More stories

  • in

    Surface-based sonar system could rapidly map the ocean floor at high resolution

    On June 18, 2023, the Titan submersible was about an hour-and-a-half into its two-hour descent to the Titanic wreckage at the bottom of the Atlantic Ocean when it lost contact with its support ship. This cease in communication set off a frantic search for the tourist submersible and five passengers onboard, located about two miles below the ocean’s surface.Deep-ocean search and recovery is one of the many missions of military services like the U.S. Coast Guard Office of Search and Rescue and the U.S. Navy Supervisor of Salvage and Diving. For this mission, the longest delays come from transporting search-and-rescue equipment via ship to the area of interest and comprehensively surveying that area. A search operation on the scale of that for Titan — which was conducted 420 nautical miles from the nearest port and covered 13,000 square kilometers, an area roughly twice the size of Connecticut — could take weeks to complete. The search area for Titan is considered relatively small, focused on the immediate vicinity of the Titanic. When the area is less known, operations could take months. (A remotely operated underwater vehicle deployed by a Canadian vessel ended up finding the debris field of Titan on the seafloor, four days after the submersible had gone missing.)A research team from MIT Lincoln Laboratory and the MIT Department of Mechanical Engineering’s Ocean Science and Engineering lab is developing a surface-based sonar system that could accelerate the timeline for small- and large-scale search operations to days. Called the Autonomous Sparse-Aperture Multibeam Echo Sounder, the system scans at surface-ship rates while providing sufficient resolution to find objects and features in the deep ocean, without the time and expense of deploying underwater vehicles. The echo sounder — which features a large sonar array using a small set of autonomous surface vehicles (ASVs) that can be deployed via aircraft into the ocean — holds the potential to map the seabed at 50 times the coverage rate of an underwater vehicle and 100 times the resolution of a surface vessel.

    Play video

    Autonomous Sparse-Aperture Multibeam Echo SounderVideo: MIT Lincoln Laboratory

    “Our array provides the best of both worlds: the high resolution of underwater vehicles and the high coverage rate of surface ships,” says co–principal investigator Andrew March, assistant leader of the laboratory’s Advanced Undersea Systems and Technology Group. “Though large surface-based sonar systems at low frequency have the potential to determine the materials and profiles of the seabed, they typically do so at the expense of resolution, particularly with increasing ocean depth. Our array can likely determine this information, too, but at significantly enhanced resolution in the deep ocean.”Underwater unknownOceans cover 71 percent of Earth’s surface, yet more than 80 percent of this underwater realm remains undiscovered and unexplored. Humans know more about the surface of other planets and the moon than the bottom of our oceans. High-resolution seabed maps would not only be useful to find missing objects like ships or aircraft, but also to support a host of other scientific applications: understanding Earth’s geology, improving forecasting of ocean currents and corresponding weather and climate impacts, uncovering archaeological sites, monitoring marine ecosystems and habitats, and identifying locations containing natural resources such as mineral and oil deposits.Scientists and governments worldwide recognize the importance of creating a high-resolution global map of the seafloor; the problem is that no existing technology can achieve meter-scale resolution from the ocean surface. The average depth of our oceans is approximately 3,700 meters. However, today’s technologies capable of finding human-made objects on the seabed or identifying person-sized natural features — these technologies include sonar, lidar, cameras, and gravitational field mapping — have a maximum range of less than 1,000 meters through water.Ships with large sonar arrays mounted on their hull map the deep ocean by emitting low-frequency sound waves that bounce off the seafloor and return as echoes to the surface. Operation at low frequencies is necessary because water readily absorbs high-frequency sound waves, especially with increasing depth; however, such operation yields low-resolution images, with each image pixel representing a football field in size. Resolution is also restricted because sonar arrays installed on large mapping ships are already using all of the available hull space, thereby capping the sonar beam’s aperture size. By contrast, sonars on autonomous underwater vehicles (AUVs) that operate at higher frequencies within a few hundred meters of the seafloor generate maps with each pixel representing one square meter or less, resulting in 10,000 times more pixels in that same football field–sized area. However, this higher resolution comes with trade-offs: AUVs are time-consuming and expensive to deploy in the deep ocean, limiting the amount of seafloor that can be mapped; they have a maximum range of about 1,000 meters before their high-frequency sound gets absorbed; and they move at slow speeds to conserve power. The area-coverage rate of AUVs performing high-resolution mapping is about 8 square kilometers per hour; surface vessels map the deep ocean at more than 50 times that rate.A solution surfacesThe Autonomous Sparse-Aperture Multibeam Echo Sounder could offer a cost-effective approach to high-resolution, rapid mapping of the deep seafloor from the ocean’s surface. A collaborative fleet of about 20 ASVs, each hosting a small sonar array, effectively forms a single sonar array 100 times the size of a large sonar array installed on a ship. The large aperture achieved by the array (hundreds of meters) produces a narrow beam, which enables sound to be precisely steered to generate high-resolution maps at low frequency. Because very few sonars are installed relative to the array’s overall size (i.e., a sparse aperture), the cost is tractable.However, this collaborative and sparse setup introduces some operational challenges. First, for coherent 3D imaging, the relative position of each ASV’s sonar subarray must be accurately tracked through dynamic ocean-induced motions. Second, because sonar elements are not placed directly next to each other without any gaps, the array suffers from a lower signal-to-noise ratio and is less able to reject noise coming from unintended or undesired directions. To mitigate these challenges, the team has been developing a low-cost precision-relative navigation system and leveraging acoustic signal processing tools and new ocean-field estimation algorithms. The MIT campus collaborators are developing algorithms for data processing and image formation, especially to estimate depth-integrated water-column parameters. These enabling technologies will help account for complex ocean physics, spanning physical properties like temperature, dynamic processes like currents and waves, and acoustic propagation factors like sound speed.Processing for all required control and calculations could be completed either remotely or onboard the ASVs. For example, ASVs deployed from a ship or flying boat could be controlled and guided remotely from land via a satellite link or from a nearby support ship (with direct communications or a satellite link), and left to map the seabed for weeks or months at a time until maintenance is needed. Sonar-return health checks and coarse seabed mapping would be conducted on board, while full, high-resolution reconstruction of the seabed would require a supercomputing infrastructure on land or on a support ship.”Deploying vehicles in an area and letting them map for extended periods of time without the need for a ship to return home to replenish supplies and rotate crews would significantly simplify logistics and operating costs,” says co–principal investigator Paul Ryu, a researcher in the Advanced Undersea Systems and Technology Group.Since beginning their research in 2018, the team has turned their concept into a prototype. Initially, the scientists built a scale model of a sparse-aperture sonar array and tested it in a water tank at the laboratory’s Autonomous Systems Development Facility. Then, they prototyped an ASV-sized sonar subarray and demonstrated its functionality in Gloucester, Massachusetts. In follow-on sea tests in Boston Harbor, they deployed an 8-meter array containing multiple subarrays equivalent to 25 ASVs locked together; with this array, they generated 3D reconstructions of the seafloor and a shipwreck. Most recently, the team fabricated, in collaboration with Woods Hole Oceanographic Institution, a first-generation, 12-foot-long, all-electric ASV prototype carrying a sonar array underneath. With this prototype, they conducted preliminary relative navigation testing in Woods Hole, Massachusetts and Newport, Rhode Island. Their full deep-ocean concept calls for approximately 20 such ASVs of a similar size, likely powered by wave or solar energy.This work was funded through Lincoln Laboratory’s internally administered R&D portfolio on autonomous systems. The team is now seeking external sponsorship to continue development of their ocean floor–mapping technology, which was recognized with a 2024 R&D 100 Award.  More

  • in

    In a unique research collaboration, students make the case for less e-waste

    Brought together as part of the Social and Ethical Responsibilities of Computing (SERC) initiative within the MIT Schwarzman College of Computing, a community of students known as SERC Scholars is collaborating to examine the most urgent problems humans face in the digital landscape.Each semester, students from all levels from across MIT are invited to join a different topical working group led by a SERC postdoctoral associate. Each group delves into a specific issue — such as surveillance or data ownership — culminating in a final project presented at the end of the term.Typically, students complete the program with hands-on experience conducting research in a new cross-disciplinary field. However, one group of undergraduate and graduate students recently had the unique opportunity to enhance their resume by becoming published authors of a case study about the environmental and climate justice implications of the electronics hardware life cycle.Although it’s not uncommon for graduate students to co-author case studies, it’s unusual for undergraduates to earn this opportunity — and for their audience to be other undergraduates around the world.“Our team was insanely interdisciplinary,” says Anastasia Dunca, a junior studying computer science and one of the co-authors. “I joined the SERC Scholars Program because I liked the idea of being part of a cohort from across MIT working on a project that utilized all of our skillsets. It also helps [undergraduates] learn the ins and outs of computing ethics research.”Case study co-author Jasmin Liu, an MBA student in the MIT Sloan School of Management, sees the program as a platform to learn about the intersection of technology, society, and ethics: “I met team members spanning computer science, urban planning, to art/culture/technology. I was excited to work with a diverse team because I know complex problems must be approached with many different perspectives. Combining my background in humanities and business with the expertise of others allowed us to be more innovative and comprehensive.”Christopher Rabe, a former SERC postdoc who facilitated the group, says, “I let the students take the lead on identifying the topic and conducting the research.” His goal for the group was to challenge students across disciplines to develop a working definition of climate justice.From mining to e-wasteThe SERC Scholars’ case study, “From Mining to E-waste: The Environmental and Climate Justice Implications of the Electronics Hardware Life Cycle,” was published by the MIT Case Studies in Social and Ethical Responsibilities of Computing.The ongoing case studies series, which releases new issues twice a year on an open-source platform, is enabling undergraduate instructors worldwide to incorporate research-based education materials on computing ethics into their existing class syllabi.This particular case study broke down the electronics life cycle from mining to manufacturing, usage, and disposal. It offered an in-depth look at how this cycle promotes inequity in the Global South. Mining for the average of 60 minerals that power everyday devices lead to illegal deforestation, compromising air quality in the Amazon, and triggering armed conflict in Congo. Manufacturing leads to proven health risks for both formal and informal workers, some of whom are child laborers.Life cycle assessment and circular economy are proposed as mechanisms for analyzing environmental and climate justice issues in the electronics life cycle. Rather than posing solutions, the case study offers readers entry points for further discussion and for assessing their own individual responsibility as producers of e-waste.Crufting and crafting a case studyDunca joined Rabe’s working group, intrigued by the invitation to conduct a rigorous literature review examining issues like data center resource and energy use, manufacturing waste, ethical issues with AI, and climate change. Rabe quickly realized that a common thread among all participants was an interest in understanding and reducing e-waste and its impact on the environment.“I came in with the idea of us co-authoring a case study,” Rabe said. However, the writing-intensive process was initially daunting to those students who were used to conducting applied research. Once Rabe created sub-groups with discrete tasks, the steps for researching, writing, and iterating a case study became more approachable.For Ellie Bultena, an undergraduate student studying linguistics and philosophy and a contributor to the study, that meant conducting field research on the loading dock of MIT’s Stata Center, where students and faculty go “crufting” through piles of clunky printers, broken computers, and used lab equipment discarded by the Institute’s labs, departments, and individual users.Although not a formally sanctioned activity on-campus, “crufting” is the act of gleaning usable parts from these junk piles to be repurposed into new equipment or art. Bultena’s respondents, who opted to be anonymous, said that MIT could do better when it comes to the amount of e-waste generated and suggested that formal strategies could be implemented to encourage community members to repair equipment more easily or recycle more formally.Rabe, now an education program director at the MIT Environmental Solutions Initiative, is hopeful that through the Zero-Carbon Campus Initiative, which commits MIT to eliminating all direct emissions by 2050, MIT will ultimately become a model for other higher education institutions.Although the group lacked the time and resources to travel to communities in the Global South that they profiled in their case study, members leaned into exhaustive secondary research, collecting data on how some countries are irresponsibly dumping e-waste. In contrast, others have developed alternative solutions that can be duplicated elsewhere and scaled.“We source materials, manufacture them, and then throw them away,” Lelia Hampton says. A PhD candidate in electrical engineering and computer science and another co-author, Hampton jumped at the opportunity to serve in a writing role, bringing together the sub-groups research findings. “I’d never written a case study, and it was exciting. Now I want to write 10 more.”The content directly informed Hampton’s dissertation research, which “looks at applying machine learning to climate justice issues such as urban heat islands.” She said that writing a case study that is accessible to general audiences upskilled her for the non-profit organization she’s determined to start. “It’s going to provide communities with free resources and data needed to understand how they are impacted by climate change and begin to advocate against injustice,” Hampton explains.Dunca, Liu, Rabe, Bultena, and Hampton are joined on the case study by fellow authors Mrinalini Singha, a graduate student in the Art, Culture, and Technology program; Sungmoon Lim, a graduate student in urban studies and planning and EECS; Lauren Higgins, an undergraduate majoring in political science; and Madeline Schlegal, a Northeastern University co-op student.Taking the case study to classrooms around the worldAlthough PhD candidates have contributed to previous case studies in the series, this publication is the first to be co-authored with MIT undergraduates. Like any other peer-reviewed journal, before publication, the SERC Scholars’ case study was anonymously reviewed by senior scholars drawn from various fields.The series editor, David Kaiser, also served as one of SERC’s inaugural associate deans and helped shape the program. “The case studies, by design, are short, easy to read, and don’t take up lots of time,” Kaiser explained. “They are gateways for students to explore, and instructors can cover a topic that has likely already been on their mind.” This semester, Kaiser, the Germeshausen Professor of the History of Science and a professor of physics, is teaching STS.004 (Intersections: Science, Technology, and the World), an undergraduate introduction to the field of science, technology, and society. The last month of the semester has been dedicated wholly to SERC case studies, one of which is: “From Mining to E-Waste.”Hampton was visibly moved to hear that the case study is being used at MIT but also by some of the 250,000 visitors to the SERC platform, many of whom are based in the Global South and directly impacted by the issues she and her cohort researched. “Many students are focused on climate, whether through computer science, data science, or mechanical engineering. I hope that this case study educates them on environmental and climate aspects of e-waste and computing.” More

  • in

    Enabling a circular economy in the built environment

    The amount of waste generated by the construction sector underscores an urgent need for embracing circularity — a sustainable model that aims to minimize waste and maximize material efficiency through recovery and reuse — in the built environment: 600 million tons of construction and demolition waste was produced in the United States alone in 2018, with 820 million tons reported in the European Union, and an excess of 2 billion tons annually in China.This significant resource loss embedded in our current industrial ecosystem marks a linear economy that operates on a “take-make-dispose” model of construction; in contrast, the “make-use-reuse” approach of a circular economy offers an important opportunity to reduce environmental impacts.A team of MIT researchers has begun to assess what may be needed to spur widespread circular transition within the built environment in a new open-access study that aims to understand stakeholders’ current perceptions of circularity and quantify their willingness to pay.“This paper acts as an initial endeavor into understanding what the industry may be motivated by, and how integration of stakeholder motivations could lead to greater adoption,” says lead author Juliana Berglund-Brown, PhD student in the Department of Architecture at MIT.Considering stakeholders’ perceptionsThree different stakeholder groups from North America, Europe, and Asia — material suppliers, design and construction teams, and real estate developers — were surveyed by the research team that also comprises Akrisht Pandey ’23; Fabio Duarte, associate director of the MIT Senseable City Lab; Raquel Ganitsky, fellow in the Sustainable Real Estate Development Action Program; Randolph Kirchain, co-director of MIT Concrete Sustainability Hub; and Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at Department of Urban Studies and Planning.Despite growing awareness of reuse practice among construction industry stakeholders, circular practices have yet to be implemented at scale — attributable to many factors that influence the intersection of construction needs with government regulations and the economic interests of real estate developers.The study notes that perceived barriers to circular adoption differ based on industry role, with lack of both client interest and standardized structural assessment methods identified as the primary concern of design and construction teams, while the largest deterrents for material suppliers are logistics complexity, and supply uncertainty. Real estate developers, on the other hand, are chiefly concerned with higher costs and structural assessment. Yet encouragingly, respondents expressed willingness to absorb higher costs, with developers indicating readiness to pay an average of 9.6 percent higher construction costs for a minimum 52.9 percent reduction in embodied carbon — and all stakeholders highly favor the potential of incentives like tax exemptions to aid with cost premiums.Next steps to encourage circularityThe findings highlight the need for further conversation between design teams and developers, as well as for additional exploration into potential solutions to practical challenges. “The thing about circularity is that there is opportunity for a lot of value creation, and subsequently profit,” says Berglund-Brown. “If people are motivated by cost, let’s provide a cost incentive, or establish strategies that have one.”When it comes to motivating reasons to adopt circularity practices, the study also found trends emerging by industry role. Future net-zero goals influence developers as well as design and construction teams, with government regulation the third-most frequently named reason across all respondent types.“The construction industry needs a market driver to embrace circularity,” says Berglund-Brown, “Be it carrots or sticks, stakeholders require incentives for adoption.”The effect of policy to motivate change cannot be understated, with major strides being made in low operational carbon building design after policy restricting emissions was introduced, such as Local Law 97 in New York City and the Building Emissions Reduction and Disclosure Ordinance in Boston. These pieces of policy, and their results, can serve as models for embodied carbon reduction policy elsewhere.Berglund-Brown suggests that municipalities might initiate ordinances requiring buildings to be deconstructed, which would allow components to be reused, curbing demolition methods that result in waste rather than salvage. Top-down ordinances could be one way to trigger a supply chain shift toward reprocessing building materials that are typically deemed “end-of-life.”The study also identifies other challenges to the implementation of circularity at scale, including risk associated with how to reuse materials in new buildings, and disrupting status quo design practices.“Understanding the best way to motivate transition despite uncertainty is where our work comes in,” says Berglund-Brown. “Beyond that, researchers can continue to do a lot to alleviate risk — like developing standards for reuse.”Innovations that challenge the status quoDisrupting the status quo is not unusual for MIT researchers; other visionary work in construction circularity pioneered at MIT includes “a smart kit of parts” called Pixelframe. This system for modular concrete reuse allows building elements to be disassembled and rebuilt several times, aiding deconstruction and reuse while maintaining material efficiency and versatility.Developed by MIT Climate and Sustainability Consortium Associate Director Caitlin Mueller’s research team, Pixelframe is designed to accommodate a wide range of applications from housing to warehouses, with each piece of interlocking precast concrete modules, called Pixels, assigned a material passport to enable tracking through its many life cycles.Mueller’s work demonstrates that circularity can work technically and logistically at the scale of the built environment — by designing specifically for disassembly, configuration, versatility, and upfront carbon and cost efficiency.“This can be built today. This is building code-compliant today,” said Mueller of Pixelframe in a keynote speech at the recent MCSC Annual Symposium, which saw industry representatives and members of the MIT community coming together to discuss scalable solutions to climate and sustainability problems. “We currently have the potential for high-impact carbon reduction as a compelling alternative to the business-as-usual construction methods we are used to.”Pixelframe was recently awarded a grant by the Massachusetts Clean Energy Center (MassCEC) to pursue commercialization, an important next step toward integrating innovations like this into a circular economy in practice. “It’s MassCEC’s job to make sure that these climate leaders have the resources they need to turn their technologies into successful businesses that make a difference around the world,” said MassCEC CEO Emily Reichart, in a press release.Additional support for circular innovation has emerged thanks to a historic piece of climate legislation from the Biden administration. The Environmental Protection Agency recently awarded a federal grant on the topic of advancing steel reuse to Berglund-Brown — whose PhD thesis focuses on scaling the reuse of structural heavy-section steel — and John Ochsendorf, the Class of 1942 Professor of Civil and Environmental Engineering and Architecture at MIT.“There is a lot of exciting upcoming work on this topic,” says Berglund-Brown. “To any practitioners reading this who are interested in getting involved — please reach out.”The study is supported in part by the MIT Climate and Sustainability Consortium. More

  • in

    A new biodegradable material to replace certain microplastics

    Microplastics are an environmental hazard found nearly everywhere on Earth, released by the breakdown of tires, clothing, and plastic packaging. Another significant source of microplastics is tiny beads that are added to some cleansers, cosmetics, and other beauty products.In an effort to cut off some of these microplastics at their source, MIT researchers have developed a class of biodegradable materials that could replace the plastic beads now used in beauty products. These polymers break down into harmless sugars and amino acids.“One way to mitigate the microplastics problem is to figure out how to clean up existing pollution. But it’s equally important to look ahead and focus on creating materials that won’t generate microplastics in the first place,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research.These particles could also find other applications. In the new study, Jaklenec and her colleagues showed that the particles could be used to encapsulate nutrients such as vitamin A. Fortifying foods with encapsulated vitamin A and other nutrients could help some of the 2 billion people around the world who suffer from nutrient deficiencies.Jaklenec and Robert Langer, an MIT Institute Professor and member of the Koch Institute, are the senior authors of the paper, which appears today in Nature Chemical Engineering. The paper’s lead author is Linzixuan (Rhoda) Zhang, an MIT graduate student in chemical engineering.Biodegradable plasticsIn 2019, Jaklenec, Langer, and others reported a polymer material that they showed could be used to encapsulate vitamin A and other essential nutrients. They also found that people who consumed bread made from flour fortified with encapsulated iron showed increased iron levels.However, since then, the European Union has classified this polymer, known as BMC, as a microplastic and included it in a ban that went into effect in 2023. As a result, the Bill and Melinda Gates Foundation, which funded the original research, asked the MIT team if they could design an alternative that would be more environmentally friendly.The researchers, led by Zhang, turned to a type of polymer that Langer’s lab had previously developed, known as poly(beta-amino esters). These polymers, which have shown promise as vehicles for gene delivery and other medical applications, are biodegradable and break down into sugars and amino acids.By changing the composition of the material’s building blocks, researchers can tune properties such as hydrophobicity (ability to repel water), mechanical strength, and pH sensitivity. After creating five different candidate materials, the MIT team tested them and identified one that appeared to have the optimal composition for microplastic applications, including the ability to dissolve when exposed to acidic environments such as the stomach.The researchers showed that they could use these particles to encapsulate vitamin A, as well as vitamin D, vitamin E, vitamin C, zinc, and iron. Many of these nutrients are susceptible to heat and light degradation, but when encased in the particles, the researchers found that the nutrients could withstand exposure to boiling water for two hours.They also showed that even after being stored for six months at high temperature and high humidity, more than half of the encapsulated vitamins were undamaged.To demonstrate their potential for fortifying food, the researchers incorporated the particles into bouillon cubes, which are commonly consumed in many African countries. They found that when incorporated into bouillon, the nutrients remained intact after being boiled for two hours.“Bouillon is a staple ingredient in sub-Saharan Africa, and offers a significant opportunity to improve the nutritional status of many billions of people in those regions,” Jaklenec says.In this study, the researchers also tested the particles’ safety by exposing them to cultured human intestinal cells and measuring their effects on the cells. At the doses that would be used for food fortification, they found no damage to the cells.Better cleansingTo explore the particles’ ability to replace the microbeads that are often added to cleansers, the researchers mixed the particles with soap foam. This mixture, they found, could remove permanent marker and waterproof eyeliner from skin much more effectively than soap alone.Soap mixed with the new microplastic was also more effective than a cleanser that includes polyethylene microbeads, the researchers found. They also discovered that the new biodegradable particles did a better job of absorbing potentially toxic elements such as heavy metals.“We wanted to use this as a first step to demonstrate how it’s possible to develop a new class of materials, to expand from existing material categories, and then to apply it to different applications,” Zhang says.With a grant from Estée Lauder, the researchers are now working on further testing the microbeads as a cleanser and potentially other applications, and they plan to run a small human trial later this year. They are also gathering safety data that could be used to apply for GRAS (generally regarded as safe) classification from the U.S. Food and Drug Administration and are planning a clinical trial of foods fortified with the particles.The researchers hope their work could help to significantly reduce the amount of microplastic released into the environment from health and beauty products.“This is just one small part of the broader microplastics issue, but as a society we’re beginning to acknowledge the seriousness of the problem. This work offers a step forward in addressing it,” Jaklenec says. “Polymers are incredibly useful and essential in countless applications in our daily lives, but they come with downsides. This is an example of how we can reduce some of those negative aspects.”The research was funded by the Gates Foundation and the U.S. National Science Foundation. More

  • in

    MIT delegation mainstreams biodiversity conservation at the UN Biodiversity Convention, COP16

    For the first time, MIT sent an organized engagement to the global Conference of the Parties for the Convention on Biological Diversity, which this year was held Oct. 21 to Nov. 1 in Cali, Colombia.The 10 delegates to COP16 included faculty, researchers, and students from the MIT Environmental Solutions Initiative (ESI), the Department of Electrical Engineering and Computer Science (EECS), the Computer Science and Artificial Intelligence Laboratory (CSAIL), the Department of Urban Studies and Planning (DUSP), the Institute for Data, Systems, and Society (IDSS), and the Center for Sustainability Science and Strategy.In previous years, MIT faculty had participated sporadically in the discussions. This organized engagement, led by the ESI, is significant because it brought representatives from many of the groups working on biodiversity across the Institute; showcased the breadth of MIT’s research in more than 15 events including panels, roundtables, and keynote presentations across the Blue and Green Zones of the conference (with the Blue Zone representing the primary venue for the official negotiations and discussions and the Green Zone representing public events); and created an experiential learning opportunity for students who followed specific topics in the negotiations and throughout side events.The conference also gathered attendees from governments, nongovernmental organizations, businesses, other academic institutions, and practitioners focused on stopping global biodiversity loss and advancing the 23 goals of the Kunming-Montreal Global Biodiversity Framework (KMGBF), an international agreement adopted in 2022 to guide global efforts to protect and restore biodiversity through 2030.MIT’s involvement was particularly pronounced when addressing goals related to building coalitions of sub-national governments (targets 11, 12, 14); technology and AI for biodiversity conservation (targets 20 and 21); shaping equitable markets (targets 3, 11, and 19); and informing an action plan for Afro-descendant communities (targets 3, 10, and 22).Building coalitions of sub-national governmentsThe ESI’s Natural Climate Solutions (NCS) Program was able to support two separate coalitions of Latin American cities, namely the Coalition of Cities Against Illicit Economies in the Biogeographic Chocó Region and the Colombian Amazonian Cities coalition, who successfully signed declarations to advance specific targets of the KMGBF (the aforementioned targets 11, 12, 14).This was accomplished through roundtables and discussions where team members — including Marcela Angel, research program director at the MIT ESI; Angelica Mayolo, ESI Martin Luther King Fellow 2023-25; and Silvia Duque and Hannah Leung, MIT Master’s in City Planning students — presented a set of multi-scale actions including transnational strategies, recommendations to strengthen local and regional institutions, and community-based actions to promote the conservation of the Biogeographic Chocó as an ecological corridor.“There is an urgent need to deepen the relationship between academia and local governments of cities located in biodiversity hotspots,” said Angel. “Given the scale and unique conditions of Amazonian cities, pilot research projects present an opportunity to test and generate a proof of concept. These could generate catalytic information needed to scale up climate adaptation and conservation efforts in socially and ecologically sensitive contexts.”ESI’s research also provided key inputs for the creation of the Fund for the Biogeographic Chocó Region, a multi-donor fund launched within the framework of COP16 by a coalition composed of Colombia, Ecuador, Panamá, and Costa Rica. The fund aims to support biodiversity conservation, ecosystem restoration, climate change mitigation and adaptation, and sustainable development efforts across the region.Technology and AI for biodiversity conservationData, technology, and artificial intelligence are playing an increasing role in how we understand biodiversity and ecosystem change globally. Professor Sara Beery’s research group at MIT focuses on this intersection, developing AI methods that enable species and environmental monitoring at previously unprecedented spatial, temporal, and taxonomic scales.During the International Union of Biological Diversity Science-Policy Forum, the high-level COP16 segment focused on outlining recommendations from scientific and academic community, Beery spoke on a panel alongside María Cecilia Londoño, scientific information manager of the Humboldt Institute and co-chair of the Global Biodiversity Observations Network, and Josh Tewksbury, director of the Smithsonian Tropical Research Institute, among others, about how these technological advancements will help humanity achieve our biodiversity targets. The panel emphasized that AI innovation was needed, but with emphasis on direct human-AI partnership, AI capacity building, and the need for data and AI policy to ensure equity of access and benefit from these technologies.As a direct outcome of the session, for the first time, AI was emphasized in the statement on behalf of science and academia delivered by Hernando Garcia, director of the Humboldt Institute, and David Skorton, secretary general of the Smithsonian Institute, to the high-level segment of the COP16.That statement read, “To effectively address current and future challenges, urgent action is required in equity, governance, valuation, infrastructure, decolonization and policy frameworks around biodiversity data and artificial intelligence.”Beery also organized a panel at the GEOBON pavilion in the Blue Zone on Scaling Biodiversity Monitoring with AI, which brought together global leaders from AI research, infrastructure development, capacity and community building, and policy and regulation. The panel was initiated and experts selected from the participants at the recent Aspen Global Change Institute Workshop on Overcoming Barriers to Impact in AI for Biodiversity, co-organized by Beery.Shaping equitable marketsIn a side event co-hosted by the ESI with CAF-Development Bank of Latin America, researchers from ESI’s Natural Climate Solutions Program — including Marcela Angel; Angelica Mayolo; Jimena Muzio, ESI research associate; and Martin Perez Lara, ESI research affiliate and director for Forest Climate Solutions Impact and Monitoring at World Wide Fund for Nature of the U.S. — presented results of a study titled “Voluntary Carbon Markets for Social Impact: Comprehensive Assessment of the Role of Indigenous Peoples and Local Communities (IPLC) in Carbon Forestry Projects in Colombia.” The report highlighted the structural barriers that hinder effective participation of IPLC, and proposed a conceptual framework to assess IPLC engagement in voluntary carbon markets.Communicating these findings is important because the global carbon market has experienced a credibility crisis since 2023, influenced by critical assessments in academic literature, journalism questioning the quality of mitigation results, and persistent concerns about the engagement of private actors with IPLC. Nonetheless, carbon forestry projects have expanded rapidly in Indigenous, Afro-descendant, and local communities’ territories, and there is a need to assess the relationships between private actors and IPLC and to propose pathways for equitable participation. 

    Panelists pose at the equitable markets side event at the Latin American Pavilion in the Blue Zone.

    Previous item
    Next item

    The research presentation and subsequent panel with representatives of the association for Carbon Project Developers in Colombia Asocarbono, Fondo Acción, and CAF further discussed recommendations for all actors in the value chain of carbon certificates — including those focused on promoting equitable benefit-sharing and safeguarding compliance, increased accountability, enhanced governance structures, strengthened institutionality, and regulatory frameworks  — necessary to create an inclusive and transparent market.Informing an action plan for Afro-descendant communitiesThe Afro-Interamerican Forum on Climate Change (AIFCC), an international network working to highlight the critical role of Afro-descendant peoples in global climate action, was also present at COP16.At the Afro Summit, Mayolo presented key recommendations prepared collectively by the members of AIFCC to the technical secretariat of the Convention on Biological Diversity (CBD). The recommendations emphasize:creating financial tools for conservation and supporting Afro-descendant land rights;including a credit guarantee fund for countries that recognize Afro-descendant collective land titling and research on their contributions to biodiversity conservation;calling for increased representation of Afro-descendant communities in international policy forums;capacity-building for local governments; andstrategies for inclusive growth in green business and energy transition.These actions aim to promote inclusive and sustainable development for Afro-descendant populations.“Attending COP16 with a large group from MIT contributing knowledge and informed perspectives at 15 separate events was a privilege and honor,” says MIT ESI Director John E. Fernández. “This demonstrates the value of the ESI as a powerful research and convening body at MIT. Science is telling us unequivocally that climate change and biodiversity loss are the two greatest challenges that we face as a species and a planet. MIT has the capacity, expertise, and passion to address not only the former, but also the latter, and the ESI is committed to facilitating the very best contributions across the institute for the critical years that are ahead of us.”A fuller overview of the conference is available via The MIT Environmental Solutions Initiative’s Primer of COP16. More

  • in

    A new catalyst can turn methane into something useful

    Although it is less abundant than carbon dioxide, methane gas contributes disproportionately to global warming because it traps more heat in the atmosphere than carbon dioxide, due to its molecular structure.MIT chemical engineers have now designed a new catalyst that can convert methane into useful polymers, which could help reduce greenhouse gas emissions.“What to do with methane has been a longstanding problem,” says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT and the senior author of the study. “It’s a source of carbon, and we want to keep it out of the atmosphere but also turn it into something useful.”The new catalyst works at room temperature and atmospheric pressure, which could make it easier and more economical to deploy at sites of methane production, such as power plants and cattle barns.Daniel Lundberg PhD ’24 and MIT postdoc Jimin Kim are the lead authors of the study, which appears today in Nature Catalysis. Former postdoc Yu-Ming Tu and postdoc Cody Ritt also authors of the paper.Capturing methaneMethane is produced by bacteria known as methanogens, which are often highly concentrated in landfills, swamps, and other sites of decaying biomass. Agriculture is a major source of methane, and methane gas is also generated as a byproduct of transporting, storing, and burning natural gas. Overall, it is believed to account for about 15 percent of global temperature increases.At the molecular level, methane is made of a single carbon atom bound to four hydrogen atoms. In theory, this molecule should be a good building block for making useful products such as polymers. However, converting methane to other compounds has proven difficult because getting it to react with other molecules usually requires high temperature and high pressures.To achieve methane conversion without that input of energy, the MIT team designed a hybrid catalyst with two components: a zeolite and a naturally occurring enzyme. Zeolites are abundant, inexpensive clay-like minerals, and previous work has found that they can be used to catalyze the conversion of methane to carbon dioxide.In this study, the researchers used a zeolite called iron-modified aluminum silicate, paired with an enzyme called alcohol oxidase. Bacteria, fungi, and plants use this enzyme to oxidize alcohols.This hybrid catalyst performs a two-step reaction in which zeolite converts methane to methanol, and then the enzyme converts methanol to formaldehyde. That reaction also generates hydrogen peroxide, which is fed back into the zeolite to provide a source of oxygen for the conversion of methane to methanol.This series of reactions can occur at room temperature and doesn’t require high pressure. The catalyst particles are suspended in water, which can absorb methane from the surrounding air. For future applications, the researchers envision that it could be painted onto surfaces.“Other systems operate at high temperature and high pressure, and they use hydrogen peroxide, which is an expensive chemical, to drive the methane oxidation. But our enzyme produces hydrogen peroxide from oxygen, so I think our system could be very cost-effective and scalable,” Kim says.Creating a system that incorporates both enzymes and artificial catalysts is a “smart strategy,” says Damien Debecker, a professor at the Institute of Condensed Matter and Nanosciences at the University of Louvain, Belgium.“Combining these two families of catalysts is challenging, as they tend to operate in rather distinct operation conditions. By unlocking this constraint and mastering the art of chemo-enzymatic cooperation, hybrid catalysis becomes key-enabling: It opens new perspectives to run complex reaction systems in an intensified way,” says Debecker, who was not involved in the research.Building polymersOnce formaldehyde is produced, the researchers showed they could use that molecule to generate polymers by adding urea, a nitrogen-containing molecule found in urine. This resin-like polymer, known as urea-formaldehyde, is now used in particle board, textiles and other products.The researchers envision that this catalyst could be incorporated into pipes used to transport natural gas. Within those pipes, the catalyst could generate a polymer that could act as a sealant to heal cracks in the pipes, which are a common source of methane leakage. The catalyst could also be applied as a film to coat surfaces that are exposed to methane gas, producing polymers that could be collected for use in manufacturing, the researchers say.Strano’s lab is now working on catalysts that could be used to remove carbon dioxide from the atmosphere and combine it with nitrate to produce urea. That urea could then be mixed with the formaldehyde produced by the zeolite-enzyme catalyst to produce urea-formaldehyde.The research was funded by the U.S. Department of Energy. More

  • in

    Q&A: Transforming research through global collaborations

    The MIT Global Seed Funds (GSF) program fosters global research collaborations with MIT faculty and their peers abroad — creating partnerships that tackle complex global issues, from climate change to health-care challenges and beyond. Administered by the MIT Center for International Studies (CIS), the GSF program has awarded more than $26 million to over 1,200 faculty research projects since its inception in 2008. Through its unique funding structure — comprising a general fund for unrestricted geographical use and several specific funds within individual countries, regions, and universities — GSF supports a wide range of projects. The current call for proposals from MIT faculty and researchers with principal investigator status is open until Dec. 10. CIS recently sat down with faculty recipients Josephine Carstensen and David McGee to discuss the value and impact GSF added to their research. Carstensen, the Gilbert W. Winslow Career Development Associate Professor of Civil and Environmental Engineering, generates computational designs for large-scale structures with the intent of designing novel low-carbon solutions. McGee, the William R. Kenan, Jr. Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), reconstructs the patterns, pace, and magnitudes of past hydro-climate changes.Q: How did the Global Seed Funds program connect you with global partnerships related to your research?Carstensen: One of the projects my lab is working on is to unlock the potential of complex cast-glass structures. Through our GSF partnership with researchers at TUDelft (Netherlands), my group was able to leverage our expertise in generative design algorithms alongside the TUDelft team, who are experts in the physical casting and fabrication of glass structures. Our initial connection to TUDelft was actually through one of my graduate students who was at a conference and met TUDelft researchers. He was inspired by their work and felt there could be synergy between our labs. The question then became: How do we connect with TUDelft? And that was what led us to the Global Seed Funds program. McGee: Our research is based in fieldwork conducted in partnership with experts who have a rich understanding of local environments. These locations range from lake basins in Chile and Argentina to caves in northern Mexico, Vietnam, and Madagascar. GSF has been invaluable for helping foster partnerships with collaborators and universities in these different locations, enabling the pilot work and relationship-building necessary to establish longer-term, externally funded projects.Q: Tell us more about your GSF-funded work.Carstensen: In my research group at MIT, we live mainly in a computational regime, and we do very little proof-of-concept testing. To that point, we do not even have the facilities nor experience to physically build large-scale structures, or even specialized structures. GSF has enabled us to connect with the researchers at TUDelft who do much more experimental testing than we do. Being able to work with the experts at TUDelft within their physical realm provided valuable insights into their way of approaching problems. And, likewise, the researchers at TUDelft benefited from our expertise. It has been fruitful in ways we couldn’t have imagined within our lab at MIT.McGee: The collaborative work supported by the GSF has focused on reconstructing how past climate changes impacted rainfall patterns around the world, using natural archives like lake sediments and cave formations. One particularly successful project has been our work in caves in northeastern Mexico, which has been conducted in partnership with researchers from the National Autonomous University of Mexico (UNAM) and a local caving group. This project has involved several MIT undergraduate and graduate students, sponsored a research symposium in Mexico City, and helped us obtain funding from the National Science Foundation for a longer-term project.Q: You both mentioned the involvement of your graduate students. How exactly has the GSF augmented the research experience of your students?Carstensen: The collaboration has especially benefited the graduate students from both the MIT and TUDelft teams. The opportunity presented through this project to engage in research at an international peer institution has been extremely beneficial for their academic growth and maturity. It has facilitated training in new and complementary technical areas that they would not have had otherwise and allowed them to engage with leading world experts. An example of this aspect of the project’s success is that the collaboration has inspired one of my graduate students to actively pursue postdoc opportunities in Europe (including at TU Delft) after his graduation.McGee: MIT students have traveled to caves in northeastern Mexico and to lake basins in northern Chile to conduct fieldwork and build connections with local collaborators. Samples enabled by GSF-supported projects became the focus of two graduate students’ PhD theses, two EAPS undergraduate senior theses, and multiple UROP [Undergraduate Research Opportunity Program] projects.Q: Were there any unexpected benefits to the work funded by GSF?Carstensen: The success of this project would not have been possible without this specific international collaboration. Both the Delft and MIT teams bring highly different essential expertise that has been necessary for the successful project outcome. It allowed both the Delft and MIT teams to gain an in-depth understanding of the expertise areas and resources of the other collaborators. Both teams have been deeply inspired. This partnership has fueled conversations about potential future projects and provided multiple outcomes, including a plan to publish two journal papers on the project outcome. The first invited publication is being finalized now.McGee: GSF’s focus on reciprocal exchange has enabled external collaborators to spend time at MIT, sharing their work and exchanging ideas. Other funding is often focused on sending MIT researchers and students out, but GSF has helped us bring collaborators here, making the relationship more equal. A GSF-supported visit by Argentinian researchers last year made it possible for them to interact not just with my group, but with students and faculty across EAPS. More

  • in

    New solar projects will grow renewable energy generation for four major campus buildings

    In the latest step to implement commitments made in MIT’s Fast Forward climate action plan, staff from the Department of Facilities; Office of Sustainability; and Environment, Health and Safety Office are advancing new solar panel installations this fall and winter on four major campus buildings: The Stratton Student Center (W20), the Dewey Library building (E53), and two newer buildings, New Vassar (W46) and the Theater Arts building (W97).These four new installations, in addition to existing rooftop solar installations on campus, are “just one part of our broader strategy to reduce MIT’s carbon footprint and transition to clean energy,” says Joe Higgins, vice president for campus services and stewardship.The installations will not only meet but exceed the target set for total solar energy production on campus in the Fast Forward climate action plan that was issued in 2021. With an initial target of 500 kilowatts of installed solar capacity on campus, the new installations, along with those already in place, will bring the total output to roughly 650 kW, exceeding the goal. The solar installations are an important facet of MIT’s approach to eliminating all direct campus emissions by 2050.The process of advancing to the stage of placing solar panels on campus rooftops is much more complex than just getting them installed on an ordinary house. The process began with a detailed assessment of the potential for reducing the campus greenhouse gas footprint. A first cut eliminated rooftops that were too shaded by trees or other buildings. Then, the schedule for regular replacement of roofs had to be taken into account — it’s better to put new solar panels on top of a roof that will not need replacement in a few years. Other roofs, especially lab buildings, simply had too much existing equipment on them to allow a large area of space for solar panels.Randa Ghattas, senior sustainability project manager, and Taya Dixon, assistant director for capital budgets and contracts within the Department of Facilities, spearheaded the project. Their initial assessment showed that there were many buildings identified with significant solar potential, and it took the impetus of the Fast Forward plan to kick things into action. Even after winnowing down the list of campus buildings based on shading and the life cycle of roof replacements, there were still many other factors to consider. Some buildings that had ample roof space were of older construction that couldn’t bear the loads of a full solar installation without significant reconstruction. “That actually has proved trickier than we thought,” Ghattas says. For example, one building that seemed a good candidate, and already had some solar panels on it, proved unable to sustain the greater weight and wind loads of a full solar installation. Structural capacity, she says, turned out to be “probably the most important” factor in this case.The roofs on the Student Center and on the Dewey Library building were replaced in the last few years with the intention of the later addition of solar panels. And the two newer buildings were designed from the beginning with solar in mind, even though the solar panels were not part of the initial construction. “The designs were built into them to accommodate solar,” Dixon says, “so those were easy options for us because we knew the buildings were solar-ready and could support solar being integrated into their systems, both the electrical system and the structural system of the roof.”But there were also other considerations. The Student Center is considered a historically significant building, so the installation had to be designed so that it was invisible from street level, even including a safety railing that had to be built around the solar array. But that was not a problem. “It was fine for this building,” Ghattas says, because it turned out that the geometry of the building and the roofs hid the safety railing from view below.Each installation will connect directly to the building’s electrical system, and thus into the campus grid. The power they produce will be used in the buildings they are on, though none will be sufficient to fully power its building. Overall, the new installations, in addition to the existing ones on the MIT Sloan School of Management building (E62) and the Alumni Pool (57) and the planned array on the new Graduate Junction dorm (W87-W88), will be enough to power 5 to 10 percent of the buildings’ electric needs, and offset about 190 metric tons of carbon dioxide emissions each year, Ghattas says. This is equivalent to the electricity use of 35 homes annually.Each building installation is expected to take just a couple of weeks. “We’re hopeful that we’re going to have everything installed and operational by the end of this calendar year,” she says.Other buildings could be added in coming years, as their roof replacement cycles come around. With the lessons learned along the way in getting to this point, Ghattas says, “now that we have a system in place, hopefully it’s going to be much easier in the future.”Higgins adds that “in parallel with the solar projects, we’re working on expanding electric vehicle charging stations and the electric vehicle fleet and reducing energy consumption in campus buildings.”Besides the on-campus improvements, he says, “MIT is focused on both the local and the global.” In addition to solar installations on campus buildings, which can only mitigate a small portion of campus emissions, “large-scale aggregation partnerships are key to moving the actual market landscape for adding cleaner energy generation to power grids,” which must ultimately lead to zero emissions, he says. “We are spurring the development of new utility-grade renewable energy facilities in regions with high carbon-intensive electrical grids. These projects have an immediate and significant impact in the urgently needed decarbonization of regional power grids.”MIT is also making more advances to accelerate renewable energy generation and electricity grid decarbonization at the local and state level. The Institute has recently concluded an agreement through the Solar Massachusetts Renewable Target program that supports the Commonwealth of Massachusetts’ state solar power development goals by enabling the construction of a new 5-megawatt solar energy facility on Cape Cod. The new solar energy system is integral to supporting a new net-zero emissions development that includes affordable housing, while also providing additional resiliency to the local grid.Higgins says that other technologies, strategies, and practices are being evaluated for heating, cooling, and power for the campus, “with zero carbon emissions by 2050, utilizing cleaner energy sources.” He adds that these campus initiatives “are part of MIT’s larger Climate Project, aiming to drive progress both on campus and beyond, advancing broader partnerships, new market models, and informing approaches to climate policy.”  More