More stories

  • in

    Book reviews technologies aiming to remove carbon from the atmosphere

    Two leading experts in the field of carbon capture and sequestration (CCS) — Howard J. Herzog, a senior research engineer in the MIT Energy Initiative, and Niall Mac Dowell, a professor in energy systems engineering at Imperial College London — explore methods for removing carbon dioxide already in the atmosphere in their new book, “Carbon Removal.” Published in October, the book is part of the Essential Knowledge series from the MIT Press, which consists of volumes “synthesizing specialized subject matter for nonspecialists” and includes Herzog’s 2018 book, “Carbon Capture.”Burning fossil fuels, as well as other human activities, cause the release of carbon dioxide (CO2) into the atmosphere, where it acts like a blanket that warms the Earth, resulting in climate change. Much attention has focused on mitigation technologies that reduce emissions, but in their book, Herzog and Mac Dowell have turned their attention to “carbon dioxide removal” (CDR), an approach that removes carbon already present in the atmosphere.In this new volume, the authors explain how CO2 naturally moves into and out of the atmosphere and present a brief history of carbon removal as a concept for dealing with climate change. They also describe the full range of “pathways” that have been proposed for removing CO2 from the atmosphere. Those pathways include engineered systems designed for “direct air capture” (DAC), as well as various “nature-based” approaches that call for planting trees or taking steps to enhance removal by biomass or the oceans. The book offers easily accessible explanations of the fundamental science and engineering behind each approach.The authors compare the “quality” of the different pathways based on the following metrics:Accounting. For public acceptance of any carbon-removal strategy, the authors note, the developers need to get the accounting right — and that’s not always easy. “If you’re going to spend money to get CO2 out of the atmosphere, you want to get paid for doing it,” notes Herzog. It can be tricky to measure how much you have removed, because there’s a lot of CO2 going in and out of the atmosphere all the time. Also, if your approach involves, say, burning fossil fuels, you must subtract the amount of CO2 that’s emitted from the total amount you claim to have removed. Then there’s the timing of the removal. With a DAC device, the removal happens right now, and the removed CO2 can be measured. “But if I plant a tree, it’s going to remove CO2 for decades. Is that equivalent to removing it right now?” Herzog queries. How to take that factor into account hasn’t yet been resolved.Permanence. Different approaches keep the CO2 out of the atmosphere for different durations of time. How long is long enough? As the authors explain, this is one of the biggest issues, especially with nature-based solutions, where events such as wildfires or pestilence or land-use changes can release the stored CO2 back into the atmosphere. How do we deal with that?Cost. Cost is another key factor. Using a DAC device to remove CO2 costs far more than planting trees, but it yields immediate removal of a measurable amount of CO2 that can then be locked away forever. How does one monetize that trade-off?Additionality. “You’re doing this project, but would what you’re doing have been done anyway?” asks Herzog. “Is your effort additional to business as usual?” This question comes into play with many of the nature-based approaches involving trees, soils, and so on.Permitting and governance. These issues are especially important — and complicated — with approaches that involve doing things in the ocean. In addition, Herzog points out that some CCS projects could also achieve carbon removal, but they would have a hard time getting permits to build the pipelines and other needed infrastructure.The authors conclude that none of the CDR strategies now being proposed is a clear winner on all the metrics. However, they stress that carbon removal has the potential to play an important role in meeting our climate change goals — not by replacing our emissions-reduction efforts, but rather by supplementing them. However, as Herzog and Mac Dowell make clear in their book, many challenges must be addressed to move CDR from today’s speculation to deployment at scale, and the book supports the wider discussion about how to move forward. Indeed, the authors have fulfilled their stated goal: “to provide an objective analysis of the opportunities and challenges for CDR and to separate myth from reality.” More

  • in

    MIT engineers solve the sticky-cell problem in bioreactors and other industries

    To help mitigate climate change, companies are using bioreactors to grow algae and other microorganisms that are hundreds of times more efficient at absorbing CO2 than trees. Meanwhile, in the pharmaceutical industry, cell culture is used to manufacture biologic drugs and other advanced treatments, including lifesaving gene and cell therapies.Both processes are hampered by cells’ tendency to stick to surfaces, which leads to a huge amount of waste and downtime for cleaning. A similar problem slows down biofuel production, interferes with biosensors and implants, and makes the food and beverage industry less efficient.Now, MIT researchers have developed an approach for detaching cells from surfaces on demand, using electrochemically generated bubbles. In an open-access paper published in Science Advances, the researchers demonstrated their approach in a lab prototype and showed it could work across a range of cells and surfaces without harming the cells.“We wanted to develop a technology that could be high-throughput and plug-and-play, and that would allow cells to attach and detach on demand to improve the workflow in these industrial processes,” says Professor Kripa Varanasi, senior author of the study. “This is a fundamental issue with cells, and we’ve solved it with a process that can scale. It lends itself to many different applications.”Joining Varanasi on the study are co-first authors Bert Vandereydt, a PhD student in mechanical engineering, and former postdoc Baptiste Blanc.Solving a sticky problem

    Credit: Joy Zheng

    The researchers began with a mission.“We’ve been working on figuring out how we can efficiently capture CO2 across different sources and convert it into valuable products for various end markets,” Varanasi says. “That’s where this photobioreactor and cell detachment comes into the picture.”Photobioreactors are used to grow carbon-absorbing algae cells by creating tightly controlled environments involving water and sunlight. They feature long, winding tubes with clear surfaces to let in the light algae need to grow. When algae stick to those surfaces, they block out the light, requiring cleaning.“You have to shut down and clean up the entire reactor as frequently as every two weeks,” Varanasi says. “It’s a huge operational challenge.”The researchers realized other industries have similar problem due to many cells’ natural adhesion, or stickiness. Each industry has its own solution for cell adhesion depending on how important it is that the cells survive. Some people scrape the surfaces clean, while others use special coatings that are toxic to cells.In the pharmaceutical and biotech industries, cell detachment is typically carried out using enzymes. However, this method poses several challenges — it can damage cell membranes, is time-consuming, and requires large amounts of consumables, resulting in millions of liters of biowaste.To create a better solution, the researchers began by studying other efforts to clear surfaces with bubbles, which mainly involved spraying bubbles onto surfaces and had been largely ineffective.“We realized we needed the bubbles to form on the surfaces where we don’t want these cells to stick, so when the bubbles detach it creates a local fluid flow that creates shear stress at the interface and removes the cells,” Varanasi explains.Electric currents generate bubbles by splitting water into hydrogen and oxygen. But previous attempts at using electricity to detach cells were hampered because the cell culture mediums contain sodium chloride, which turns into bleach when combined with an electric current. The bleach damages the cells, making it impractical for many applications.“The culprit is the anode — that’s where the sodium chloride turns to bleach,” Vandereydt explained. “We figured if we could separate that electrode from the rest of the system, we could prevent bleach from being generated.”To make a better system, the researchers built a 3-square-inch glass surface and deposited a gold electrode on top of it. The layer of gold is so thin it doesn’t block out light. To keep the other electrode separate, the researchers integrated a special membrane that only allows protons to pass through. The set up allowed the researchers to send a current through without generating bleach.To test their setup, they allowed algae cells from a concentrated solution to stick to the surfaces. When they applied a voltage, the bubbles separated the cells from the surfaces without harming them.The researchers also studied the interaction between the bubbles and cells, finding the higher the current density, the more bubbles were created and the more algae was removed. They developed a model for understanding how much current would be needed to remove algae in different settings and matched it with results from experiments involving algae as well as cells from ovarian cancer and bones.“Mammalian cells are orders of magnitude more sensitive than algae cells, but even with those cells, we were able to detach them with no impact to the viability of the cell,” Vandereydt says.Getting to scaleThe researchers say their system could represent a breakthrough in applications where bleach or other chemicals would harm cells. That includes pharmaceutical and food production.“If we can keep these systems running without fouling and other problems, then we can make them much more economical,” Varanasi says.For cell culture plates used in the pharmaceutical industry, the team envisions their system comprising an electrode that could be robotically moved from one culture plate to the next, to detach cells as they’re grown. It could also be coiled around algae harvesting systems.“This has general applicability because it doesn’t rely on any specific biological or chemical treatments, but on a physical force that is system-agnostic,” Varanasi says. “It’s also highly scalable to a lot of different processes, including particle removal.”Varanasi cautions there is much work to be done to scale up the system. But he hopes it can one day make algae and other cell harvesting more efficient.“The burning problem of our time is to somehow capture CO2 in a way that’s economically feasible,” Varanasi says. “These photobioreactors could be used for that, but we have to overcome the cell adhesion problem.”The work was supported, in part, by Eni S.p.A through the MIT Energy Initiative, the Belgian American Educational Foundation Fellowship, and the Maria Zambrano Fellowship. More

  • in

    How to reduce greenhouse gas emissions from ammonia production

    Ammonia is one of the most widely produced chemicals in the world, used mostly as fertilizer, but also for the production of some plastics, textiles, and other applications. Its production, through processes that require high heat and pressure, accounts for up to 20 percent of all the greenhouse gases from the entire chemical industry, so efforts have been underway worldwide to find ways to reduce those emissions.Now, researchers at MIT have come up with a clever way of combining two different methods of producing the compound that minimizes waste products, that, when combined with some other simple upgrades, could reduce the greenhouse emissions from production by as much as 63 percent, compared to the leading “low-emissions” approach being used today.The new approach is described in the journal Energy & Fuels, in a paper by MIT Energy Initiative (MITEI) Director William H. Green, graduate student Sayandeep Biswas, MITEI Director of Research Randall Field, and two others.“Ammonia has the most carbon dioxide emissions of any kind of chemical,” says Green, who is the Hoyt C. Hottel Professor in Chemical Engineering. “It’s a very important chemical,” he says, because its use as a fertilizer is crucial to being able to feed the world’s population.Until late in the 19th century, the most widely used source of nitrogen fertilizer was mined deposits of bat or bird guano, mostly from Chile, but that source was beginning to run out, and there were predictions that the world would soon be running short of food to sustain the population. But then a new chemical process, called the Haber-Bosch process after its inventors, made it possible to make ammonia out of nitrogen from the air and hydrogen, which was mostly derived from methane. But both the burning of fossil fuels to provide the needed heat and the use of methane to make the hydrogen led to massive climate-warming emissions from the process.To address this, two newer variations of ammonia production have been developed: so-called “blue ammonia,” where the greenhouse gases are captured right at the factory and then sequestered deep underground, and “green ammonia,” produced by a different chemical pathway, using electricity instead of fossil fuels to hydrolyze water to make hydrogen.Blue ammonia is already beginning to be used, with a few plants operating now in Louisiana, Green says, and the ammonia mostly being shipped to Japan, “so that’s already kind of commercial.” Other parts of the world are starting to use green ammonia, especially in places that have lots of hydropower, solar, or wind to provide inexpensive electricity, including a giant plant now under construction in Saudi Arabia.But in most places, both blue and green ammonia are still more expensive than the traditional fossil-fuel-based version, so many teams around the world have been working on ways to cut these costs as much as possible so that the difference is small enough to be made up through tax subsidies or other incentives.The problem is growing, because as the population grows, and as wealth increases, there will be ever-increasing demands for nitrogen fertilizer. At the same time, ammonia is a promising substitute fuel to power hard-to-decarbonize transportation such as cargo ships and heavy trucks, which could lead to even greater needs for the chemical.“It definitely works” as a transportation fuel, by powering fuel cells that have been demonstrated for use by everything from drones to barges and tugboats and trucks, Green says. “People think that the most likely market of that type would be for shipping,” he says, “because the downside of ammonia is it’s toxic and it’s smelly, and that makes it slightly dangerous to handle and to ship around.” So its best uses may be where it’s used in high volume and in relatively remote locations, like the high seas. In fact, the International Maritime Organization will soon be voting on new rules that might give a strong boost to the ammonia alternative for shipping.The key to the new proposed system is to combine the two existing approaches in one facility, with a blue ammonia factory next to a green ammonia factory. The process of generating hydrogen for the green ammonia plant leaves a lot of leftover oxygen that just gets vented to the air. Blue ammonia, on the other hand, uses a process called autothermal reforming that requires a source of pure oxygen, so if there’s a green ammonia plant next door, it can use that excess oxygen.“Putting them next to each other turns out to have significant economic value,” Green says. This synergy could help hybrid “blue-green ammonia” facilities serve as an important bridge toward a future where eventually green ammonia, the cleanest version, could finally dominate. But that future is likely decades away, Green says, so having the combined plants could be an important step along the way.“It might be a really long time before [green ammonia] is actually attractive” economically, he says. “Right now, it’s nowhere close, except in very special situations.” But the combined plants “could be a really appealing concept, and maybe a good way to start the industry,” because so far only small, standalone demonstration plants of the green process are being built.“If green or blue ammonia is going to become the new way of making ammonia, you need to find ways to make it relatively affordable in a lot of countries, with whatever resources they’ve got,” he says. This new proposed combination, he says, “looks like a really good idea that can help push things along. Ultimately, there’s got to be a lot of green ammonia plants in a lot of places,” and starting out with the combined plants, which could be more affordable now, could help to make that happen. The team has filed for a patent on the process.Although the team did a detailed study of both the technology and the economics that show the system has great promise, Green points out that “no one has ever built one. We did the analysis, it looks good, but surely when people build the first one, they’ll find funny little things that need some attention,” such as details of how to start up or shut down the process. “I would say there’s plenty of additional work to do to make it a real industry.” But the results of this study, which shows the costs to be much more affordable than existing blue or green plants in isolation, “definitely encourages the possibility of people making the big investments that would be needed to really make this industry feasible.”This proposed integration of the two methods “improves efficiency, reduces greenhouse gas emissions, and lowers overall cost,” says Kevin van Geem, a professor in the Center for Sustainable Chemistry at Ghent University, who was not associated with this research. “The analysis is rigorous, with validated process models, transparent assumptions, and comparisons to literature benchmarks. By combining techno-economic analysis with emissions accounting, the work provides a credible and balanced view of the trade-offs.”He adds that, “given the scale of global ammonia production, such a reduction could have a highly impactful effect on decarbonizing one of the most emissions-intensive chemical industries.”The research team also included MIT postdoc Angiras Menon and MITEI research lead Guiyan Zang. The work was supported by IHI Japan through the MIT Energy Initiative and the Martin Family Society of Fellows for Sustainability.  More

  • in

    Report: Sustainability in supply chains is still a firm-level priority

    Corporations are actively seeking sustainability advances in their supply chains — but many need to improve the business metrics they use in this area to realize more progress, according to a new report by MIT researchers.   During a time of shifting policies globally and continued economic uncertainty, the survey-based report finds 85 percent of companies say they are continuing supply chain sustainability practices at the same level as in recent years, or are increasing those efforts.“What we found is strong evidence that sustainability still matters,” says Josué Velázquez Martínez, a research scientist and director of the MIT Sustainable Supply Chain Lab, which helped produce the report. “There are many things that remain to be done to accomplish those goals, but there’s a strong willingness from companies in all parts of the world to do something about sustainability.”The new analysis, titled “Sustainability Still Matters,” was released today. It is the sixth annual report on the subject prepared by the MIT Sustainable Supply Chain Lab, which is part of MIT’s Center for Transportation and Logistics. The Council of Supply Chain Management Professionals collaborated on the project as well.The report is based on a global survey, with responses from 1,203 professionals in 97 countries. This year, the report analyzes three issues in depth, including regulations and the role they play in corporate approaches to supply chain management. A second core topic is management and mitigation of what industry professionals call “Scope 3” emissions, which are those not from a firm itself, but from a firm’s supply chain. And a third issue of focus is the future of freight transportation, which by itself accounts for a substantial portion of supply chain emissions.Broadly, the survey finds that for European-based firms, the principal driver of action in this area remains government mandates, such as the Corporate Sustainability Reporting Directive, which requires companies to publish regular reports on their environmental impact and the risks to society involved. In North America, firm leadership and investor priorities are more likely to be decisive factors in shaping a company’s efforts.“In Europe the pressure primarily comes more from regulation, but in the U.S. it comes more from investors, or from competitors,” Velázquez Martínez says.The survey responses on Scope 3 emissions reveal a number of opportunities for improvement. In business and sustainability terms, Scope 1 greenhouse gas emissions are those a firm produces directly. Scope 2 emissions are the energy it has purchased. And Scope 3 emissions are those produced across a firm’s value chain, including the supply chain activities involved in producing, transporting, using, and disposing of its products.The report reveals that about 40 percent of firms keep close track of Scope 1 and 2 emissions, but far fewer tabulate Scope 3 on equivalent terms. And yet Scope 3 may account for roughly 75 percent of total firm emissions, on aggregate. About 70 percent of firms in the survey say they do not have enough data from suppliers to accurately tabulate the total greenhouse gas and climate impact of their supply chains.Certainly it can be hard to calculate the total emissions when a supply chain has many layers, including smaller suppliers lacking data capacity. But firms can upgrade their analytics in this area, too. For instance, 50 percent of North American firms are still using spreadsheets to tabulate emissions data, often making rough estimates that correlate emissions to simple economic activity. An alternative is life cycle assessment software that provides more sophisticated estimates of a product’s emissions, from the extraction of its materials to its post-use disposal. By contrast, only 32 percent of European firms are still using spreadsheets rather than life cycle assessment tools.“You get what you measure,” Velázquez Martínez says. “If you measure poorly, you’re going to get poor decisions that most likely won’t drive the reductions you’re expecting. So we pay a lot of attention to that particular issue, which is decisive to defining an action plan. Firms pay a lot of attention to metrics in their financials, but in sustainability they’re often using simplistic measurements.”When it comes to transportation, meanwhile, the report shows that firms are still grappling with the best ways to reduce emissions. Some see biofuels as the best short-term alternative to fossil fuels; others are investing in electric vehicles; some are waiting for hydrogen-powered vehicles to gain traction. Supply chains, after all, frequently involve long-haul trips. For firms, as for individual consumers, electric vehicles are more practical with a larger infrastructure of charging stations. There are advances on that front but more work to do as well.That said, “Transportation has made a lot of progress in general,” Velázquez Martínez says, noting the increased acceptance of new modes of vehicle power in general.Even as new technologies loom on the horizon, though, supply chain sustainability is not wholly depend on their introduction. One factor continuing to propel sustainability in supply chains is the incentives companies have to lower costs. In a competitive business environment, spending less on fossil fuels usually means savings. And firms can often find ways to alter their logistics to consume and spend less.“Along with new technologies, there is another side of supply chain sustainability that is related to better use of the current infrastructure,” Velázquez Martínez observes. “There is always a need to revise traditional ways of operating to find opportunities for more efficiency.”  More

  • in

    3 Questions: Addressing the world’s most pressing challenges

    The Center for International Studies (CIS) empowers students, faculty, and scholars to bring MIT’s interdisciplinary style of research and scholarship to address complex global challenges. In this Q&A, Mihaela Papa, the center’s director of research and a principal research scientist at MIT, describes her role as well as research within the BRICS Lab at MIT — a reference to the BRICS intergovernmental organization, which comprises the nations of Brazil, Russia, India, China, South Africa, Egypt, Ethiopia, Indonesia, Iran and the United Arab Emirates. She also discusses the ongoing mission of CIS to tackle the world’s most complex challenges in new and creative ways.Q: What is your role at CIS, and some of your key accomplishments since joining the center just over a year ago?A: I serve as director of research and principal research scientist at CIS, a role that bridges management and scholarship. I oversee grant and fellowship programs, spearhead new research initiatives, build research communities across our center’s area programs and MIT schools, and mentor the next generation of scholars. My academic expertise is in international relations, and I publish on global governance and sustainable development, particularly through my new BRICS Lab. This past year, I focused on building collaborative platforms that highlight CIS’ role as an interdisciplinary hub and expand its research reach. With Evan Lieberman, the director of CIS, I launched the CIS Global Research and Policy Seminar series to address current challenges in global development and governance, foster cross-disciplinary dialogue, and connect theoretical insights to policy solutions. We also convened a Climate Adaptation Workshop, which examined promising strategies for financing adaptation and advancing policy innovation. We documented the outcomes in a workshop report that outlines a broader research agenda contributing to MIT’s larger climate mission.In parallel, I have been reviewing CIS’ grant-making programs to improve how we serve our community, while also supporting regional initiatives such as research planning related to Ukraine. Together with the center’s MIT-Brazil faculty director Brad Olsen, I secured a MITHIC [MIT Human Insight Collaboration] Connectivity grant to build an MIT Amazonia research community that connects MIT scholars with regional partners and strengthens collaboration across the Amazon. Finally, I launched the BRICS Lab to analyze transformations in global governance and have ongoing research on BRICS and food security and data centers in BRICS. Q: Tell us more about the BRICS Lab.A: The BRICS countries comprise the majority of the world’s population and an expanding share of the global economy. [Originally comprising Brazil, Russia, India, and China, BRICS currently includes 11 nations.] As a group, they carry the collective weight to shape international rules, influence global markets, and redefine norms — yet the question remains: Will they use this power effectively? The BRICS Lab explores the implications of the bloc’s rise for international cooperation and its role in reshaping global politics. Our work focuses on three areas: the design and strategic use of informal groups like BRICS in world affairs; the coalition’s potential to address major challenges such as food security, climate change, and artificial intelligence; and the implications of U.S. policy toward BRICS for the future of multilateralism.Q: What are the center’s biggest research priorities right now?A: Our center was founded in response to rising geopolitical tensions and the urgent need for policy rooted in rigorous, evidence-based research. Since then, we have grown into a hub that combines interdisciplinary scholarship and actively engages with policymakers and the public. Today, as in our early years, the center brings together exceptional researchers with the ambition to address the world’s most pressing challenges in new and creative ways.Our core focus spans security, development, and human dignity. Security studies have been a priority for the center, and our new nuclear security programming advances this work while training the next generation of scholars in this critical field. On the development front, our work has explored how societies manage diverse populations, navigate international migration, as well as engage with human rights and the changing patterns of regime dynamics.We are pursuing new research in three areas. First, on climate change, we seek to understand how societies confront environmental risks and harms, from insurance to water and food security in the international context. Second, we examine shifting patterns of global governance as rising powers set new agendas and take on greater responsibilities in the international system. Finally, we are initiating research on the impact of AI — how it reshapes governance across international relations, what is the role of AI corporations, and how AI-related risks can be managed.As we approach our 75th anniversary in 2026, we are excited to bring researchers together to spark bold ideas that open new possibilities for the future. More

  • in

    A beacon of light

    Placing a lit candle in a window to welcome friends and strangers is an old Irish tradition that took on greater significance when Mary Robinson was elected president of Ireland in 1990. At the time, Robinson placed a lamp in Áras an Uachtaráin — the official residence of Ireland’s presidents — noting that the Irish diaspora and all others are always welcome in Ireland. Decades later, a lit lamp remains in a window in Áras an Uachtaráin.The symbolism of Robinson’s lamp was shared by Hashim Sarkis, dean of the MIT School of Architecture and Planning (SA+P), at the school’s graduation ceremony in May, where Robinson addressed the class of 2025. To replicate the generous intentions of Robinson’s lamp and commemorate her visit to MIT, Sarkis commissioned a unique lantern as a gift for Robinson. He commissioned an identical one for his office, which is in the front portico of MIT at 77 Massachusetts Ave.“The lamp will welcome all citizens of the world to MIT,” says Sarkis.

    Geolectric: Sustainable, Low-Carbon Ceramics for Embedded Electronics and Interaction DesignVideo: MIT Design Intelligence Lab

    No ordinary lanternThe bespoke lantern was created by Marcelo Coelho SM ’08, PhD ’12, director of the Design Intelligence Lab and associate professor of the practice in the Department of Architecture.One of several projects in the Geoletric research at the Design Intelligence Lab, the lantern showcases the use of geopolymers as a sustainable material alternative for embedded computers and consumer electronics.“The materials that we use to make computers have a negative impact on climate, so we’re rethinking how we make products with embedded electronics — such as a lamp or lantern — from a climate perspective,” says Coelho.Consumer electronics rely on materials that are high in carbon emissions and difficult to recycle. As the demand for embedded computing increases, so too does the need for alternative materials that have a reduced environmental impact while supporting electronic functionality.The Geolectric lantern advances the formulation and application of geopolymers — a class of inorganic materials that form covalently bonded, non-crystalline networks. Unlike traditional ceramics, geopolymers do not require high-temperature firing, allowing electronic components to be embedded seamlessly during production.Geopolymers are similar to ceramics, but have a lower carbon footprint and present a sustainable alternative for consumer electronics, product design, and architecture. The minerals Coelho uses to make the geopolymers — aluminum silicate and sodium silicate — are those regularly used to make ceramics.“Geopolymers aren’t particularly new, but are becoming more popular,” says Coelho. “They have high strength in both tension and compression, superior durability, fire resistance, and thermal insulation. Compared to concrete, geopolymers don’t release carbon dioxide. Compared to ceramics, you don’t have to worry about firing them. What’s even more interesting is that they can be made from industrial byproducts and waste materials, contributing to a circular economy and reducing waste.”The lantern is embedded with custom electronics that serve as a proximity and touch sensor. When a hand is placed over the top, light shines down the glass tubes.The timeless design of the Geoelectric lantern — minimalist, composed of natural materials — belies its future-forward function. Coelho’s academic background is in fine arts and computer science. Much of his work, he says, “bridges these two worlds.”Working at the Design Intelligence Lab with Coelho on the lanterns are Jacob Payne, a graduate architecture student, and Jean-Baptiste Labrune, a research affiliate.A light for MITA few weeks before commencement, Sarkis saw the Geoelectric lantern in Palazzo Diedo Berggruen Arts and Culture in Venice, Italy. The exhibition, a collateral event of the Venice Biennale’s 19th International Architecture Exhibition, featured the work of 40 MIT architecture faculty.The sustainability feature of Geolectric is the key reason Sarkis regarded the lantern as the perfect gift for Robinson. After her career in politics, Robinson founded the Mary Robinson Foundation — Climate Justice, an international center addressing the impacts of climate change on marginalized communities.The third iteration of Geolectric for Sarkis’ office is currently underway. While the lantern was a technical prototype and an opportunity to showcase his lab’s research, Coelho — an immigrant from Brazil — was profoundly touched by how Sarkis created the perfect symbolism to both embody the welcoming spirit of the school and honor President Robinson.“When the world feels most fragile, we need to urgently find sustainable and resilient solutions for our built environment. It’s in the darkest times when we need light the most,” says Coelho.  More

  • in

    Q&A: David Whelihan on the challenges of operating in the Arctic

    To most, the Arctic can feel like an abstract place, difficult to imagine beyond images of ice and polar bears. But researcher David Whelihan of MIT Lincoln Laboratory’s Advanced Undersea Systems and Technology Group is no stranger to the Arctic. Through Operation Ice Camp, a U.S. Navy–sponsored biennial mission to assess operational readiness in the Arctic region, he has traveled to this vast and remote wilderness twice over the past few years to test low-cost sensor nodes developed by the group to monitor loss in Arctic sea ice extent and thickness. The research team envisions establishing a network of such sensors across the Arctic that will persistently detect ice-fracturing events and correlate these events with environmental conditions to provide insights into why the sea ice is breaking up. Whelihan shared his perspectives on why the Arctic matters and what operating there is like.Q: Why do we need to be able to operate in the Arctic?A: Spanning approximately 5.5 million square miles, the Arctic is huge, and one of its salient features is that the ice covering much of the Arctic Ocean is decreasing in volume with every passing year. Melting ice opens up previously impassable areas, resulting in increasing interest from potential adversaries and allies alike for activities such as military operations, commercial shipping, and natural resource extraction. Through Alaska, the United States has approximately 1,060 miles of Arctic coastline that is becoming much more accessible because of reduced ice cover. So, U.S. operation in the Arctic is a matter of national security.  Q: What are the technological limitations to Arctic operations?A: The Arctic is an incredibly harsh environment. The cold kills battery life, so collecting sensor data at high rates over long periods of time is very difficult. The ice is dynamic and can easily swallow or crush sensors. In addition, most deployments involve “boots-on-the-ice,” which is expensive and at times dangerous. One of the technological limitations is how to deploy sensors while keeping humans alive.

    Play video

    David Whelihan details the difficulties of engineering technologies that can survive in the harsh conditions of the Arctic.

    Q: How does the group’s sensor node R&D work seek to support Arctic operations?A: A lot of the work we put into our sensors pertains to deployability. Our ultimate goal is to free researchers from going onto the ice to deploy sensors. This goal will become increasingly necessary as the shrinking ice pack becomes more dynamic, unstable, and unpredictable. At the last Operation Ice Camp (OIC) in March 2024, we built and rapidly tested deployable and recoverable sensors, as well as novel concepts such as using UAVs (uncrewed aerial vehicles), or drones, as “data mules” that can fly out to and interrogate the sensors to see what they captured. We also built a prototype wearable system that cues automatic download of sensor data over Wi-Fi so that operators don’t have to take off their gloves.Q: The Arctic Circle is the northernmost region on Earth. How do you reach this remote place?A: We usually fly on commercial airlines from Boston to Seattle to Anchorage to Prudhoe Bay on the North Slope of Alaska. From there, the Navy flies us on small prop planes, like Single and Twin Otters, about 200 miles north and lands us on an ice runway built by the Navy’s Arctic Submarine Lab (ASL). The runway is part of a temporary camp that ASL establishes on floating sea ice for their operational readiness exercises conducted during OIC.Q: Think back to the first time you stepped foot in the Arctic. Can you paint a picture of what you experienced?A: My first experience was at Prudhoe Bay, coming out of the airport, which is a corrugated metal building with a single gate. Before you open the door to the outside, a sign warns you to be on the lookout for polar bears. Walking out into the sheer desolation and blinding whiteness of everything made me realize I was experiencing something very new.When I flew out onto the ice and stepped out of the plane, I was amazed that the area could somehow be even more desolate. Bright white snowy ice goes in every direction, broken up by pressure ridges that form when ice sheets collide. The sun is low, and seems to move horizontally only. It is very hard to tell the time. The air temperature is really variable. On our first trip in 2022, it really wasn’t (relatively) that cold — only around minus 5 or 10 degrees during the day. On our second trip in 2024, we were hit by minus 30 almost every day, and with winds of 20 to 25 miles per hour. The last night we were on the ice that year, it warmed up a bit to minus 10 to 20, but the winds kicked up and started blowing snow onto the heaters attached to our tents. Those heaters started failing one by one as the blowing snow covered them, blocking airflow. After our heater failed, I asked myself, while warm in my bed, whether I wanted to go outside to the command tent for help or try to make it until dawn in my thick sleeping bag. I picked the first option, but mostly because the heater control was beeping loudly right next to my bunk, so I couldn’t sleep anyway. Shout-out to the ASL staff who ran around fixing heaters all night!Q: How do you survive in a place generally inhospitable to humans?A: In partnership with the native population, ASL brings a lot of gear — from insulated, heated tents and communications equipment to large snowblowers to keep the runway clear. A few months before OIC, participants attend training on what conditions you will be exposed to and how to protect yourself through appropriate clothing, and how to use survival gear in case of an emergency.Q: Do you have plans to return to the Arctic?  A: We are hoping to go back this winter as part of OIC 2026! We plan to test a through-ice communication device. Communicating through 4 to 12 feet of ice is pretty tricky but could allow us to connect underwater drones and stationary sensors under the ice to the rest of the world. To support the through-ice communication system, we will repurpose our sensor-node boxes deployed during OIC 2024. If this setup works, those same boxes could be used as control centers for all sorts of undersea systems and relay information about the under-ice world back home via satellite.Q: What lessons learned will you bring to your upcoming trip, and any potential future trips?A: After the first trip, I had a visceral understanding of how hard operating there is. Prototyping of systems becomes a different game. Prototypes are often fragile, but fragility doesn’t go over too well on the ice. So, there is a robustification step, which can take some time.On this last trip, I realized that you have to really be careful with your energy expenditure and pace yourself. While the average adult may require about 2,000 calories a day, an Arctic explorer may burn several times more than that exerting themselves (we do a lot of walking around camp) and keeping warm. Usually, we live on the same freeze-dried food that you would take on camping trips. Each package only has so many calories, so you find yourself eating multiple of those and supplementing with lots of snacks such as Clif Bars or, my favorite, Babybel cheeses (which I bring myself). You also have to be really careful of dehydration. Your body’s reaction to extreme cold is to reduce blood flow to your skin, which generally results in less liquid in your body. We have to drink constantly — water, cocoa, and coffee — to avoid dehydration.We only have access to the ice every two years with the Navy, so we try to make the most of our time. In the several-day lead-up to our field expedition, my research partner Ben and I were really pushing ourselves to ready our sensor nodes for deployment and probably not eating and drinking as regularly as we should. When we ventured to our sensor deployment site about 5 kilometers outside of camp, I had to learn to slow down so I didn’t sweat under my gear, as sweating in the extremely cold conditions can quickly lead to hypothermia. I also learned to pay more attention to exposed places on my face, as I got a bit of frostnip around my goggles.Operating in the Arctic is a fine balance: you can’t spend too much time out there, but you also can’t rush. More

  • in

    MIT geologists discover where energy goes during an earthquake

    The ground-shaking that an earthquake generates is only a fraction of the total energy that a quake releases. A quake can also generate a flash of heat, along with a domino-like fracturing of underground rocks. But exactly how much energy goes into each of these three processes is exceedingly difficult, if not impossible, to measure in the field.Now MIT geologists have traced the energy that is released by “lab quakes” — miniature analogs of natural earthquakes that are carefully triggered in a controlled laboratory setting. For the first time, they have quantified the complete energy budget of such quakes, in terms of the fraction of energy that goes into heat, shaking, and fracturing.They found that only about 10 percent of a lab quake’s energy causes physical shaking. An even smaller fraction — less than 1 percent — goes into breaking up rock and creating new surfaces. The overwhelming portion of a quake’s energy — on average 80 percent — goes into heating up the immediate region around a quake’s epicenter. In fact, the researchers observed that a lab quake can produce a temperature spike hot enough to melt surrounding material and turn it briefly into liquid melt.The geologists also found that a quake’s energy budget depends on a region’s deformation history — the degree to which rocks have been shifted and disturbed by previous tectonic motions. The fractions of quake energy that produce heat, shaking, and rock fracturing can shift depending on what the region has experienced in the past.“The deformation history — essentially what the rock remembers — really influences how destructive an earthquake could be,” says Daniel Ortega-Arroyo, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “That history affects a lot of the material properties in the rock, and it dictates to some degree how it is going to slip.”The team’s lab quakes are a simplified analog of what occurs during a natural earthquake. Down the road, their results could help seismologists predict the likelihood of earthquakes in regions that are prone to seismic events. For instance, if scientists have an idea of how much shaking a quake generated in the past, they might be able to estimate the degree to which the quake’s energy also affected rocks deep underground by melting or breaking them apart. This in turn could reveal how much more or less vulnerable the region is to future quakes.“We could never reproduce the complexity of the Earth, so we have to isolate the physics of what is happening, in these lab quakes,” says Matěj Peč, associate professor of geophysics at MIT. “We hope to understand these processes and try to extrapolate them to nature.”Peč (pronounced “Peck”) and Ortega-Arroyo reported their results on Aug. 28 in the journal AGU Advances. Their MIT co-authors are Hoagy O’Ghaffari and Camilla Cattania, along with Zheng Gong and Roger Fu at Harvard University and Markus Ohl and Oliver Plümper at Utrecht University in the Netherlands.Under the surfaceEarthquakes are driven by energy that is stored up in rocks over millions of years. As tectonic plates slowly grind against each other, stress accumulates through the crust. When rocks are pushed past their material strength, they can suddenly slip along a narrow zone, creating a geologic fault. As rocks slip on either side of the fault, they produce seismic waves that ripple outward and upward.We perceive an earthquake’s energy mainly in the form of ground shaking, which can be measured using seismometers and other ground-based instruments. But the other two major forms of a quake’s energy — heat and underground fracturing — are largely inaccessible with current technologies.“Unlike the weather, where we can see daily patterns and measure a number of pertinent variables, it’s very hard to do that very deep in the Earth,” Ortega-Arroyo says. “We don’t know what’s happening to the rocks themselves, and the timescales over which earthquakes repeat within a fault zone are on the century-to-millenia timescales, making any sort of actionable forecast challenging.”To get an idea of how an earthquake’s energy is partitioned, and how that energy budget might affect a region’s seismic risk, he and Peč went into the lab. Over the last seven years, Peč’s group at MIT has developed methods and instrumentation to simulate seismic events, at the microscale, in an effort to understand how earthquakes at the macroscale may play out.“We are focusing on what’s happening on a really small scale, where we can control many aspects of failure and try to understand it before we can do any scaling to nature,” Ortega-Arroyo says.MicroshakesFor their new study, the team generated miniature lab quakes that simulate a seismic slipping of rocks along a fault zone. They worked with small samples of granite, which are representative of rocks in the seismogenic layer — the geologic region in the continental crust where earthquakes typically originate. They ground up the granite into a fine powder and mixed the crushed granite with a much finer powder of magnetic particles, which they used as a sort of internal temperature gauge. (A particle’s magnetic field strength will change in response to a fluctuation in temperature.)The researchers placed samples of the powdered granite — each about 10 square millimeters and 1 millimeter thin — between two small pistons and wrapped the ensemble in a gold jacket. They then applied a strong magnetic field to orient the powder’s magnetic particles in the same initial direction and to the same field strength. They reasoned that any change in the particles’ orientation and field strength afterward should be a sign of how much heat that region experienced as a result of any seismic event.Once samples were prepared, the team placed them one at a time into a custom-built apparatus that the researchers tuned to apply steadily increasing pressure, similar to the pressures that rocks experience in the Earth’s seismogenic layer, about 10 to 20 kilometers below the surface. They used custom-made piezoelectric sensors, developed by co-author O’Ghaffari, which they attached to either end of a sample to measure any shaking that occurred as they increased the stress on the sample.They observed that at certain stresses, some samples slipped, producing a microscale seismic event similar to an earthquake. By analyzing the magnetic particles in the samples after the fact, they obtained an estimate of how much each sample was temporarily heated — a method developed in collaboration with Roger Fu’s lab at Harvard University. They also estimated the amount of shaking each sample experienced, using measurements from the piezoelectric sensor and numerical models. The researchers also examined each sample under the microscope, at different magnifications, to assess how the size of the granite grains changed — whether and how many grains broke into smaller pieces, for instance.From all these measurements, the team was able to estimate each lab quake’s energy budget. On average, they found that about 80 percent of a quake’s energy goes into heat, while 10 percent generates shaking, and less than 1 percent goes into rock fracturing, or creating new, smaller particle surfaces. “In some instances we saw that, close to the fault, the sample went from room temperature to 1,200 degrees Celsius in a matter of microseconds, and then immediately cooled down once the motion stopped,” Ortega-Arroyo says. “And in one sample, we saw the fault move by about 100 microns, which implies slip velocities essentially about 10 meters per second. It moves very fast, though it doesn’t last very long.”The researchers suspect that similar processes play out in actual, kilometer-scale quakes.“Our experiments offer an integrated approach that provides one of the most complete views of the physics of earthquake-like ruptures in rocks to date,” Peč says. “This will provide clues on how to improve our current earthquake models and natural hazard mitigation.”This research was supported, in part, by the National Science Foundation. More