVs, data centers that drive artificial intelligence, and industry. Grid planners forecast an increase of 2.6 percent to 4.7 percent in electricity demand over the next five years, according to data reported to federal regulators. Everyone from EV charging-station operators to utility-system operators needs help navigating a system in flux.That’s where Liu’s work comes in.Liu, who is studying mathematics and electrical engineering and computer science (EECS), is interested in distribution — how to get electricity from a centralized location to consumers. “I see power systems as a good venue for theoretical research as an application tool,” she says. “I’m interested in it because I’m familiar with the optimization and probability techniques used to map this level of problem.”Liu grew up in Beijing, then after middle school moved with her parents to Canada and enrolled in a prep school in Oakville, Ontario, 30 miles outside Toronto.Liu stumbled upon an opportunity to take part in a regional math competition and eventually started a math club, but at the time, the school’s culture surrounding math surprised her. Being exposed to what seemed to be some students’ aversion to math, she says, “I don’t think my feelings about math changed. I think my feelings about how people feel about math changed.”Liu brought her passion for math to MIT. The summer after her sophomore year, she took on the first of the two Undergraduate Research Opportunity Program projects she completed with electric power system expert Marija Ilić, a joint adjunct professor in EECS and a senior research scientist at the MIT Laboratory for Information and Decision Systems.Predicting the gridSince 2022, with the help of funding from the MIT Energy Initiative (MITEI), Liu has been working with Ilić on identifying ways in which the grid is challenged.One factor is the addition of renewables to the energy pipeline. A gap in wind or sun might cause a lag in power generation. If this lag occurs during peak demand, it could mean trouble for a grid already taxed by extreme weather and other unforeseen events.If you think of the grid as a network of dozens of interconnected parts, once an element in the network fails — say, a tree downs a transmission line — the electricity that used to go through that line needs to be rerouted. This may overload other lines, creating what’s known as a cascade failure.“This all happens really quickly and has very large downstream effects,” Liu says. “Millions of people will have instant blackouts.”Even if the system can handle a single downed line, Liu notes that “the nuance is that there are now a lot of renewables, and renewables are less predictable. You can’t predict a gap in wind or sun. When such things happen, there’s suddenly not enough generation and too much demand. So the same kind of failure would happen, but on a larger and more uncontrollable scale.”Renewables’ varying output has the added complication of causing voltage fluctuations. “We plug in our devices expecting a voltage of 110, but because of oscillations, you will never get exactly 110,” Liu says. “So even when you can deliver enough electricity, if you can’t deliver it at the specific voltage level that is required, that’s a problem.”Liu and Ilić are building a model to predict how and when the grid might fail. Lacking access to privatized data, Liu runs her models with European industry data and test cases made available to universities. “I have a fake power grid that I run my experiments on,” she says. “You can take the same tool and run it on the real power grid.”Liu’s model predicts cascade failures as they evolve. Supply from a wind generator, for example, might drop precipitously over the course of an hour. The model analyzes which substations and which households will be affected. “After we know we need to do something, this prediction tool can enable system operators to strategically intervene ahead of time,” Liu says.Dictating price and powerLast year, Liu turned her attention to EVs, which provide a different kind of challenge than renewables.In 2022, S&P Global reported that lawmakers argued that the U.S. Federal Energy Regulatory Commission’s (FERC) wholesale power rate structure was unfair for EV charging station operators.In addition to operators paying by the kilowatt-hour, some also pay more for electricity during peak demand hours. Only a few EVs charging up during those hours could result in higher costs for the operator even if their overall energy use is low.Anticipating how much power EVs will need is more complex than predicting energy needed for, say, heating and cooling. Unlike buildings, EVs move around, making it difficult to predict energy consumption at any given time. “If users don’t like the price at one charging station or how long the line is, they’ll go somewhere else,” Liu says. “Where to allocate EV chargers is a problem that a lot of people are dealing with right now.”One approach would be for FERC to dictate to EV users when and where to charge and what price they’ll pay. To Liu, this isn’t an attractive option. “No one likes to be told what to do,” she says.Liu is looking at optimizing a market-based solution that would be acceptable to top-level energy producers — wind and solar farms and nuclear plants — all the way down to the municipal aggregators that secure electricity at competitive rates and oversee distribution to the consumer.Analyzing the location, movement, and behavior patterns of all the EVs driven daily in Boston and other major energy hubs, she notes, could help demand aggregators determine where to place EV chargers and how much to charge consumers, akin to Walmart deciding how much to mark up wholesale eggs in different markets.Last year, Liu presented the work at MITEI’s annual research conference. This spring, Liu and Ilić are submitting a paper on the market optimization analysis to a journal of the Institute of Electrical and Electronics Engineers.Liu has come to terms with her early introduction to attitudes toward STEM that struck her as markedly different from those in China. She says, “I think the (prep) school had a very strong ‘math is for nerds’ vibe, especially for girls. There was a ‘why are you giving yourself more work?’ kind of mentality. But over time, I just learned to disregard that.”After graduation, Liu, the only undergraduate researcher in Ilić’s MIT Electric Energy Systems Group, plans to apply to fellowships and graduate programs in EECS, applied math, and operations research.Based on her analysis, Liu says that the market could effectively determine the price and availability of charging stations. Offering incentives for EV owners to charge during the day instead of at night when demand is high could help avoid grid overload and prevent extra costs to operators. “People would still retain the ability to go to a different charging station if they chose to,” she says. “I’m arguing that this works.” More

  • in

    William Green named director of MIT Energy Initiative

    MIT professor William H. Green has been named director of the MIT Energy Initiative (MITEI).In appointing Green, then-MIT Vice President for Research Maria Zuber highlighted his expertise in chemical kinetics — the understanding of the rates of chemical reactions — and the work of his research team in reaction kinetics, quantum chemistry, numerical methods, and fuel chemistry, as well as his work performing techno-economic assessments of proposed fuel and vehicle changes and biofuel production options.“Bill has been an active participant in MITEI; his broad view of energy science and technology will be a major asset and will position him well to contribute to the success of MIT’s exciting new Climate Project,” Zuber wrote in a letter announcing the appointment, which went into effect April 1. Green is the Hoyt C. Hottel Professor of Chemical Engineering and previously served as the executive officer of the MIT Department of Chemical Engineering from 2012 to 2015. He sees MITEI’s role today as bringing together the voices of engineering, science, industry, and policy to quickly drive the global energy transition.“MITEI has a very important role in fostering the energy and climate innovations happening at MIT and in building broader consensus, first in the engineering community and then ultimately to start the conversations that will lead to public acceptance and societal consensus,” says Green.Achieving consensus much more quickly is essential, says Green, who noted that it was during the 1992 Rio Summit that globally we recognized the problem of greenhouse gas emissions, yet almost a quarter-century passed before the Paris Agreement came into force. Eight years after the Paris Agreement, there is still disagreement over how to address this challenge in most sectors of the economy, and much work to be done to translate the Paris pledges into reality.“Many people feel we’re collectively too slow in dealing with the climate problem,” he says. “It’s very important to keep helping the research community be more effective and faster to provide the solutions that society needs, but we also need to work on being faster at reaching consensus around the good solutions we do have, and supporting them so they’ll actually be economically attractive so that investors can feel safe to invest in them, and to change regulations to make them feasible, when needed.”With experience in industry, policy, and academia, Green is well positioned to facilitate this acceleration. “I can see the situation from the point of view of a scientist, from the point of view of an engineer, from the point of view of the big companies, from the point of view of a startup company, and from the point of view of a parent concerned about the effects of climate change on the world my children are inheriting,” he says.Green also intends to extend MITEI’s engagement with a broader range of countries, industries, and economic sectors as MITEI focuses on decarbonization and accelerating the much-needed energy transition worldwide.Green received a PhD in physical chemistry from the University of California at Berkeley and a BA in chemistry from Swarthmore College. He joined MIT in 1997. He is the recipient of the AIChE’s R.H. Wilhelm Award in Chemical Reaction Engineering and is an inaugural Fellow of the Combustion Institute.He succeeds Robert Stoner, who served as interim director of MITEI beginning in July 2023, when longtime director Robert C. Armstrong retired after serving in the role for a decade. More

  • in

    Seizing solar’s bright future

    Consider the dizzying ascent of solar energy in the United States: In the past decade, solar capacity increased nearly 900 percent, with electricity production eight times greater in 2023 than in 2014. The jump from 2022 to 2023 alone was 51 percent, with a record 32 gigawatts (GW) of solar installations coming online. In the past four years, more solar has been added to the grid than any other form of generation. Installed solar now tops 179 GW, enough to power nearly 33 million homes. The U.S. Department of Energy (DOE) is so bullish on the sun that its decarbonization plans envision solar satisfying 45 percent of the nation’s electricity demands by 2050.But the continued rapid expansion of solar requires advances in technology, notably to improve the efficiency and durability of solar photovoltaic (PV) materials and manufacturing. That’s where Optigon, a three-year-old MIT spinout company, comes in.“Our goal is to build tools for research and industry that can accelerate the energy transition,” says Dane deQuilettes, the company’s co-founder and chief science officer. “The technology we have developed for solar will enable measurements and analysis of materials as they are being made both in lab and on the manufacturing line, dramatically speeding up the optimization of PV.”With roots in MIT’s vibrant solar research community, Optigon is poised for a 2024 rollout of technology it believes will drastically pick up the pace of solar power and other clean energy projects.Beyond siliconSilicon, the material mainstay of most PV, is limited by the laws of physics in the efficiencies it can achieve converting photons from the sun into electrical energy. Silicon-based solar cells can theoretically reach power conversion levels of just 30 percent, and real-world efficiency levels hover in the low 20s. But beyond the physical limitations of silicon, there is another issue at play for many researchers and the solar industry in the United States and elsewhere: China dominates the silicon PV market, from supply chains to manufacturing.Scientists are eagerly pursuing alternative materials, either for enhancing silicon’s solar conversion capacity or for replacing silicon altogether.In the past decade, a family of crystal-structured semiconductors known as perovskites has risen to the fore as a next-generation PV material candidate. Perovskite devices lend themselves to a novel manufacturing process using printing technology that could circumvent the supply chain juggernaut China has built for silicon. Perovskite solar cells can be stacked on each other or layered atop silicon PV, to achieve higher conversion efficiencies. Because perovskite technology is flexible and lightweight, modules can be used on roofs and other structures that cannot support heavier silicon PV, lowering costs and enabling a wider range of building-integrated solar devices.But these new materials require testing, both during R&D and then on assembly lines, where missing or defective optical, electrical, or dimensional properties in the nano-sized crystal structures can negatively impact the end product.“The actual measurement and data analysis processes have been really, really slow, because you have to use a bunch of separate tools that are all very manual,” says Optigon co-founder and chief executive officer Anthony Troupe ’21. “We wanted to come up with tools for automating detection of a material’s properties, for determining whether it could make a good or bad solar cell, and then for optimizing it.”“Our approach packed several non-contact, optical measurements using different types of light sources and detectors into a single system, which together provide a holistic, cross-sectional view of the material,” says Brandon Motes ’21, ME ’22, co-founder and chief technical officer.“This breakthrough in achieving millisecond timescales for data collection and analysis means we can take research-quality tools and actually put them on a full production system, getting extremely detailed information about products being built at massive, gigawatt scale in real-time,” says Troupe.This streamlined system takes measurements “in the snap of the fingers, unlike the traditional tools,” says Joseph Berry, director of the US Manufacturing of Advanced Perovskites Consortium and a senior research scientist at the National Renewable Energy Laboratory. “Optigon’s techniques are high precision and allow high throughput, which means they can be used in a lot of contexts where you want rapid feedback and the ability to develop materials very, very quickly.”According to Berry, Optigon’s technology may give the solar industry not just better materials, but the ability to pump out high-quality PV products at a brisker clip than is currently possible. “If Optigon is successful in deploying their technology, then we can more rapidly develop the materials that we need, manufacturing with the requisite precision again and again,” he says. “This could lead to the next generation of PV modules at a much, much lower cost.”Measuring makes the differenceWith Small Business Innovation Research funding from DOE to commercialize its products and a grant from the Massachusetts Clean Energy Center, Optigon has settled into a space at the climate technology incubator Greentown Labs in Somerville, Massachusetts. Here, the team is preparing for this spring’s launch of its first commercial product, whose genesis lies in MIT’s GridEdge Solar Research Program.Led by Vladimir Bulović, a professor of electrical engineering and the director of MIT.nano, the GridEdge program was established with funding from the Tata Trusts to develop lightweight, flexible, and inexpensive solar cells for distribution to rural communities around the globe. When deQuilettes joined the group in 2017 as a postdoc, he was tasked with directing the program and building the infrastructure to study and make perovskite solar modules.“We were trying to understand once we made the material whether or not it was good,” he recalls. “There were no good commercial metrology [the science of measurements] tools for materials beyond silicon, so we started to build our own.” Recognizing the group’s need for greater expertise on the problem, especially in the areas of electrical, software, and mechanical engineering, deQuilettes put a call out for undergraduate researchers to help build metrology tools for new solar materials.“Forty people inquired, but when I met Brandon and Anthony, something clicked; it was clear we had a complementary skill set,” says deQuilettes. “We started working together, with Anthony coming up with beautiful designs to integrate multiple measurements, and Brandon creating boards to control all of the hardware, including different types of lasers. We started filing multiple patents and that was when we saw it all coming together.”“We knew from the start that metrology could vastly improve not just materials, but production yields,” says Troupe. Adds deQuilettes, “Our goal was getting to the highest performance orders of magnitude faster than it would ordinarily take, so we developed tools that would not just be useful for research labs but for manufacturing lines to give live feedback on quality.”The device Optigon designed for industry is the size of a football, “with sensor packages crammed into a tiny form factor, taking measurements as material flows directly underneath,” says Motes. “We have also thought carefully about ways to make interaction with this tool as seamless and, dare I say, as enjoyable as possible, streaming data to both a dashboard an operator can watch and to a custom database.”Photovoltaics is just the startThe company may have already found its market niche. “A research group paid us to use our in-house prototype because they have such a burning need to get these sorts of measurements,” says Troupe, and according to Motes, “Potential customers ask us if they can buy the system now.” deQuilettes says, “Our hope is that we become the de facto company for doing any sort of characterization metrology in the United States and beyond.”Challenges lie ahead for Optigon: product launches, full-scale manufacturing, technical assistance, and sales. Greentown Labs offers support, as does MIT’s own rich community of solar researchers and entrepreneurs. But the founders are already thinking about next phases.“We are not limiting ourselves to the photovoltaics area,” says deQuilettes. “We’re planning on working in other clean energy materials such as batteries and fuel cells.”That’s because the team wants to make the maximum impact on the climate challenge. “We’ve thought a lot about the potential our tools will have on reducing carbon emissions, and we’ve done a really in-depth analysis looking at how our system can increase production yields of solar panels and other energy technologies, reducing materials and energy wasted in conventional optimization,” deQuilettes says. “If we look across all these sectors, we can expect to offset about 1,000 million metric tons of CO2 [carbon dioxide] per year in the not-too-distant future.”The team has written scale into its business plan. “We want to be the key enabler for bringing these new energy technologies to market,” says Motes. “We envision being deployed on every manufacturing line making these types of materials. It’s our goal to walk around and know that if we see a solar panel deployed, there’s a pretty high likelihood that it will be one we measured at some point.” More

  • in

    Nuno Loureiro named director of MIT’s Plasma Science and Fusion Center

    Nuno Loureiro, professor of nuclear science and engineering and of physics, has been appointed the new director of the MIT Plasma Science and Fusion Center, effective May 1.Loureiro is taking the helm of one of MIT’s largest labs: more than 250 full-time researchers, staff members, and students work and study in seven buildings with 250,000 square feet of lab space. A theoretical physicist and fusion scientist, Loureiro joined MIT as a faculty member in 2016, and was appointed deputy director of the Plasma Science and Fusion Center (PSFC) in 2022. Loureiro succeeds Dennis Whyte, who stepped down at the end of 2023 to return to teaching and research.Stepping into his new role as director, Loureiro says, “The PSFC has an impressive tradition of discovery and leadership in plasma and fusion science and engineering. Becoming director of the PSFC is an incredible opportunity to shape the future of these fields. We have a world-class team, and it’s an honor to be chosen as its leader.”Loureiro’s own research ranges widely. He is recognized for advancing the understanding of multiple aspects of plasma behavior, particularly turbulence and the physics underpinning solar flares and other astronomical phenomena. In the fusion domain, his work enables the design of fusion devices that can more efficiently control and harness the energy of fusing plasmas, bringing the dream of clean, near-limitless fusion power that much closer. Plasma physics is foundational to advancing fusion science, a fact Loureiro has embraced and that is relevant as he considers the direction of the PSFC’s multidisciplinary research. “But plasma physics is only one aspect of our focus. Building a scientific agenda that continues and expands on the PSFC’s history of innovation in all aspects of fusion science and engineering is vital, and a key facet of that work is facilitating our researchers’ efforts to produce the breakthroughs that are necessary for the realization of fusion energy.”As the climate crisis accelerates, fusion power continues to grow in appeal: It produces no carbon emissions, its fuel is plentiful, and dangerous “meltdowns” are impossible. The sooner that fusion power is commercially available, the greater impact it can have on reducing greenhouse gas emissions and meeting global climate goals. While technical challenges remain, “the PSFC is well poised to meet them, and continue to show leadership. We are a mission-driven lab, and our students and staff are incredibly motivated,” Loureiro comments.“As MIT continues to lead the way toward the delivery of clean fusion power onto the grid, I have no doubt that Nuno is the right person to step into this key position at this critical time,” says Maria T. Zuber, MIT’s presidential advisor for science and technology policy. “I look forward to the steady advance of plasma physics and fusion science at MIT under Nuno’s leadership.”Over the last decade, there have been massive leaps forward in the field of fusion energy, driven in part by innovations like high-temperature superconducting magnets developed at the PSFC. Further progress is guaranteed: Loureiro believes that “The next few years are certain to be an exciting time for us, and for fusion as a whole. It’s the dawn of a new era with burning plasma experiments” — a reference to the collaboration between the PSFC and Commonwealth Fusion Systems, a startup company spun out of the PSFC, to build SPARC, a fusion device that is slated to turn on in 2026 and produce a burning plasma that yields more energy than it consumes. “It’s going to be a watershed moment,” says Loureiro.He continues, “In addition, we have strong connections to inertial confinement fusion experiments, including those at Lawrence Livermore National Lab, and we’re looking forward to expanding our research into stellarators, which are another kind of magnetic fusion device.” Over recent years, the PSFC has significantly increased its collaboration with industrial partners such Eni, IBM, and others. Loureiro sees great value in this: “These collaborations are mutually beneficial: they allow us to grow our research portfolio while advancing companies’ R&D efforts. It’s very dynamic and exciting.”Loureiro’s directorship begins as the PSFC is launching key tech development projects like LIBRA, a “blanket” of molten salt that can be wrapped around fusion vessels and perform double duty as a neutron energy absorber and a breeder for tritium (the fuel for fusion). Researchers at the PSFC have also developed a way to rapidly test the durability of materials being considered for use in a fusion power plant environment, and are now creating an experiment that will utilize a powerful particle accelerator called a gyrotron to irradiate candidate materials.Interest in fusion is at an all-time high; the demand for researchers and engineers, particularly in the nascent commercial fusion industry, is reflected by the record number of graduate students that are studying at the PSFC — more than 90 across seven affiliated MIT departments. The PSFC’s classrooms are full, and Loureiro notes a palpable sense of excitement. “Students are our greatest strength,” says Loureiro. “They come here to do world-class research but also to grow as individuals, and I want to give them a great place to do that. Supporting those experiences, making sure they can be as successful as possible is one of my top priorities.” Loureiro plans to continue teaching and advising students after his appointment begins.MIT President Sally Kornbluth’s recently announced Climate Project is a clarion call for Loureiro: “It’s not hyperbole to say MIT is where you go to find solutions to humanity’s biggest problems,” he says. “Fusion is a hard problem, but it can be solved with resolve and ingenuity — characteristics that define MIT. Fusion energy will change the course of human history. It’s both humbling and exciting to be leading a research center that will play a key role in enabling that change.”  More

  • in

    Offering clean energy around the clock

    As remarkable as the rise of solar and wind farms has been over the last 20 years, achieving complete decarbonization is going to require a host of complementary technologies. That’s because renewables offer only intermittent power. They also can’t directly provide the high temperatures necessary for many industrial processes.

    Now, 247Solar is building high-temperature concentrated solar power systems that use overnight thermal energy storage to provide round-the-clock power and industrial-grade heat.

    The company’s modular systems can be used as standalone microgrids for communities or to provide power in remote places like mines and farms. They can also be used in conjunction with wind and conventional solar farms, giving customers 24/7 power from renewables and allowing them to offset use of the grid.

    “One of my motivations for working on this system was trying to solve the problem of intermittency,” 247Solar CEO Bruce Anderson ’69, SM ’73 says. “I just couldn’t see how we could get to zero emissions with solar photovoltaics (PV) and wind. Even with PV, wind, and batteries, we can’t get there, because there’s always bad weather, and current batteries aren’t economical over long periods. You have to have a solution that operates 24 hours a day.”

    The company’s system is inspired by the design of a high-temperature heat exchanger by the late MIT Professor Emeritus David Gordon Wilson, who co-founded the company with Anderson. The company integrates that heat exchanger into what Anderson describes as a conventional, jet-engine-like turbine, enabling the turbine to produce power by circulating ambient pressure hot air with no combustion or emissions — what the company calls a first in the industry.

    Here’s how the system works: Each 247Solar system uses a field of sun-tracking mirrors called heliostats to reflect sunlight to the top of a central tower. The tower features a proprietary solar receiver that heats air to around 1,000 Celsius at atmospheric pressure. The air is then used to drive 247Solar’s turbines and generate 400 kilowatts of electricity and 600 kilowatts of heat. Some of the hot air is also routed through a long-duration thermal energy storage system, where it heats solid materials that retain the heat. The stored heat is then used to drive the turbines when the sun stops shining.

    “We offer round-the-clock electricity, but we also offer a combined heat and power option, with the ability to take heat up to 970 Celsius for use in industrial processes,” Anderson says. “It’s a very flexible system.”

    The company’s first deployment will be with a large utility in India. If that goes well, 247Solar hopes to scale up rapidly with other utilities, corporations, and communities around the globe.

    A new approach to concentrated solar

    Anderson kept in touch with his MIT network after graduating in 1973. He served as the director of MIT’s Industrial Liaison Program (ILP) between 1996 and 2000 and was elected as an alumni member of the MIT Corporation in 2013. The ILP connects companies with MIT’s network of students, faculty, and alumni to facilitate innovation, and the experience changed the course of Anderson’s career.

    “That was an extremely fascinating job, and from it two things happened,” Anderson says. “One is that I realized I was really an entrepreneur and was not well-suited to the university environment, and the other is that I was reminded of the countless amazing innovations coming out of MIT.”

    After leaving as director, Anderson began a startup incubator where he worked with MIT professors to start companies. Eventually, one of those professors was Wilson, who had invented the new heat exchanger and a ceramic turbine. Anderson and Wilson ended up putting together a small team to commercialize the technology in the early 2000s.

    Anderson had done his MIT master’s thesis on solar energy in the 1970s, and the team realized the heat exchanger made possible a novel approach to concentrated solar power. In 2010, they received a $6 million development grant from the U.S. Department of Energy. But their first solar receiver was damaged during shipping to a national laboratory for testing, and the company ran out of money.

    It wasn’t until 2015 that Anderson was able to raise money to get the company back off the ground. By that time, a new high-temperature metal alloy had been developed that Anderson swapped out for Wilson’s ceramic heat exchanger.

    The Covid-19 pandemic further slowed 247’s plans to build a demonstration facility at its test site in Arizona, but strong customer interest has kept the company busy. Concentrated solar power doesn’t work everywhere — Arizona’s clear sunshine is a better fit than Florida’s hazy skies, for example — but Anderson is currently in talks with communities in parts of the U.S., India, Africa, and Australia where the technology would be a good fit.

    These days, the company is increasingly proposing combining its systems with traditional solar PV, which lets customers reap the benefits of low-cost solar electricity during the day while using 247’s energy at night.

    “That way we can get at least 24, if not more, hours of energy from a sunny day,” Anderson says. “We’re really moving toward these hybrid systems, which work like a Prius: Sometimes you’re using one source of energy, sometimes you’re using the other.”

    The company also sells its HeatStorE thermal batteries as standalone systems. Instead of being heated by the solar system, the thermal storage is heated by circulating air through an electric coil that’s been heated by electricity, either from the grid, standalone PV, or wind. The heat can be stored for nine hours or more on a single charge and then dispatched as electricity plus industrial process heat at 250 Celsius, or as heat only, up to 970 Celsius.

    Anderson says 247’s thermal battery is about one-seventh the cost of lithium-ion batteries per kilowatt hour produced.

    Scaling a new model

    The company is keeping its system flexible for whatever path customers want to take to complete decarbonization.

    In addition to 247’s India project, the company is in advanced talks with off-grid communities in the Unites States and Egypt, mining operators around the world, and the government of a small country in Africa. Anderson says the company’s next customer will likely be an off-grid community in the U.S. that currently relies on diesel generators for power.

    The company has also partnered with a financial company that will allow it to access capital to fund its own projects and sell clean energy directly to customers, which Anderson says will help 247 grow faster than relying solely on selling entire systems to each customer.

    As it works to scale up its deployments, Anderson believes 247 offers a solution to help customers respond to increasing pressure from governments as well as community members.

    “Emerging economies in places like Africa don’t have any alternative to fossil fuels if they want 24/7 electricity,” Anderson says. “Our owning and operating costs are less than half that of diesel gen-sets. Customers today really want to stop producing emissions if they can, so you’ve got villages, mines, industries, and entire countries where the people inside are saying, ‘We can’t burn diesel anymore.’” More

  • in

    Q&A: Claire Walsh on how J-PAL’s King Climate Action Initiative tackles the twin climate and poverty crises

    The King Climate Action Initiative (K-CAI) is the flagship climate change program of the Abdul Latif Jameel Poverty Action Lab (J-PAL), which innovates, tests, and scales solutions at the nexus of climate change and poverty alleviation, together with policy partners worldwide.

    Claire Walsh is the associate director of policy at J-PAL Global at MIT. She is also the project director of K-CAI. Here, Walsh talks about the work of K-CAI since its launch in 2020, and describes the ways its projects are making a difference. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.

    Q: According to the King Climate Action Initiative (K-CAI), any attempt to address poverty effectively must also simultaneously address climate change. Why is that?

    A: Climate change will disproportionately harm people in poverty, particularly in low- and middle-income countries, because they tend to live in places that are more exposed to climate risk. These are nations in sub-Saharan Africa and South and Southeast Asia where low-income communities rely heavily on agriculture for their livelihoods, so extreme weather — heat, droughts, and flooding — can be devastating for people’s jobs and food security. In fact, the World Bank estimates that up to 130 million more people may be pushed into poverty by climate change by 2030.

    This is unjust because these countries have historically emitted the least; their people didn’t cause the climate crisis. At the same time, they are trying to improve their economies and improve people’s welfare, so their energy demands are increasing, and they are emitting more. But they don’t have the same resources as wealthy nations for mitigation or adaptation, and many developing countries understandably don’t feel eager to put solving a problem they didn’t create at the top of their priority list. This makes finding paths forward to cutting emissions on a global scale politically challenging.

    For these reasons, the problems of enhancing the well-being of people experiencing poverty, addressing inequality, and reducing pollution and greenhouse gases are inextricably linked.

    Q: So how does K-CAI tackle this hybrid challenge?

    A: Our initiative is pretty unique. We are a competitive, policy-based research and development fund that focuses on innovating, testing, and scaling solutions. We support researchers from MIT and other universities, and their collaborators, who are actually implementing programs, whether NGOs [nongovernmental organizations], government, or the private sector. We fund pilots of small-scale ideas in a real-world setting to determine if they hold promise, followed by larger randomized, controlled trials of promising solutions in climate change mitigation, adaptation, pollution reduction, and energy access. Our goal is to determine, through rigorous research, if these solutions are actually working — for example, in cutting emissions or protecting forests or helping vulnerable communities adapt to climate change. And finally, we offer path-to-scale grants which enable governments and NGOs to expand access to programs that have been tested and have strong evidence of impact.

    We think this model is really powerful. Since we launched in 2020, we have built a portfolio of over 30 randomized evaluations and 13 scaling projects in more than 35 countries. And to date, these projects have informed the scale ups of evidence-based climate policies that have reached over 15 million people.

    Q: It seems like K-CAI is advancing a kind of policy science, demanding proof of a program’s capacity to deliver results at each stage. 

    A: This is one of the factors that drew me to J-PAL back in 2012. I majored in anthropology and studied abroad in Uganda. From those experiences I became very passionate about pursuing a career focused on poverty reduction. To me, it is unfair that in a world full of so much wealth and so much opportunity there exists so much extreme poverty. I wanted to dedicate my career to that, but I’m also a very detail-oriented nerd who really cares about whether a program that claims to be doing something for people is accomplishing what it claims.

    It’s been really rewarding to see demand from governments and NGOs for evidence-informed policymaking grow over my 12 years at J-PAL. This policy science approach holds exciting promise to help transform public policy and climate policy in the coming decades.  

    Q: Can you point to K-CAI-funded projects that meet this high bar and are now making a significant impact?

    A: Several examples jump to mind. In the state of Gujarat, India, pollution regulators are trying to cut particulate matter air pollution, which is devastating to human health. The region is home to many major industries whose emissions negatively affect most of the state’s 70 million residents.

    We partnered with state pollution regulators — kind of a regional EPA [Environmental Protection Agency] — to test an emissions trading scheme that is used widely in the U.S. and Europe but not in low- and middle-income countries. The government monitors pollution levels using technology installed at factories that sends data in real time, so the regulator knows exactly what their emissions look like. The regulator sets a cap on the overall level of pollution, allocates permits to pollute, and industries can trade emissions permits.

    In 2019, researchers in the J-PAL network conducted the world’s first randomized, controlled trial of this emissions trading scheme and found that it cut pollution by 20 to 30 percent — a surprising reduction. It also reduced firms’ costs, on average, because the costs of compliance went down. The state government was eager to scale up the pilot, and in the past two years, two other cities, including Ahmedabad, the biggest city in the state, have adopted the concept.

    We are also supporting a project in Niger, whose economy is hugely dependent on rain-fed agriculture but with climate change is experiencing rapid desertification. Researchers in the J-PAL network have been testing training farmers in a simple, inexpensive rainwater harvesting technique, where farmers dig a half-moon-shaped hole called a demi-lune right before the rainy season. This demi-lune feeds crops that are grown directly on top of it, and helps return land that resembled flat desert to arable production.

    Researchers found that training farmers in this simple technology increased adoption from 4 percent to 94 percent and that demi-lunes increased agricultural output and revenue for farmers from the first year. K-CAI is funding a path-to-scale grant so local implementers can teach this technique to over 8,000 farmers and build a more cost-effective program model. If this takes hold, the team will work with local partners to scale the training to other relevant regions of the country and potentially other countries in the Sahel.

    One final example that we are really proud of, because we first funded it as a pilot and now it’s in the path to scale phase: We supported a team of researchers working with partners in Bangladesh trying to reduce carbon emissions and other pollution from brick manufacturing, an industry that generates 17 percent of the country’s carbon emissions. The scale of manufacturing is so great that at some times of year, Dhaka (the capital of Bangladesh) looks like Mordor.

    Workers form these bricks and stack hundreds of thousands of them, which they then fire by burning coal. A team of local researchers and collaborators from our J-PAL network found that you can reduce the amount of coal needed for the kilns by making some low-cost changes to the manufacturing process, including stacking the bricks in a way that increases airflow in the kiln and feeding the coal fires more frequently in smaller rather than larger batches.

    In the randomized, controlled trial K-CAI supported, researchers found that this cut carbon and pollution emissions significantly, and now the government has invited the team to train 1,000 brick manufacturers in Dhaka in these techniques.

    Q: These are all fascinating and powerful instances of implementing ideas that address a range of problems in different parts of the world. But can K-CAI go big enough and fast enough to take a real bite out of the twin poverty and climate crisis?

    A: We’re not trying to find silver bullets. We are trying to build a large playbook of real solutions that work to solve specific problems in specific contexts. As you build those up in the hundreds, you have a deep bench of effective approaches to solve problems that can add up in a meaningful way. And because J-PAL works with governments and NGOs that have the capacity to take the research into action, since 2003, over 600 million people around the world have been reached by policies and programs that are informed by evidence that J-PAL-affiliated researchers produced. While global challenges seem daunting, J-PAL has shown that in 20 years we can achieve a great deal, and there is huge potential for future impact.

    But unfortunately, globally, there is an underinvestment in policy innovation to combat climate change that may generate quicker, lower-cost returns at a large scale — especially in policies that determine which technologies get adopted or commercialized. For example, a lot of the huge fall in prices of renewable energy was enabled by early European government investments in solar and wind, and then continuing support for innovation in renewable energy.

    That’s why I think social sciences have so much to offer in the fight against climate change and poverty; we are working where technology meets policy and where technology meets real people, which often determines their success or failure. The world should be investing in policy, economic, and social innovation just as much as it is investing in technological innovation.

    Q: Do you need to be an optimist in your job?

    A: I am half-optimist, half-pragmatist. I have no control over the climate change outcome for the world. And regardless of whether we can successfully avoid most of the potential damages of climate change, when I look back, I’m going to ask myself, “Did I fight or not?” The only choice I have is whether or not I fought, and I want to be a fighter. More

  • in

    Extracting hydrogen from rocks

    It’s commonly thought that the most abundant element in the universe, hydrogen, exists mainly alongside other elements — with oxygen in water, for example, and with carbon in methane. But naturally occurring underground pockets of pure hydrogen are punching holes in that notion — and generating attention as a potentially unlimited source of carbon-free power. One interested party is the U.S. Department of Energy, which last month awarded $20 million in research grants to 18 teams from laboratories, universities, and private companies to develop technologies that can lead to cheap, clean fuel from the subsurface. Geologic hydrogen, as it’s known, is produced when water reacts with iron-rich rocks, causing the iron to oxidize. One of the grant recipients, MIT Assistant Professor Iwnetim Abate’s research group, will use its $1.3 million grant to determine the ideal conditions for producing hydrogen underground — considering factors such as catalysts to initiate the chemical reaction, temperature, pressure, and pH levels. The goal is to improve efficiency for large-scale production, meeting global energy needs at a competitive cost. The U.S. Geological Survey estimates there are potentially billions of tons of geologic hydrogen buried in the Earth’s crust. Accumulations have been discovered worldwide, and a slew of startups are searching for extractable deposits. Abate is looking to jump-start the natural hydrogen production process, implementing “proactive” approaches that involve stimulating production and harvesting the gas.                                                                                                                         “We aim to optimize the reaction parameters to make the reaction faster and produce hydrogen in an economically feasible manner,” says Abate, the Chipman Development Professor in the Department of Materials Science and Engineering (DMSE). Abate’s research centers on designing materials and technologies for the renewable energy transition, including next-generation batteries and novel chemical methods for energy storage. 

    Sparking innovation

    Interest in geologic hydrogen is growing at a time when governments worldwide are seeking carbon-free energy alternatives to oil and gas. In December, French President Emmanuel Macron said his government would provide funding to explore natural hydrogen. And in February, government and private sector witnesses briefed U.S. lawmakers on opportunities to extract hydrogen from the ground. Today commercial hydrogen is manufactured at $2 a kilogram, mostly for fertilizer and chemical and steel production, but most methods involve burning fossil fuels, which release Earth-heating carbon. “Green hydrogen,” produced with renewable energy, is promising, but at $7 per kilogram, it’s expensive. “If you get hydrogen at a dollar a kilo, it’s competitive with natural gas on an energy-price basis,” says Douglas Wicks, a program director at Advanced Research Projects Agency – Energy (ARPA-E), the Department of Energy organization leading the geologic hydrogen grant program. Recipients of the ARPA-E grants include Colorado School of Mines, Texas Tech University, and Los Alamos National Laboratory, plus private companies including Koloma, a hydrogen production startup that has received funding from Amazon and Bill Gates. The projects themselves are diverse, ranging from applying industrial oil and gas methods for hydrogen production and extraction to developing models to understand hydrogen formation in rocks. The purpose: to address questions in what Wicks calls a “total white space.” “In geologic hydrogen, we don’t know how we can accelerate the production of it, because it’s a chemical reaction, nor do we really understand how to engineer the subsurface so that we can safely extract it,” Wicks says. “We’re trying to bring in the best skills of each of the different groups to work on this under the idea that the ensemble should be able to give us good answers in a fairly rapid timeframe.” Geochemist Viacheslav Zgonnik, one of the foremost experts in the natural hydrogen field, agrees that the list of unknowns is long, as is the road to the first commercial projects. But he says efforts to stimulate hydrogen production — to harness the natural reaction between water and rock — present “tremendous potential.” “The idea is to find ways we can accelerate that reaction and control it so we can produce hydrogen on demand in specific places,” says Zgonnik, CEO and founder of Natural Hydrogen Energy, a Denver-based startup that has mineral leases for exploratory drilling in the United States. “If we can achieve that goal, it means that we can potentially replace fossil fuels with stimulated hydrogen.”

    “A full-circle moment”

    For Abate, the connection to the project is personal. As a child in his hometown in Ethiopia, power outages were a usual occurrence — the lights would be out three, maybe four days a week. Flickering candles or pollutant-emitting kerosene lamps were often the only source of light for doing homework at night. “And for the household, we had to use wood and charcoal for chores such as cooking,” says Abate. “That was my story all the way until the end of high school and before I came to the U.S. for college.” In 1987, well-diggers drilling for water in Mali in Western Africa uncovered a natural hydrogen deposit, causing an explosion. Decades later, Malian entrepreneur Aliou Diallo and his Canadian oil and gas company tapped the well and used an engine to burn hydrogen and power electricity in the nearby village. Ditching oil and gas, Diallo launched Hydroma, the world’s first hydrogen exploration enterprise. The company is drilling wells near the original site that have yielded high concentrations of the gas. “So, what used to be known as an energy-poor continent now is generating hope for the future of the world,” Abate says. “Learning about that was a full-circle moment for me. Of course, the problem is global; the solution is global. But then the connection with my personal journey, plus the solution coming from my home continent, makes me personally connected to the problem and to the solution.”

    Experiments that scale

    Abate and researchers in his lab are formulating a recipe for a fluid that will induce the chemical reaction that triggers hydrogen production in rocks. The main ingredient is water, and the team is testing “simple” materials for catalysts that will speed up the reaction and in turn increase the amount of hydrogen produced, says postdoc Yifan Gao. “Some catalysts are very costly and hard to produce, requiring complex production or preparation,” Gao says. “A catalyst that’s inexpensive and abundant will allow us to enhance the production rate — that way, we produce it at an economically feasible rate, but also with an economically feasible yield.” The iron-rich rocks in which the chemical reaction happens can be found across the United States and the world. To optimize the reaction across a diversity of geological compositions and environments, Abate and Gao are developing what they call a high-throughput system, consisting of artificial intelligence software and robotics, to test different catalyst mixtures and simulate what would happen when applied to rocks from various regions, with different external conditions like temperature and pressure. “And from that we measure how much hydrogen we are producing for each possible combination,” Abate says. “Then the AI will learn from the experiments and suggest to us, ‘Based on what I’ve learned and based on the literature, I suggest you test this composition of catalyst material for this rock.’” The team is writing a paper on its project and aims to publish its findings in the coming months. The next milestones for the project, after developing the catalyst recipe, is designing a reactor that will serve two purposes. First, fitted with technologies such as Raman spectroscopy, it will allow researchers to identify and optimize the chemical conditions that lead to improved rates and yield of hydrogen production. The lab-scale device will also inform the design of a real-world reactor that can accelerate hydrogen production in the field. “That would be a plant-scale reactor that would be implanted into the subsurface,” Abate says. The cross-disciplinary project is also tapping the expertise of Yang Shao-Horn, of MIT’s Department of Mechanical Engineering and DMSE, for computational analysis of the catalyst, and Esteban Gazel, a Cornell University scientist who will lend his expertise in geology and geochemistry. He’ll focus on understanding the iron-rich ultramafic rock formations across the United States and the globe and how they react with water. For Wicks at ARPA-E, the questions Abate and the other grant recipients are asking are just the first, critical steps in uncharted energy territory. “If we can understand how to stimulate these rocks into generating hydrogen, safely getting it up, it really unleashes the potential energy source,” he says. Then the emerging industry will look to oil and gas for the drilling, piping, and gas extraction know-how. “As I like to say, this is enabling technology that we hope to, in a very short term, enable us to say, ‘Is there really something there?’” More

  • in

    Propelling atomically layered magnets toward green computers

    Globally, computation is booming at an unprecedented rate, fueled by the boons of artificial intelligence. With this, the staggering energy demand of the world’s computing infrastructure has become a major concern, and the development of computing devices that are far more energy-efficient is a leading challenge for the scientific community. 

    Use of magnetic materials to build computing devices like memories and processors has emerged as a promising avenue for creating “beyond-CMOS” computers, which would use far less energy compared to traditional computers. Magnetization switching in magnets can be used in computation the same way that a transistor switches from open or closed to represent the 0s and 1s of binary code. 

    While much of the research along this direction has focused on using bulk magnetic materials, a new class of magnetic materials — called two-dimensional van der Waals magnets — provides superior properties that can improve the scalability and energy efficiency of magnetic devices to make them commercially viable. 

    Although the benefits of shifting to 2D magnetic materials are evident, their practical induction into computers has been hindered by some fundamental challenges. Until recently, 2D magnetic materials could operate only at very low temperatures, much like superconductors. So bringing their operating temperatures above room temperature has remained a primary goal. Additionally, for use in computers, it is important that they can be controlled electrically, without the need for magnetic fields. Bridging this fundamental gap, where 2D magnetic materials can be electrically switched above room temperature without any magnetic fields, could potentially catapult the translation of 2D magnets into the next generation of “green” computers.

    A team of MIT researchers has now achieved this critical milestone by designing a “van der Waals atomically layered heterostructure” device where a 2D van der Waals magnet, iron gallium telluride, is interfaced with another 2D material, tungsten ditelluride. In an open-access paper published March 15 in Science Advances, the team shows that the magnet can be toggled between the 0 and 1 states simply by applying pulses of electrical current across their two-layer device. 

    Play video

    The Future of Spintronics: Manipulating Spins in Atomic Layers without External Magnetic FieldsVideo: Deblina Sarkar

    “Our device enables robust magnetization switching without the need for an external magnetic field, opening up unprecedented opportunities for ultra-low power and environmentally sustainable computing technology for big data and AI,” says lead author Deblina Sarkar, the AT&T Career Development Assistant Professor at the MIT Media Lab and Center for Neurobiological Engineering, and head of the Nano-Cybernetic Biotrek research group. “Moreover, the atomically layered structure of our device provides unique capabilities including improved interface and possibilities of gate voltage tunability, as well as flexible and transparent spintronic technologies.”

    Sarkar is joined on the paper by first author Shivam Kajale, a graduate student in Sarkar’s research group at the Media Lab; Thanh Nguyen, a graduate student in the Department of Nuclear Science and Engineering (NSE); Nguyen Tuan Hung, an MIT visiting scholar in NSE and an assistant professor at Tohoku University in Japan; and Mingda Li, associate professor of NSE.

    Breaking the mirror symmetries 

    When electric current flows through heavy metals like platinum or tantalum, the electrons get segregated in the materials based on their spin component, a phenomenon called the spin Hall effect, says Kajale. The way this segregation happens depends on the material, and particularly its symmetries.

    “The conversion of electric current to spin currents in heavy metals lies at the heart of controlling magnets electrically,” Kajale notes. “The microscopic structure of conventionally used materials, like platinum, have a kind of mirror symmetry, which restricts the spin currents only to in-plane spin polarization.”

    Kajale explains that two mirror symmetries must be broken to produce an “out-of-plane” spin component that can be transferred to a magnetic layer to induce field-free switching. “Electrical current can ‘break’ the mirror symmetry along one plane in platinum, but its crystal structure prevents the mirror symmetry from being broken in a second plane.”

    In their earlier experiments, the researchers used a small magnetic field to break the second mirror plane. To get rid of the need for a magnetic nudge, Kajale and Sarkar and colleagues looked instead for a material with a structure that could break the second mirror plane without outside help. This led them to another 2D material, tungsten ditelluride. The tungsten ditelluride that the researchers used has an orthorhombic crystal structure. The material itself has one broken mirror plane. Thus, by applying current along its low-symmetry axis (parallel to the broken mirror plane), the resulting spin current has an out-of-plane spin component that can directly induce switching in the ultra-thin magnet interfaced with the tungsten ditelluride. 

    “Because it’s also a 2D van der Waals material, it can also ensure that when we stack the two materials together, we get pristine interfaces and a good flow of electron spins between the materials,” says Kajale. 

    Becoming more energy-efficient 

    Computer memory and processors built from magnetic materials use less energy than traditional silicon-based devices. And the van der Waals magnets can offer higher energy efficiency and better scalability compared to bulk magnetic material, the researchers note. 

    The electrical current density used for switching the magnet translates to how much energy is dissipated during switching. A lower density means a much more energy-efficient material. “The new design has one of the lowest current densities in van der Waals magnetic materials,” Kajale says. “This new design has an order of magnitude lower in terms of the switching current required in bulk materials. This translates to something like two orders of magnitude improvement in energy efficiency.”

    The research team is now looking at similar low-symmetry van der Waals materials to see if they can reduce current density even further. They are also hoping to collaborate with other researchers to find ways to manufacture the 2D magnetic switch devices at commercial scale. 

    This work was carried out, in part, using the facilities at MIT.nano. It was funded by the Media Lab, the U.S. National Science Foundation, and the U.S. Department of Energy. More