More stories

  • in

    Advancing public understanding of sea-level rise

    Museum exhibits can be a unique way to communicate science concepts and information. Recently, MIT faculty have served as sounding boards for curators at the Museum of Science, Boston, a close neighbor of the MIT campus.

    In January, Professor Emerita Paola Malanotte-Rizzoli and Cecil and Ida Green Professor Raffaele Ferrari of the Department of Earth, Atmospheric and Planetary Science (EAPS) visited the museum to view the newly opened pilot exhibit, “Resilient Venice: Adapting to Climate Change.”

    When Malanotte-Rizzoli was asked to contribute her expertise on the efforts in Venice, Italy, to mitigate flood damage, she was more than willing to offer her knowledge. “I love Venice. It is fun to tell people all of the challenges which you see the lagoon has … how much must be done to preserve, not only the city, but the environment, the islands and buildings,” she says.

    The installation is the second Museum of Science exhibit to be developed in recent years in consultation with EAPS scientists. In December 2020, “Arctic Adventure: Exploring with Technology” opened with the help of Cecil and Ida Green Career Development Professor Brent Minchew, who lent his expertise in geophysics and glaciology to the project. But for Malanotte-Rizzoli, the new exhibit hits a little closer to home.

    “My house is there,” Malanotte-Rizzoli excitedly pointed out on the exhibit’s aerial view of Venice, which includes a view above St. Mark’s Square and some of the surrounding city.

    “Resilient Venice” focuses on Malanotte-Rizzoli’s hometown, a city known for flooding. Built on a group of islands in the Venetian Lagoon, Venice has always experienced flooding, but climate change has brought unprecedented tide levels, causing billions of dollars in damages and even causing two deaths in the flood of 2019.

    The dark exhibit hall is lined with immersive images created by Iconem, a startup whose mission is digital preservation of endangered World Heritage Sites. The firm took detailed 3D scans and images of Venice to put together the displays and video.

    The video on which Malanotte-Rizzoli pointed to her home shows the potential sea level rise by 2100 if action isn’t taken. It shows the entrance to St. Mark’s Basilica completely submerged in water; she compares it to the disaster movie “The Day After Tomorrow.”

    The MOSE system

    Between critiques of the choice of music (“that’s not very Venice-inspired,” joked Ferrari, who is also Italian) and bits of conversation exchanged in Italian, the two scientists do what scientists do: discuss technicalities.

    Ferrari pointed to a model of a gate system and asked Malanotte-Rizzoli if the hydraulic jump seen in the model is present in the MOSE system; she confirmed it is not.

    This is the part of the exhibit that Malanotte-Rizzoli was consulted on. One of the plans Venice has implemented to address the flooding is the MOSE system — short for Modulo Sperimentale Elettromeccanico, or the Experimental Electromechanical Module. The MOSE is a system of flood barriers designed to protect the city from extremely high tides. Construction began in 2003, and its first successful operation happened on Oct. 3, 2020, when it prevented a tide 53 inches above normal from flooding the city.

    The barriers are made of a series of gates, each 66-98 feet in length and 66 feet wide, which sit in chambers built into the sea floor when not in use to allow boats and wildlife to travel between the ocean and lagoon. The gates are filled with water to keep them submerged; when activated, air is pumped into them, pushing out the water and allowing them to rise. The entire process takes 30 minutes to complete, and half that time to return to the sea floor.

    The top of the gates in the MOSE come out of the water completely and are individually controlled so that sections can remain open to allow ships to pass through. In the model, the gate remains partially submerged, and as the high-velocity water passes over it into an area of low velocity, it creates a small rise of water before it falls over the edge of the barrier, creating a hydraulic jump.

    But Malanotte-Rizzoli joked that only scientists will care about that; otherwise, the model does a good job demonstrating how the MOSE gates rise and fall.

    The MOSE system is only one of many plans taken to mitigate the rising water levels in Venice and to protect the lagoon and the surrounding area, and this is an important point for Malanotte-Rizzoli, who worked on the project from 1995 to 2013.

    “It is not the MOSE or,” she emphasized. “It is the MOSE and.” Other complementary plans have been implemented to reduce harm to both economic sectors, such as shipping and tourism, as well as the wildlife that live in the lagoons.

    Beyond barriers

    There’s more to protecting Venice than navigating flooded streets — it’s not just “putting on rainboots,” as Malanotte-Rizzoli put it.

    “It’s destroying the walls,” she said, pointing out the corrosive effects of water on a model building, which emphasizes the damage to architecture caused by the unusually high flood levels. “People don’t think about this.” The exhibit also emphasizes the economic costs of businesses lost by having visitors take down and rebuild a flood barrier for a gelato shop with the rising and falling water levels.

    Malanotte-Rizzoli gave the exhibit her seal of approval, but the Venice section is only a small portion of what the finished exhibit will look like. The current plan involves expanding it to include a few other World Heritage Sites.

    “How do we make people care about a site that they haven’t been to?” asked Julia Tate, the project manager of touring exhibits and exhibit production at the museum. She said that it’s easy to start with a city like Venice, since it’s a popular tourist destination. But it becomes trickier to get people to care about a site that they maybe haven’t been to, such as the Easter Islands, that are just as much at risk. The plan is to incorporate a few more sites before turning it into a traveling exhibit that will end by asking visitors to think about climate change in their own towns.

    “We want them to think about solutions and how to do better,” said Tate. Hope is the alternative message: It’s not too late to act.

    Malanotte-Rizzoli thinks it’s important for Bostonians to see their own city in Venice, as Boston is also at risk from sea level rise. The history of Boston reminds Malanotte-Rizzoli about her hometown and is one of the reasons why she was willing to emigrate. The history encompassed in Boston makes the need for preservation even more important.

    “Those things that cannot be replaced, they must be respected in the process of preservation,” she said. “Modern things and engineering can be done even in a city which is so fragile, so delicate.” More

  • in

    3 Questions: The future of international education

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa in the MIT Department of Political Science. He conducts research in the field of comparative politics, with a focus on development and ethnic conflict in sub-Saharan Africa. He directs the Global Diversity Lab (GDL) and was recently named faculty director of the MIT International Science and Technology Initiatives (MISTI), MIT’s global experiential learning program. Here, Lieberman describes international education and its import for solving global problems.

    Q: Why is now an especially important time for international education?

    A: The major challenges we currently face — climate change, the pandemic, supply chain management — are all global problems that require global solutions. We will need to collaborate across borders to a greater extent than ever before. There is no time more pressing for students to gain an international outlook on these challenges; the ideas, thinking, and perspectives from other parts of the world; and to build global networks. And yet, most of us have stayed very close to home for the past couple of years. While remote internships and communications have offered temporary solutions when travel was limited, these have been decidedly inferior to the opportunities for learning and making connections through in-person cultural and collaborative experiences at the heart of MISTI. It is important for students and faculty to be able to thrive in an interconnected world as they navigate their research/careers during this unusual time. The changing landscape of the past few years has left all of us somewhat anxious. Nonetheless, I am buoyed by important examples of global collaboration in problem-solving, with scientists, governments and other organizations working together on the things that unite us all.

    Q: How is MIT uniquely positioned to provide global opportunities for students and faculty?

    A: MISTI is a unique program with a long history of building robust partnerships with industry, universities, and other sectors in countries around the world, establishing opportunities that complement MIT students’ unique skill sets. MIT is fortunate to be the home of some of the top students and faculty in the world, and this is a benefit to partners seeking collaborators. The broad range of disciplines across the entire institute provides opportunities to match in nearly every sector. MISTI’s rigorous, country-specific preparation ensures that students build durable cultural connections while abroad and empowers them to play a role in addressing critical global challenges. The combination of technical and humanistic training that MIT students receive are exactly the profiles necessary to take advantage of opportunities abroad, hopefully with a long-term impact. Student participants have a depth of knowledge in their subject areas as well as MIT’s one-of-a-kind education model that is exceptionally valuable. The diversity of our community offers a wide variety of perspectives and life experiences, on top of academic expertise. Also, MISTI’s donor-funded programs provide the unique ability for all students to be able to participate in international programs, regardless of financial situation. This is a direct contrast with internship programs that often skew toward participants with little-to-no financial need.

    Q: How do these kinds of collaborations help tackle global problems?

    A: Of course, we don’t expect that even intensive internships of a few months are going to generate the global solutions we need. It is our hope that our students — who we anticipate being leaders in a range of sectors — will opt for global careers, and/or bring a global perspective to their work and in their lives. We believe that by building on their MISTI experiences and training, they will be able to forge the types of collaborations that lead to equity-enhancing solutions to universal problems — the climate emergency, ongoing threats to global public health, the liabilities associated with the computing revolution — and are able to improve human development more generally.

    More than anything, at MISTI we are planting the seeds for longer-term collaborations. We literally grant several millions of dollars in seed funds to establish faculty-led collaborations with student involvement in addition to supporting hundreds of internships around the world. The MISTI Global Seed Funds (GSF) program compounds the Institute’s impact by supporting partnerships abroad that often turn into long-standing research relationships addressing the critical challenges that require international solutions. GSF projects often have an impact far beyond their original scope. For example, a number of MISTI GSF projects have utilized their results to jump-start research efforts to combat the pandemic. More

  • in

    Conversations at the front line of climate

    The climate crisis is a novel and developing chapter in human and planetary history. As a species, humankind is still very much learning how to face this crisis, and the world’s frontline communities — those being most affected by climate change — are struggling to make their voices heard. How can communities imperiled by climate change convey the urgency of their situation to countries and organizations with the means to make a difference? And how can governments and other powerful groups provide resources to these vulnerable frontline communities?The MIT Civic Design Initiative (CDI), an interdisciplinary confluence of media studies and design expertise, emerged in 2020 to tackle just these kinds of questions. It brings together the MIT Design Lab, a program originally founded in the School of Architecture and Planning with its research practices in design, and the Comparative Media Studies program (CMS/W) with its focus on the fundamentals of human connection and communication. Drawing on these complementary sources of scholarly perspective and expertise, CDI is a suitably broad umbrella for the range of climate-related issues that humanistic research and design can potentially address. Based in the CMS/W program of the School of Humanities, Arts, and Social Sciences, the initiative is responding to the climate crises with a spirit of inquiry, listening, and solid data. Reflecting on the mission, James Paradis, the Robert M. Metcalfe Professor of CMS/W and CDI faculty director, says the core idea is to address global issues by combining new and emerging technologies with an equally keen focus on the social and cultural contexts — the human dimensions of the issue — with many of their nuances.  Working closely with Paradis on this vision are the two CDI co-directors: Yihyun Lim, an architect, urban designer, and MIT researcher; and Eric Gordon, a visiting professor of civic media in MIT CMS/W. Prior to CDI, when she was leading the MIT Design Lab research group, Lim says “At MIT Design Lab, I was working within the realm of applied research with industry partnerships, how we can apply user-centered design methods in creating connected experiences. Eric, Jim, and I wanted to shift the focus into a more civic realm, where we could bring all our collective expertise together to address tricky problems.”

    Deep listeningThe initiative’s flagship project, the Deep Listening Project, is currently working with an initial group of frontline communities in Nepal and Indigenous tribes in the United States and Canada. The work is a direct application of communication protocols: understanding how people are communicating with and often without technologies — and how technologies can be better used to help people get the help they need, when they need it, in the face of the climate crisis.

    The CDI team describes deep listening as “a form of institutional and community intake that considers diversity, tensions, and frictions, and that incorporates communities’ values in creating solutions.”

    Globally, the majority of climate response funding currently goes toward mitigation efforts — such as reducing emissions or using more eco-friendly materials. It is only in recent years that more substantial funding has been focused on climate adaptation: making adjustments that can help a community adapt to present changes and impacts and also prepare for future climate-related crises. For the millions of people in frontline communities, such adaptation can be crucial to protecting and sustaining their communities.Gordon describes the scope of the situation: “We know that over the next 10 years, climate change will drive over 100 million people to adapt where and how they live, regardless of the success of mitigation efforts. And in order for those adaptations to succeed, there must be a concerted collaborative effort between frontline communities and institutions with the resources to facilitate adaptation.“Communication between institutions and their constituents is a fundamental planning problem in any context,” Gordon continues. “In the case of climate adaptation, there will not be a surplus of time to get things right. Putting communication mechanisms in place to connect affected communities with institutional resources is already imperative.“This situation requires that we figure out, quickly, how to listen to the people who will rely on [those institutions] for their lives and livelihoods. We want to understand how institutions — from governments to universities to NGOs [nongovernmental organizations] — are adopting and adapting technologies, and how that is benefiting or hurting their constituencies.  People with direct frontline experience need to be supported in their speech and ideas, and institutions need to be able to take in the data from these communities, listen carefully to discern its significance, and then act upon it.” Sensemaking: infrastructure for connection

    One important aspect of meaningful, effective communication will be the ability of frontline and Indigenous communities to communicate likely or imagined futures, based on their own knowledge and desires. One potential tool is what the initiative calls “sensemaking:” producing and sharing data visualizations that can communicate to governments the experiences of frontline communities. The initiative also hopes to develop additional elements of the “deep listening infrastructure” — mechanisms to make sure important community voices carry and that important data isn’t lost to noise in the vast question of climate adaptability.“Oftentimes in academia, the paper gets published or the website gets developed, and everybody says, ‘OK, we’ve done our work,’” Paradis observes. “What we’re aiming to do in the CDI is the necessary work that happens after the publication of research — where research is applied to actually improve peoples’ lives.”The Deep Listening Project is also building a network of scholars and practitioners nationwide, including Henry Jenkins, co-founder and former faculty member at MIT CMS/W; Sangita Shresthova SM ’03 at the University of Southern California; and Darren Ranco at the University of Maine. Ranco, an anthropologist, Indigenous activist, and organizational leader, has been instrumental in connecting with Indigenous groups and tribal governments across North America. Meanwhile, Gordon has helped forge connections with groups like the International Red Cross/Red Crescent, the World Bank, and the UN Development. At the root of these connections is the impetus to communicate lived realities from the level of a small community to that of global relief organizations and governmental powers.

    Potential human futures

    Mona Vijaykumar, a second-year student in the SMArchS Architecture and Urbanism program in the Department of Architecture, and among the first student researcher assistants attached to the new initiative, is excited to have the chance to help build CDI from the ground up. “It’s been a great honor to be working with CDI’s amazing team for the last eight months,” she says. With her background in urban design and research interest in climate adaptation processes, Vijaykumar has been engaged in developing the Deep Listening Project’s white paper as part of MIT Climate Grand Challenges. She works alongside the initiative’s two other inaugural research assistants: Tomas Guarna, a master’s student in CMS, and Gabriela Degetau, a master’s student in the SMarchS Urbanism program, with Vijaykumar.“I was involved in analyzing the literature case study on community-based adaptation processes and co-writing the white paper,” Vijaykumar says, “and am currently working on conducting interviews with communities and institutions in India. Going forward, Gabriela and I will be presenting the white paper at gatherings such as the American Association of Geographers’ Conference in New York and the Climate and Social Impact Conference in Vancouver.”“The support and collaboration of the team have been incredibly empowering,” reflects Degetau, who will be co-presenting the white paper with Vijaykumar in New York and Vancouver, British Columbia. “Even when working from different countries and through Zoom, the experience has been unique and cohesive.”Both Degetau and Vijaykumar were selected as the first fellows of the Vuslat Foundation, organized by the MIT Transmedia Storytelling Initiative. In this one-year fellowship, they are seeking to co-design “climate imaginaries” through the Deep Listening Project. Vijaykumar’s work is also supported by the MIT Human Rights and Technology Fellowship for 2021-22, which guides her personal focus on what she refers to as the “dual sword” of technology and data colonialism in India.As the Deep Listening Project continues to develop a sustainable and balanced communication infrastructure, Lim reflects that a vital part of that is sharing how potential futures are envisioned. Both large institutions and individual communities imagine, separately — and hopefully soon together — how the human world will reshape itself to be viable in profoundly shifting climate conditions. “What are our possible futures?” asks Lim. “What are people dreaming?” 

    Story prepared by MIT SHASS CommunicationsEditorial and design director: Emily HiestandSenior communications associate: Alison Lanier More

  • in

    3 Questions: What a single car can say about traffic

    Vehicle traffic has long defied description. Once measured roughly through visual inspection and traffic cameras, new smartphone crowdsourcing tools are now quantifying traffic far more precisely. This popular method, however, also presents a problem: Accurate measurements require a lot of data and users.

    Meshkat Botshekan, an MIT PhD student in civil and environmental engineering and research assistant at the MIT Concrete Sustainability Hub, has sought to expand on crowdsourcing methods by looking into the physics of traffic. During his time as a doctoral candidate, he has helped develop Carbin, a smartphone-based roadway crowdsourcing tool created by MIT CSHub and the University of Massachusetts Dartmouth, and used its data to offer more insight into the physics of traffic — from the formation of traffic jams to the inference of traffic phase and driving behavior. Here, he explains how recent findings can allow smartphones to infer traffic properties from the measurements of a single vehicle.  

    Q: Numerous navigation apps already measure traffic. Why do we need alternatives?

    A: Traffic characteristics have always been tough to measure. In the past, visual inspection and cameras were used to produce traffic metrics. So, there’s no denying that today’s navigation tools apps offer a superior alternative. Yet even these modern tools have gaps.

    Chief among them is their dependence on spatially distributed user counts: Essentially, these apps tally up their users on road segments to estimate the density of traffic. While this approach may seem adequate, it is both vulnerable to manipulation, as demonstrated in some viral videos, and requires immense quantities of data for reliable estimates. Processing these data is so time- and resource-intensive that, despite their availability, they can’t be used to quantify traffic effectively across a whole road network. As a result, this immense quantity of traffic data isn’t actually optimal for traffic management.

    Q: How could new technologies improve how we measure traffic?

    A: New alternatives have the potential to offer two improvements over existing methods: First, they can extrapolate far more about traffic with far fewer data. Second, they can cost a fraction of the price while offering a far simpler method of data collection. Just like Waze and Google Maps, they rely on crowdsourcing data from users. Yet, they are grounded in the incorporation of high-level statistical physics into data analysis.

    For instance, the Carbin app, which we are developing in collaboration with UMass Dartmouth, applies principles of statistical physics to existing traffic models to entirely forgo the need for user counts. Instead, it can infer traffic density and driver behavior using the input of a smartphone mounted in single vehicle.

    The method at the heart of the app, which was published last fall in Physical Review E, treats vehicles like particles in a many-body system. Just as the behavior of a closed many-body system can be understood through observing the behavior of an individual particle relying on the ergodic theorem of statistical physics, we can characterize traffic through the fluctuations in speed and position of a single vehicle across a road. As a result, we can infer the behavior and density of traffic on a segment of a road.

    As far less data is required, this method is more rapid and makes data management more manageable. But most importantly, it also has the potential to make traffic data less expensive and accessible to those that need it.

    Q: Who are some of the parties that would benefit from new technologies?

    A: More accessible and sophisticated traffic data would benefit more than just drivers seeking smoother, faster routes. It would also enable state and city departments of transportation (DOTs) to make local and collective interventions that advance the critical transportation objectives of equity, safety, and sustainability.

    As a safety solution, new data collection technologies could pinpoint dangerous driving conditions on a much finer scale to inform improved traffic calming measures. And since socially vulnerable communities experience traffic violence disproportionately, these interventions would have the added benefit of addressing pressing equity concerns. 

    There would also be an environmental benefit. DOTs could mitigate vehicle emissions by identifying minute deviations in traffic flow. This would present them with more opportunities to mitigate the idling and congestion that generate excess fuel consumption.  

    As we’ve seen, these three challenges have become increasingly acute, especially in urban areas. Yet, the data needed to address them exists already — and is being gathered by smartphones and telematics devices all over the world. So, to ensure a safer, more sustainable road network, it will be crucial to incorporate these data collection methods into our decision-making. More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Reducing methane emissions at landfills

    The second-largest driver of global warming is methane, a greenhouse gas 28 times more potent than carbon dioxide. Landfills are a major source of methane, which is created when organic material decomposes underground.

    Now a startup that began at MIT is aiming to significantly reduce methane emissions from landfills with a system that requires no extra land, roads, or electric lines to work. The company, Loci Controls, has developed a solar-powered system that optimizes the collection of methane from landfills so more of it can be converted into natural gas.

    At the center of Loci’s (pronounced “low-sigh”) system is a lunchbox-sized device that attaches to methane collection wells, which vacuum the methane up to the surface for processing. The optimal vacuum force changes with factors like atmospheric pressure and temperature. Loci’s system monitors those factors and adjusts the vacuum force at each well far more frequently than is possible with field technicians making manual adjustments.

    “We expect to reduce methane emissions more than any other company in the world over the next five years,” Loci Controls CEO Peter Quigley ’85 says. The company was founded by Melinda Hale Sims SM ’09, PhD ’12 and Andrew Campanella ’05, SM ’13.

    The reason for Quigley’s optimism is the high concentration of landfill methane emissions. Most landfill emissions in the U.S. come from about 1,000 large dumps. Increasing collection of methane at those sites could make a significant dent in the country’s overall emissions.

    In one landfill where Loci’s system was installed, for instance, the company says it increased methane sales at an annual rate of 180,000 metric tons of carbon dioxide equivalent. That’s about the same as removing 40,000 cars from the road for a year.

    Loci’s system is currently installed on wells in 15 different landfills. Quigley says only about 70 of the 1,000 big landfills in the U.S. sell gas profitably. Most of the others burn the gas. But Loci’s team believes increasing public and regulatory pressure will help expands its potential customer base.

    Uncovering a major problem

    The idea for Loci came from a revelation by Sims’ father, serial entrepreneur Michael Hale SM ’85, PhD ’89. The elder Hale was working in wastewater management when he was contacted by a landfill in New York that wanted help using its excess methane gas.

    “He realized if he could help that particular landfill with the problem, it would apply to almost any landfill,” Sims says.

    At the time, Sims was pursuing her PhD in mechanical engineering at MIT and minoring in entrepreneurship.

    Her father didn’t have time to work on the project, but Sims began exploring technology solutions to improve methane capture at landfills in her business classes. The work was unrelated to her PhD, but her advisor, David Hardt, the Ralph E. and Eloise F. Cross Professor in Manufacturing at MIT, was understanding. (Hardt had also served as PhD advisor for Sim’s father, who was, after all, the person to blame for Sim’s new side project.)

    Sims partnered with Andrew Campanella, then a master’s student focused on electrical engineering, and the two went through the delta v summer accelerator program hosted by the Martin Trust Center for MIT Entrepreneurship.

    Quigley was retired but serving on multiple visiting committees at MIT when he began mentoring Loci’s founders. He’d spent his career commercializing reinforced plastic through two companies, one in the high-performance sporting goods industry and the other in oil field services.

    “What captured my imagination was the emissions-reduction opportunity,” Quigley says.

    Methane is generated in landfills when organic waste decomposes. Some landfill operators capture the methane by drilling hundreds of collection wells. The vacuum pressure of those wells needs to be adjusted to maximize the amount of methane collected, but Quigley says technicians can only make those adjustments manually about once a month.

    Loci’s devices monitor gas composition, temperature, and environmental factors like barometric pressure to optimize vacuum power every hour. The data the controllers collect is aggregated in an analytics platform for technicians to monitor remotely. That data can also be used to pinpoint well failure events, such as flooding during rain, and otherwise improve operations to increase the amount of methane captured.

    “We can adjust the valves automatically, but we also have data that allows on-site operators to identify and remedy problems much more quickly,” Quigley explains.

    Furthering a high-impact mission

    Methane capture at landfills is becoming more urgent as improvements in detection technologies are revealing discrepancies between methane emission estimates and reality in the industry. A new airborne methane sensor deployed by NASA, for instance, found that California landfills have been leaking methane at rates as much as six times greater than estimates from the U.S. Environmental Protection Agency. The difference has major implications for the Earth’s atmosphere.

    A reckoning will have to occur to motivate more waste management companies to start collecting methane and to optimize methane capture. That could come in the form of new collection standards or an increased emphasis on methane collection from investors. (Funds controlled by billionaires Bill Gates and Larry Fink are major investors in waste management companies.)

    For now, Loci’s team, including co-founder and current senior advisor Sims, believes it’s on the road to making a meaningful impact under current market conditions.

    “When I was in grad school, the majority of the focus on emissions was on CO2,” Sims says. “I think methane is a really high-impact place to be focused, and I think it’s been underestimated how valuable it could be to apply technology to the industry.” More

  • in

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Two MIT doctoral students in the MIT School of Architecture and Planning have received the prestigious Fulbright-Hays Scholarship for Doctoral Dissertation Research Award. Courtney Lesoon and Elizabeth “Lizzie” Yarina are the first awardees from MIT in more than a decade.

    The fellowship provides opportunities for doctoral students to engage in full-time dissertation research abroad. The program, funded by the U.S. Department of Education, is designed to contribute to the development and improvement of the study of modern foreign languages and area studies. Applicants anticipate pursuing a teaching career in the United States following completion of their dissertation. There were 138 individuals from 47 institutions named scholars for the 2021 cycle.

    Courtney Lesoon

    Lesoon is a doctoral candidate in the Aga Khan Program for Islamic Architecture, in the History, Theory and Criticism Section of the Department of Architecture. Lesoon earned her BA from College of the Holy Cross and was a 2012-13 Fulbright U.S. Student grantee to the United Arab Emirates, where her research concerned contemporary art and emerging cultural institutions. Her dissertation is titled “Spatializing Ahl al-ʿIlm: Learning and the Rise of the Early Islamic City.” Losoon’s fieldwork will be done in Morocco, Egypt, and Turkey.

    “Courtney’s project presents an innovative idea that has not, to my knowledge, been investigated before,” says Nasser Rabbat, professor and director of the MIT Aga Khan Program. “How did the emergence and evolution of a particularly Islamic learning system affect the development of the city in the early Islamic period? Her work enriches the thinking about premodern urbanism and education everywhere by theorizing the intricate relationship between traveling, learning, and the city.”

    “I’ll be working in different manuscripts collections in Morocco, Egypt, and Turkey to investigate where and how scholars were learning inside of the early Islamic city before the formal institutionalization of higher education,” says Lesoon. “I’m interested in how learning — as a set of social practices — informed urban life. My project speaks to two different fields; Islamic urbanism and Islamic intellectual history. I’m really excited about my time on Fulbright-Hays; it will be a really fruitful time for my research and writing.”

    Before arriving at MIT, Lesoon worked as a research assistant in the Art of the Middle East Department at the Los Angeles County Museum of Art. Recently, she was awarded the 2021 Margaret B. Ševčenko Prize for “the best unpublished essay written by a junior scholar” for her paper “The Sphero-conical as Apothecary Vessel: An Argument for Dedicated Use.” Lesoon earned her MA from the University of Michigan at Ann Arbor, where her thesis investigated an 18th-century “Damascus Room” and its acquisition as a collected interior in the United States.

    Lizzie Yarina

    Yarina is a doctoral candidate in the MIT Department of Urban Studies and Planning (DUSP) and a research fellow at the MIT Norman B. Leventhal Center for Advanced Urbanism. She is presently co-editing a volume on the relationship between climate models and the built environment with a multidisciplinary team of editors and contributors. Yarina was a research scientist at the MIT Urban Risk Lab, where she was part of a team examining alternatives to the Federal Emergency Management Agency’s post-disaster housing systems; she also conducted research on disaster preparedness in Japan. Her award supports her doctoral research under the title “Modeling the Mekong: Climate Adaptation Imaginaries in Delta Regions,” which will include fieldwork in Vietnam, the Netherlands, Thailand, and Cambodia.

    “Lizzie’s research brings together three dimensions critical to global well-being and sustainability: adapting to the inevitability of changing ecosystems wrought by the climate crisis; questioning the equity, appropriateness, and relationality of adaptation planning models spanning the global North and the global South; and understanding how to develop durable and just climate futures,” says Christopher Zegras, professor of mobility and urban planning and department head for DUSP. “Her work will be an important contribution toward the long-term health of our planet and of communities working to justly adapt to climate change.”

    Previously, Yarina was awarded a U.S. Scholarship Fulbright to New Zealand to research spatial mapping and policy implications of Pacific Islander migration to New Zealand.

    “My dissertation project looks at climate adaptation planning in delta regions,” she says. “My focus is on Vietnam’s Mekong River Delta, but I’m also looking at how models that are used in delta adaptation planning move between different deltas, including the Netherlands Rhine Delta and the Mississippi Delta.”

    Working on her masters at MIT, Yarina had a teaching fellowship in Singapore, where she conducted research on climate adaptation plans in four major cities in Southeast Asia.

    “Through that process I learned about the role of Dutch experts and Dutch models in shaping how climate adaptation planning was taking place in Southeast Asia,” she says. “This project expands on that work from looking at a single city to examining a regional plan at the scale of a delta.”

    Yarina holds a joint masters in architecture and masters of city planning from MIT, and a BS in architecture from the University of Michigan. More

  • in

    A dirt cheap solution? Common clay materials may help curb methane emissions

    Methane is a far more potent greenhouse gas than carbon dioxide, and it has a pronounced effect within first two decades of its presence in the atmosphere. In the recent international climate negotiations in Glasgow, abatement of methane emissions was identified as a major priority in attempts to curb global climate change quickly.

    Now, a team of researchers at MIT has come up with a promising approach to controlling methane emissions and removing it from the air, using an inexpensive and abundant type of clay called zeolite. The findings are described in the journal ACS Environment Au, in a paper by doctoral student Rebecca Brenneis, Associate Professor Desiree Plata, and two others.

    Although many people associate atmospheric methane with drilling and fracking for oil and natural gas, those sources only account for about 18 percent of global methane emissions, Plata says. The vast majority of emitted methane comes from such sources as slash-and-burn agriculture, dairy farming, coal and ore mining, wetlands, and melting permafrost. “A lot of the methane that comes into the atmosphere is from distributed and diffuse sources, so we started to think about how you could take that out of the atmosphere,” she says.

    The answer the researchers found was something dirt cheap — in fact, a special kind of “dirt,” or clay. They used zeolite clays, a material so inexpensive that it is currently used to make cat litter. Treating the zeolite with a small amount of copper, the team found, makes the material very effective at absorbing methane from the air, even at extremely low concentrations.

    The system is simple in concept, though much work remains on the engineering details. In their lab tests, tiny particles of the copper-enhanced zeolite material, similar to cat litter, were packed into a reaction tube, which was then heated from the outside as the stream of gas, with methane levels ranging from just 2 parts per million up to 2 percent concentration, flowed through the tube. That range covers everything that might exist in the atmosphere, down to subflammable levels that cannot be burned or flared directly.

    The process has several advantages over other approaches to removing methane from air, Plata says. Other methods tend to use expensive catalysts such as platinum or palladium, require high temperatures of at least 600 degrees Celsius, and tend to require complex cycling between methane-rich and oxygen-rich streams, making the devices both more complicated and more risky, as methane and oxygen are highly combustible on their own and in combination.

    “The 600 degrees where they run these reactors makes it almost dangerous to be around the methane,” as well as the pure oxygen, Brenneis says. “They’re solving the problem by just creating a situation where there’s going to be an explosion.” Other engineering complications also arise from the high operating temperatures. Unsurprisingly, such systems have not found much use.

    As for the new process, “I think we’re still surprised at how well it works,” says Plata, who is the Gilbert W. Winslow Associate Professor of Civil and Environmental Engineering. The process seems to have its peak effectiveness at about 300 degrees Celsius, which requires far less energy for heating than other methane capture processes. It also can work at concentrations of methane lower than other methods can address, even small fractions of 1 percent, which most methods cannot remove, and does so in air rather than pure oxygen, a major advantage for real-world deployment.

    The method converts the methane into carbon dioxide. That might sound like a bad thing, given the worldwide efforts to combat carbon dioxide emissions. “A lot of people hear ‘carbon dioxide’ and they panic; they say ‘that’s bad,’” Plata says. But she points out that carbon dioxide is much less impactful in the atmosphere than methane, which is about 80 times stronger as a greenhouse gas over the first 20 years, and about 25 times stronger for the first century. This effect arises from that fact that methane turns into carbon dioxide naturally over time in the atmosphere. By accelerating that process, this method would drastically reduce the near-term climate impact, she says. And, even converting half of the atmosphere’s methane to carbon dioxide would increase levels of the latter by less than 1 part per million (about 0.2 percent of today’s atmospheric carbon dioxide) while saving about 16 percent of total radiative warming.

    The ideal location for such systems, the team concluded, would be in places where there is a relatively concentrated source of methane, such as dairy barns and coal mines. These sources already tend to have powerful air-handling systems in place, since a buildup of methane can be a fire, health, and explosion hazard. To surmount the outstanding engineering details, the team has just been awarded a $2 million grant from the U.S. Department of Energy to continue to develop specific equipment for methane removal in these types of locations.

    “The key advantage of mining air is that we move a lot of it,” she says. “You have to pull fresh air in to enable miners to breathe, and to reduce explosion risks from enriched methane pockets. So, the volumes of air that are moved in mines are enormous.” The concentration of methane is too low to ignite, but it’s in the catalysts’ sweet spot, she says.

    Adapting the technology to specific sites should be relatively straightforward. The lab setup the team used in their tests consisted of  “only a few components, and the technology you would put in a cow barn could be pretty simple as well,” Plata says. However, large volumes of gas do not flow that easily through clay, so the next phase of the research will focus on ways of structuring the clay material in a multiscale, hierarchical configuration that will aid air flow.

    “We need new technologies for oxidizing methane at concentrations below those used in flares and thermal oxidizers,” says Rob Jackson, a professor of earth systems science at Stanford University, who was not involved in this work. “There isn’t a cost-effective technology today for oxidizing methane at concentrations below about 2,000 parts per million.”

    Jackson adds, “Many questions remain for scaling this and all similar work: How quickly will the catalyst foul under field conditions? Can we get the required temperatures closer to ambient conditions? How scaleable will such technologies be when processing large volumes of air?”

    One potential major advantage of the new system is that the chemical process involved releases heat. By catalytically oxidizing the methane, in effect the process is a flame-free form of combustion. If the methane concentration is above 0.5 percent, the heat released is greater than the heat used to get the process started, and this heat could be used to generate electricity.

    The team’s calculations show that “at coal mines, you could potentially generate enough heat to generate electricity at the power plant scale, which is remarkable because it means that the device could pay for itself,” Plata says. “Most air-capture solutions cost a lot of money and would never be profitable. Our technology may one day be a counterexample.”

    Using the new grant money, she says, “over the next 18 months we’re aiming to demonstrate a proof of concept that this can work in the field,” where conditions can be more challenging than in the lab. Ultimately, they hope to be able to make devices that would be compatible with existing air-handling systems and could simply be an extra component added in place. “The coal mining application is meant to be at a stage that you could hand to a commercial builder or user three years from now,” Plata says.

    In addition to Plata and Brenneis, the team included Yale University PhD student Eric Johnson and former MIT postdoc Wenbo Shi. The work was supported by the Gerstner Philanthropies, Vanguard Charitable Trust, the Betty Moore Inventor Fellows Program, and MIT’s Research Support Committee. More