More stories

  • in

    How to reduce greenhouse gas emissions from ammonia production

    Ammonia is one of the most widely produced chemicals in the world, used mostly as fertilizer, but also for the production of some plastics, textiles, and other applications. Its production, through processes that require high heat and pressure, accounts for up to 20 percent of all the greenhouse gases from the entire chemical industry, so efforts have been underway worldwide to find ways to reduce those emissions.Now, researchers at MIT have come up with a clever way of combining two different methods of producing the compound that minimizes waste products, that, when combined with some other simple upgrades, could reduce the greenhouse emissions from production by as much as 63 percent, compared to the leading “low-emissions” approach being used today.The new approach is described in the journal Energy & Fuels, in a paper by MIT Energy Initiative (MITEI) Director William H. Green, graduate student Sayandeep Biswas, MITEI Director of Research Randall Field, and two others.“Ammonia has the most carbon dioxide emissions of any kind of chemical,” says Green, who is the Hoyt C. Hottel Professor in Chemical Engineering. “It’s a very important chemical,” he says, because its use as a fertilizer is crucial to being able to feed the world’s population.Until late in the 19th century, the most widely used source of nitrogen fertilizer was mined deposits of bat or bird guano, mostly from Chile, but that source was beginning to run out, and there were predictions that the world would soon be running short of food to sustain the population. But then a new chemical process, called the Haber-Bosch process after its inventors, made it possible to make ammonia out of nitrogen from the air and hydrogen, which was mostly derived from methane. But both the burning of fossil fuels to provide the needed heat and the use of methane to make the hydrogen led to massive climate-warming emissions from the process.To address this, two newer variations of ammonia production have been developed: so-called “blue ammonia,” where the greenhouse gases are captured right at the factory and then sequestered deep underground, and “green ammonia,” produced by a different chemical pathway, using electricity instead of fossil fuels to hydrolyze water to make hydrogen.Blue ammonia is already beginning to be used, with a few plants operating now in Louisiana, Green says, and the ammonia mostly being shipped to Japan, “so that’s already kind of commercial.” Other parts of the world are starting to use green ammonia, especially in places that have lots of hydropower, solar, or wind to provide inexpensive electricity, including a giant plant now under construction in Saudi Arabia.But in most places, both blue and green ammonia are still more expensive than the traditional fossil-fuel-based version, so many teams around the world have been working on ways to cut these costs as much as possible so that the difference is small enough to be made up through tax subsidies or other incentives.The problem is growing, because as the population grows, and as wealth increases, there will be ever-increasing demands for nitrogen fertilizer. At the same time, ammonia is a promising substitute fuel to power hard-to-decarbonize transportation such as cargo ships and heavy trucks, which could lead to even greater needs for the chemical.“It definitely works” as a transportation fuel, by powering fuel cells that have been demonstrated for use by everything from drones to barges and tugboats and trucks, Green says. “People think that the most likely market of that type would be for shipping,” he says, “because the downside of ammonia is it’s toxic and it’s smelly, and that makes it slightly dangerous to handle and to ship around.” So its best uses may be where it’s used in high volume and in relatively remote locations, like the high seas. In fact, the International Maritime Organization will soon be voting on new rules that might give a strong boost to the ammonia alternative for shipping.The key to the new proposed system is to combine the two existing approaches in one facility, with a blue ammonia factory next to a green ammonia factory. The process of generating hydrogen for the green ammonia plant leaves a lot of leftover oxygen that just gets vented to the air. Blue ammonia, on the other hand, uses a process called autothermal reforming that requires a source of pure oxygen, so if there’s a green ammonia plant next door, it can use that excess oxygen.“Putting them next to each other turns out to have significant economic value,” Green says. This synergy could help hybrid “blue-green ammonia” facilities serve as an important bridge toward a future where eventually green ammonia, the cleanest version, could finally dominate. But that future is likely decades away, Green says, so having the combined plants could be an important step along the way.“It might be a really long time before [green ammonia] is actually attractive” economically, he says. “Right now, it’s nowhere close, except in very special situations.” But the combined plants “could be a really appealing concept, and maybe a good way to start the industry,” because so far only small, standalone demonstration plants of the green process are being built.“If green or blue ammonia is going to become the new way of making ammonia, you need to find ways to make it relatively affordable in a lot of countries, with whatever resources they’ve got,” he says. This new proposed combination, he says, “looks like a really good idea that can help push things along. Ultimately, there’s got to be a lot of green ammonia plants in a lot of places,” and starting out with the combined plants, which could be more affordable now, could help to make that happen. The team has filed for a patent on the process.Although the team did a detailed study of both the technology and the economics that show the system has great promise, Green points out that “no one has ever built one. We did the analysis, it looks good, but surely when people build the first one, they’ll find funny little things that need some attention,” such as details of how to start up or shut down the process. “I would say there’s plenty of additional work to do to make it a real industry.” But the results of this study, which shows the costs to be much more affordable than existing blue or green plants in isolation, “definitely encourages the possibility of people making the big investments that would be needed to really make this industry feasible.”This proposed integration of the two methods “improves efficiency, reduces greenhouse gas emissions, and lowers overall cost,” says Kevin van Geem, a professor in the Center for Sustainable Chemistry at Ghent University, who was not associated with this research. “The analysis is rigorous, with validated process models, transparent assumptions, and comparisons to literature benchmarks. By combining techno-economic analysis with emissions accounting, the work provides a credible and balanced view of the trade-offs.”He adds that, “given the scale of global ammonia production, such a reduction could have a highly impactful effect on decarbonizing one of the most emissions-intensive chemical industries.”The research team also included MIT postdoc Angiras Menon and MITEI research lead Guiyan Zang. The work was supported by IHI Japan through the MIT Energy Initiative and the Martin Family Society of Fellows for Sustainability.  More

  • in

    Report: Sustainability in supply chains is still a firm-level priority

    Corporations are actively seeking sustainability advances in their supply chains — but many need to improve the business metrics they use in this area to realize more progress, according to a new report by MIT researchers.   During a time of shifting policies globally and continued economic uncertainty, the survey-based report finds 85 percent of companies say they are continuing supply chain sustainability practices at the same level as in recent years, or are increasing those efforts.“What we found is strong evidence that sustainability still matters,” says Josué Velázquez Martínez, a research scientist and director of the MIT Sustainable Supply Chain Lab, which helped produce the report. “There are many things that remain to be done to accomplish those goals, but there’s a strong willingness from companies in all parts of the world to do something about sustainability.”The new analysis, titled “Sustainability Still Matters,” was released today. It is the sixth annual report on the subject prepared by the MIT Sustainable Supply Chain Lab, which is part of MIT’s Center for Transportation and Logistics. The Council of Supply Chain Management Professionals collaborated on the project as well.The report is based on a global survey, with responses from 1,203 professionals in 97 countries. This year, the report analyzes three issues in depth, including regulations and the role they play in corporate approaches to supply chain management. A second core topic is management and mitigation of what industry professionals call “Scope 3” emissions, which are those not from a firm itself, but from a firm’s supply chain. And a third issue of focus is the future of freight transportation, which by itself accounts for a substantial portion of supply chain emissions.Broadly, the survey finds that for European-based firms, the principal driver of action in this area remains government mandates, such as the Corporate Sustainability Reporting Directive, which requires companies to publish regular reports on their environmental impact and the risks to society involved. In North America, firm leadership and investor priorities are more likely to be decisive factors in shaping a company’s efforts.“In Europe the pressure primarily comes more from regulation, but in the U.S. it comes more from investors, or from competitors,” Velázquez Martínez says.The survey responses on Scope 3 emissions reveal a number of opportunities for improvement. In business and sustainability terms, Scope 1 greenhouse gas emissions are those a firm produces directly. Scope 2 emissions are the energy it has purchased. And Scope 3 emissions are those produced across a firm’s value chain, including the supply chain activities involved in producing, transporting, using, and disposing of its products.The report reveals that about 40 percent of firms keep close track of Scope 1 and 2 emissions, but far fewer tabulate Scope 3 on equivalent terms. And yet Scope 3 may account for roughly 75 percent of total firm emissions, on aggregate. About 70 percent of firms in the survey say they do not have enough data from suppliers to accurately tabulate the total greenhouse gas and climate impact of their supply chains.Certainly it can be hard to calculate the total emissions when a supply chain has many layers, including smaller suppliers lacking data capacity. But firms can upgrade their analytics in this area, too. For instance, 50 percent of North American firms are still using spreadsheets to tabulate emissions data, often making rough estimates that correlate emissions to simple economic activity. An alternative is life cycle assessment software that provides more sophisticated estimates of a product’s emissions, from the extraction of its materials to its post-use disposal. By contrast, only 32 percent of European firms are still using spreadsheets rather than life cycle assessment tools.“You get what you measure,” Velázquez Martínez says. “If you measure poorly, you’re going to get poor decisions that most likely won’t drive the reductions you’re expecting. So we pay a lot of attention to that particular issue, which is decisive to defining an action plan. Firms pay a lot of attention to metrics in their financials, but in sustainability they’re often using simplistic measurements.”When it comes to transportation, meanwhile, the report shows that firms are still grappling with the best ways to reduce emissions. Some see biofuels as the best short-term alternative to fossil fuels; others are investing in electric vehicles; some are waiting for hydrogen-powered vehicles to gain traction. Supply chains, after all, frequently involve long-haul trips. For firms, as for individual consumers, electric vehicles are more practical with a larger infrastructure of charging stations. There are advances on that front but more work to do as well.That said, “Transportation has made a lot of progress in general,” Velázquez Martínez says, noting the increased acceptance of new modes of vehicle power in general.Even as new technologies loom on the horizon, though, supply chain sustainability is not wholly depend on their introduction. One factor continuing to propel sustainability in supply chains is the incentives companies have to lower costs. In a competitive business environment, spending less on fossil fuels usually means savings. And firms can often find ways to alter their logistics to consume and spend less.“Along with new technologies, there is another side of supply chain sustainability that is related to better use of the current infrastructure,” Velázquez Martínez observes. “There is always a need to revise traditional ways of operating to find opportunities for more efficiency.”  More

  • in

    3 Questions: Addressing the world’s most pressing challenges

    The Center for International Studies (CIS) empowers students, faculty, and scholars to bring MIT’s interdisciplinary style of research and scholarship to address complex global challenges. In this Q&A, Mihaela Papa, the center’s director of research and a principal research scientist at MIT, describes her role as well as research within the BRICS Lab at MIT — a reference to the BRICS intergovernmental organization, which comprises the nations of Brazil, Russia, India, China, South Africa, Egypt, Ethiopia, Indonesia, Iran and the United Arab Emirates. She also discusses the ongoing mission of CIS to tackle the world’s most complex challenges in new and creative ways.Q: What is your role at CIS, and some of your key accomplishments since joining the center just over a year ago?A: I serve as director of research and principal research scientist at CIS, a role that bridges management and scholarship. I oversee grant and fellowship programs, spearhead new research initiatives, build research communities across our center’s area programs and MIT schools, and mentor the next generation of scholars. My academic expertise is in international relations, and I publish on global governance and sustainable development, particularly through my new BRICS Lab. This past year, I focused on building collaborative platforms that highlight CIS’ role as an interdisciplinary hub and expand its research reach. With Evan Lieberman, the director of CIS, I launched the CIS Global Research and Policy Seminar series to address current challenges in global development and governance, foster cross-disciplinary dialogue, and connect theoretical insights to policy solutions. We also convened a Climate Adaptation Workshop, which examined promising strategies for financing adaptation and advancing policy innovation. We documented the outcomes in a workshop report that outlines a broader research agenda contributing to MIT’s larger climate mission.In parallel, I have been reviewing CIS’ grant-making programs to improve how we serve our community, while also supporting regional initiatives such as research planning related to Ukraine. Together with the center’s MIT-Brazil faculty director Brad Olsen, I secured a MITHIC [MIT Human Insight Collaboration] Connectivity grant to build an MIT Amazonia research community that connects MIT scholars with regional partners and strengthens collaboration across the Amazon. Finally, I launched the BRICS Lab to analyze transformations in global governance and have ongoing research on BRICS and food security and data centers in BRICS. Q: Tell us more about the BRICS Lab.A: The BRICS countries comprise the majority of the world’s population and an expanding share of the global economy. [Originally comprising Brazil, Russia, India, and China, BRICS currently includes 11 nations.] As a group, they carry the collective weight to shape international rules, influence global markets, and redefine norms — yet the question remains: Will they use this power effectively? The BRICS Lab explores the implications of the bloc’s rise for international cooperation and its role in reshaping global politics. Our work focuses on three areas: the design and strategic use of informal groups like BRICS in world affairs; the coalition’s potential to address major challenges such as food security, climate change, and artificial intelligence; and the implications of U.S. policy toward BRICS for the future of multilateralism.Q: What are the center’s biggest research priorities right now?A: Our center was founded in response to rising geopolitical tensions and the urgent need for policy rooted in rigorous, evidence-based research. Since then, we have grown into a hub that combines interdisciplinary scholarship and actively engages with policymakers and the public. Today, as in our early years, the center brings together exceptional researchers with the ambition to address the world’s most pressing challenges in new and creative ways.Our core focus spans security, development, and human dignity. Security studies have been a priority for the center, and our new nuclear security programming advances this work while training the next generation of scholars in this critical field. On the development front, our work has explored how societies manage diverse populations, navigate international migration, as well as engage with human rights and the changing patterns of regime dynamics.We are pursuing new research in three areas. First, on climate change, we seek to understand how societies confront environmental risks and harms, from insurance to water and food security in the international context. Second, we examine shifting patterns of global governance as rising powers set new agendas and take on greater responsibilities in the international system. Finally, we are initiating research on the impact of AI — how it reshapes governance across international relations, what is the role of AI corporations, and how AI-related risks can be managed.As we approach our 75th anniversary in 2026, we are excited to bring researchers together to spark bold ideas that open new possibilities for the future. More

  • in

    A beacon of light

    Placing a lit candle in a window to welcome friends and strangers is an old Irish tradition that took on greater significance when Mary Robinson was elected president of Ireland in 1990. At the time, Robinson placed a lamp in Áras an Uachtaráin — the official residence of Ireland’s presidents — noting that the Irish diaspora and all others are always welcome in Ireland. Decades later, a lit lamp remains in a window in Áras an Uachtaráin.The symbolism of Robinson’s lamp was shared by Hashim Sarkis, dean of the MIT School of Architecture and Planning (SA+P), at the school’s graduation ceremony in May, where Robinson addressed the class of 2025. To replicate the generous intentions of Robinson’s lamp and commemorate her visit to MIT, Sarkis commissioned a unique lantern as a gift for Robinson. He commissioned an identical one for his office, which is in the front portico of MIT at 77 Massachusetts Ave.“The lamp will welcome all citizens of the world to MIT,” says Sarkis.

    Geolectric: Sustainable, Low-Carbon Ceramics for Embedded Electronics and Interaction DesignVideo: MIT Design Intelligence Lab

    No ordinary lanternThe bespoke lantern was created by Marcelo Coelho SM ’08, PhD ’12, director of the Design Intelligence Lab and associate professor of the practice in the Department of Architecture.One of several projects in the Geoletric research at the Design Intelligence Lab, the lantern showcases the use of geopolymers as a sustainable material alternative for embedded computers and consumer electronics.“The materials that we use to make computers have a negative impact on climate, so we’re rethinking how we make products with embedded electronics — such as a lamp or lantern — from a climate perspective,” says Coelho.Consumer electronics rely on materials that are high in carbon emissions and difficult to recycle. As the demand for embedded computing increases, so too does the need for alternative materials that have a reduced environmental impact while supporting electronic functionality.The Geolectric lantern advances the formulation and application of geopolymers — a class of inorganic materials that form covalently bonded, non-crystalline networks. Unlike traditional ceramics, geopolymers do not require high-temperature firing, allowing electronic components to be embedded seamlessly during production.Geopolymers are similar to ceramics, but have a lower carbon footprint and present a sustainable alternative for consumer electronics, product design, and architecture. The minerals Coelho uses to make the geopolymers — aluminum silicate and sodium silicate — are those regularly used to make ceramics.“Geopolymers aren’t particularly new, but are becoming more popular,” says Coelho. “They have high strength in both tension and compression, superior durability, fire resistance, and thermal insulation. Compared to concrete, geopolymers don’t release carbon dioxide. Compared to ceramics, you don’t have to worry about firing them. What’s even more interesting is that they can be made from industrial byproducts and waste materials, contributing to a circular economy and reducing waste.”The lantern is embedded with custom electronics that serve as a proximity and touch sensor. When a hand is placed over the top, light shines down the glass tubes.The timeless design of the Geoelectric lantern — minimalist, composed of natural materials — belies its future-forward function. Coelho’s academic background is in fine arts and computer science. Much of his work, he says, “bridges these two worlds.”Working at the Design Intelligence Lab with Coelho on the lanterns are Jacob Payne, a graduate architecture student, and Jean-Baptiste Labrune, a research affiliate.A light for MITA few weeks before commencement, Sarkis saw the Geoelectric lantern in Palazzo Diedo Berggruen Arts and Culture in Venice, Italy. The exhibition, a collateral event of the Venice Biennale’s 19th International Architecture Exhibition, featured the work of 40 MIT architecture faculty.The sustainability feature of Geolectric is the key reason Sarkis regarded the lantern as the perfect gift for Robinson. After her career in politics, Robinson founded the Mary Robinson Foundation — Climate Justice, an international center addressing the impacts of climate change on marginalized communities.The third iteration of Geolectric for Sarkis’ office is currently underway. While the lantern was a technical prototype and an opportunity to showcase his lab’s research, Coelho — an immigrant from Brazil — was profoundly touched by how Sarkis created the perfect symbolism to both embody the welcoming spirit of the school and honor President Robinson.“When the world feels most fragile, we need to urgently find sustainable and resilient solutions for our built environment. It’s in the darkest times when we need light the most,” says Coelho.  More