More stories

  • in

    Study evaluates impacts of summer heat in U.S. prison environments

    When summer temperatures spike, so does our vulnerability to heat-related illness or even death. For the most part, people can take measures to reduce their heat exposure by opening a window, turning up the air conditioning, or simply getting a glass of water. But for people who are incarcerated, freedom to take such measures is often not an option. Prison populations therefore are especially vulnerable to heat exposure, due to their conditions of confinement.A new study by MIT researchers examines summertime heat exposure in prisons across the United States and identifies characteristics within prison facilities that can further contribute to a population’s vulnerability to summer heat.The study’s authors used high-spatial-resolution air temperature data to determine the daily average outdoor temperature for each of 1,614 prisons in the U.S., for every summer between the years 1990 and 2023. They found that the prisons that are exposed to the most extreme heat are located in the southwestern U.S., while prisons with the biggest changes in summertime heat, compared to the historical record, are in the Pacific Northwest, the Northeast, and parts of the Midwest.Those findings are not entirely unique to prisons, as any non-prison facility or community in the same geographic locations would be exposed to similar outdoor air temperatures. But the team also looked at characteristics specific to prison facilities that could further exacerbate an incarcerated person’s vulnerability to heat exposure. They identified nine such facility-level characteristics, such as highly restricted movement, poor staffing, and inadequate mental health treatment. People living and working in prisons with any one of these characteristics may experience compounded risk to summertime heat. The team also looked at the demographics of 1,260 prisons in their study and found that the prisons with higher heat exposure on average also had higher proportions of non-white and Hispanic populations. The study, appearing today in the journal GeoHealth, provides policymakers and community leaders with ways to estimate, and take steps to address, a prison population’s heat risk, which they anticipate could worsen with climate change.“This isn’t a problem because of climate change. It’s becoming a worse problem because of climate change,” says study lead author Ufuoma Ovienmhada SM ’20, PhD ’24, a graduate of the MIT Media Lab, who recently completed her doctorate in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “A lot of these prisons were not built to be comfortable or humane in the first place. Climate change is just aggravating the fact that prisons are not designed to enable incarcerated populations to moderate their own exposure to environmental risk factors such as extreme heat.”The study’s co-authors include Danielle Wood, MIT associate professor of media arts and sciences, and of AeroAstro; and Brent Minchew, MIT associate professor of geophysics in the Department of Earth, Atmospheric and Planetary Sciences; along with Ahmed Diongue ’24, Mia Hines-Shanks of Grinnell College, and Michael Krisch of Columbia University.Environmental intersectionsThe new study is an extension of work carried out at the Media Lab, where Wood leads the Space Enabled research group. The group aims to advance social and environmental justice issues through the use of satellite data and other space-enabled technologies.The group’s motivation to look at heat exposure in prisons came in 2020 when, as co-president of MIT’s Black Graduate Student Union, Ovienmhada took part in community organizing efforts following the murder of George Floyd by Minneapolis police.“We started to do more organizing on campus around policing and reimagining public safety. Through that lens I learned more about police and prisons as interconnected systems, and came across this intersection between prisons and environmental hazards,” says Ovienmhada, who is leading an effort to map the various environmental hazards that prisons, jails, and detention centers face. “In terms of environmental hazards, extreme heat causes some of the most acute impacts for incarcerated people.”She, Wood, and their colleagues set out to use Earth observation data to characterize U.S. prison populations’ vulnerability, or their risk of experiencing negative impacts, from heat.The team first looked through a database maintained by the U.S. Department of Homeland Security that lists the location and boundaries of carceral facilities in the U.S. From the database’s more than 6,000 prisons, jails, and detention centers, the researchers highlighted 1,614 prison-specific facilities, which together incarcerate nearly 1.4 million people, and employ about 337,000 staff.They then looked to Daymet, a detailed weather and climate database that tracks daily temperatures across the United States, at a 1-kilometer resolution. For each of the 1,614 prison locations, they mapped the daily outdoor temperature, for every summer between the years 1990 to 2023, noting that the majority of current state and federal correctional facilities in the U.S. were built by 1990.The team also obtained U.S. Census data on each facility’s demographic and facility-level characteristics, such as prison labor activities and conditions of confinement. One limitation of the study that the researchers acknowledge is a lack of information regarding a prison’s climate control.“There’s no comprehensive public resource where you can look up whether a facility has air conditioning,” Ovienmhada notes. “Even in facilities with air conditioning, incarcerated people may not have regular access to those cooling systems, so our measurements of outdoor air temperature may not be far off from reality.”Heat factorsFrom their analysis, the researchers found that more than 98 percent of all prisons in the U.S. experienced at least 10 days in the summer that were hotter than every previous summer, on average, for a given location. Their analysis also revealed the most heat-exposed prisons, and the prisons that experienced the highest temperatures on average, were mostly in the Southwestern U.S. The researchers note that with the exception of New Mexico, the Southwest is a region where there are no universal air conditioning regulations in state-operated prisons.“States run their own prison systems, and there is no uniformity of data collection or policy regarding air conditioning,” says Wood, who notes that there is some information on cooling systems in some states and individual prison facilities, but the data is sparse overall, and too inconsistent to include in the group’s nationwide study.While the researchers could not incorporate air conditioning data, they did consider other facility-level factors that could worsen the effects that outdoor heat triggers. They looked through the scientific literature on heat, health impacts, and prison conditions, and focused on 17 measurable facility-level variables that contribute to heat-related health problems. These include factors such as overcrowding and understaffing.“We know that whenever you’re in a room that has a lot of people, it’s going to feel hotter, even if there’s air conditioning in that environment,” Ovienmhada says. “Also, staffing is a huge factor. Facilities that don’t have air conditioning but still try to do heat risk-mitigation procedures might rely on staff to distribute ice or water every few hours. If that facility is understaffed or has neglectful staff, that may increase people’s susceptibility to hot days.”The study found that prisons with any of nine of the 17 variables showed statistically significant greater heat exposures than the prisons without those variables. Additionally, if a prison exhibits any one of the nine variables, this could worsen people’s heat risk through the combination of elevated heat exposure and vulnerability. The variables, they say, could help state regulators and activists identify prisons to prioritize for heat interventions.“The prison population is aging, and even if you’re not in a ‘hot state,’ every state has responsibility to respond,” Wood emphasizes. “For instance, areas in the Northwest, where you might expect to be temperate overall, have experienced a number of days in recent years of increasing heat risk. A few days out of the year can still be dangerous, particularly for a population with reduced agency to regulate their own exposure to heat.”This work was supported, in part, by NASA, the MIT Media Lab, and MIT’s Institute for Data, Systems and Society’s Research Initiative on Combatting Systemic Racism. More

  • in

    Liftoff: The Climate Project at MIT takes flight

    The leaders of The Climate Project at MIT met with community members at a campus forum on Monday, helping to kick off the Institute’s major new effort to accelerate and scale up climate change solutions.“The Climate Project is a whole-of-MIT mobilization,” MIT President Sally Kornbluth said in her opening remarks. “It’s designed to focus the Institute’s talent and resources so that we can achieve much more, faster, in terms of real-world impact, from mitigation to adaptation.”The event, “Climate Project at MIT: Launching the Missions,” drew a capacity crowd to MIT’s Samberg Center.While the Climate Project has a number of facets, a central component of the effort consists of its six “missions,” broad areas where MIT researchers will seek to identify gaps in the global climate response that MIT can help fill, and then launch and execute research and innovation projects aimed at those areas. Each mission is led by campus faculty, and Monday’s event represented the first public conversation between the mission directors and the larger campus community.“Today’s event is an important milestone,” said Richard Lester, MIT’s interim vice president for climate and the Japan Steel Industry Professor of Nuclear Science and Engineering, who led the Climate Project’s formation. He praised Kornbluth’s sustained focus on climate change as a leading priority for MIT.“The reason we’re all here is because of her leadership and vision for MIT,” Lester said. “We’re also here because the MIT community — our faculty, our staff, our students — has made it abundantly clear that it wants to do more, much more, to help solve this great problem.”The mission directors themselves emphasized the need for deep community involvement in the project — and that the Climate Project is designed to facilitate researcher-driven enterprise across campus.“There’s a tremendous amount of urgency,” said Elsa Olivetti PhD ’07, director of the Decarbonizing Energy and Industry mission, during an onstage discussion. “We all need to do everything we can, and roll up our sleeves and get it done.” Olivetti, the Jerry McAfee Professor in Engineering, has been a professor of materials science and engineering at the Institute since 2014.“What’s exciting about this is the chance of MIT really meeting its potential,” said Jesse Kroll, co-director of the mission for Restoring the Atmosphere, Protecting the Land and Oceans. Kroll is the Peter de Florez Professor in MIT’s Department of Civil and Environmental Engineering, a professor of chemical engineering, and the director of the Ralph M. Parsons Laboratory.MIT, Kroll noted, features “so much amazing work going on in all these different aspects of the problem. Science, engineering, social science … we put it all together and there is huge potential, a huge opportunity for us to make a difference.”MIT has pledged an initial $75 million to the Climate Project, including $25 million from the MIT Sloan School of Management for a complementary effort, the MIT Climate Policy Center. However, the Institute is anticipating that it will also build new connections with outside partners, whose role in implementing and scaling Climate Project solutions will be critical.Monday’s event included a keynote talk from Brian Deese, currently the MIT Innovation and Climate Impact Fellow and the former director of the White House National Economic Council in the Biden administration.“The magnitude of the risks associated with climate change are extraordinary,” Deese said. However, he added, “these are solvable issues. In fact, the energy transition globally will be the greatest economic opportunity in human history. … It has the potential to actually lift people out of poverty, it has the potential to drive international cooperation, it has the potential to drive innovation and improve lives — if we get this right.”Deese’s remarks centered on a call for the U.S. to develop a current-day climate equivalent of the Marshall Plan, the U.S. initiative to provide aid to Western Europe after World War II. He also suggested three characteristics of successful climate projects, noting that many would be interdisciplinary in nature and would “engage with policy early in the design process” to become feasible.In addition to those features, Deese said, people need to “start and end with very high ambition” when working on climate solutions. He added: “The good thing about MIT and our community is that we, you, have done this before. We’ve got examples where MIT has taken something that seemed completely improbable and made it possible, and I believe that part of what is required of this collective effort is to keep that kind of audacious thinking at the top of our mind.” The MIT mission directors all participated in an onstage discussion moderated by Somini Sengupta, the international climate reporter on the climate team of The New York Times. Sengupta asked the group about a wide range of topics, from their roles and motivations to the political constraints on global climate progress, and more.Andrew Babbin, co-director of the mission for Restoring the Atmosphere, Protecting the Land and Oceans, defined part of the task of the MIT missions as “identifying where those gaps of knowledge are and filling them rapidly,” something he believes is “largely not doable in the conventional way,” based on small-scale research projects. Instead, suggested Babbin, who is the Cecil and Ida Green Career Development Professor in MIT’s Program in Atmospheres, Oceans, and Climate, the collective input of research and innovation communities could help zero in on undervalued approaches to climate action.Some innovative concepts, the mission directors noted, can be tried out on the MIT campus, in an effort to demonstrate how a more sustainable infrastructure and systems can operate at scale.“That is absolutely crucial,” said Christoph Reinhart, director of the Building and Adapting Healthy, Resilient Cities mission, expressing the need to have the campus reach net-zero emissions. Reinhart is the Alan and Terri Spoon Professor of Architecture and Climate and director of MIT’s Building Technology Program in the School of Architecture and Planning.In response to queries from Sengupta, the mission directors affirmed that the Climate Project needs to develop solutions that can work in different societies around the world, while acknowledging that there are many political hurdles to worldwide climate action.“Any kind of quality engaged projects that we’ve done with communities, it’s taken years to build trust. … How you scale that without compromising is the challenge I’m faced with,” said Miho Mazereeuw, director of the Empowering Frontline Communities mission, an associate professor of architecture and urbanism, and director of MIT’s Urban Risk Lab.“I think we will impact different communities in different parts of the world in different ways,” said Benedetto Marelli, an associate professor in MIT’s Department of Civil and Environmental Engineering, adding that it would be important to “work with local communities [and] engage stakeholders, and at the same time, use local brains to solve the problem.” The mission he directs, Wild Cards, is centered on identifying unconventional solutions that are high risk and also high reward.Any climate program “has to be politically feasible, it has to be in separate nations’ self-interest,” said Christopher Knittel, mission director for Inventing New Policy Approaches. In an ever-shifting political world, he added, that means people must “think about not just the policy but the resiliency of the policy.” Knittel is the George P. Shultz Professor and professor of applied economics at the MIT Sloan School of Management, director of the MIT Climate Policy Center, and associate dean for Climate and Sustainability.In all, MIT has more than 300 faculty and senior researchers who, along with their students and staff, are already working on climate issues.Kornbluth, for her part, referred to MIT’s first-year students while discussing the larger motivations for taking concerted action to address the challenges of climate change. It might be easy for younger people to despair over the world’s climate trajectory, she noted, but the best response to that includes seeking new avenues for climate progress.“I understand their anxiety and concern,” Kornbluth said. “But I have no doubt at all that together, we can make a difference. I believe that we have a special obligation to the new students and their entire generation to do everything we can to create a positive change. The most powerful antidote to defeat and despair is collection action.” More

  • in

    3 Questions: The past, present, and future of sustainability science

    It was 1978, over a decade before the word “sustainable” would infiltrate environmental nomenclature, and Ronald Prinn, MIT professor of atmospheric science, had just founded the Advanced Global Atmospheric Gases Experiment (AGAGE). Today, AGAGE provides real-time measurements for well over 50 environmentally harmful trace gases, enabling us to determine emissions at the country level, a key element in verifying national adherence to the Montreal Protocol and the Paris Accord. This, Prinn says, started him thinking about doing science that informed decision making.Much like global interest in sustainability, Prinn’s interest and involvement continued to grow into what would become three decades worth of achievements in sustainability science. The Center for Global Change Science (CGCS) and Joint Program on the Science and Policy Global Change, respectively founded and co-founded by Prinn, have recently joined forces to create the MIT School of Science’s new Center for Sustainability Science and Strategy (CS3), lead by former CGCS postdoc turned MIT professor, Noelle Selin.As he prepares to pass the torch, Prinn reflects on how far sustainability has come, and where it all began.Q: Tell us about the motivation for the MIT centers you helped to found around sustainability.A: In 1990 after I founded the Center for Global Change Science, I also co-founded the Joint Program on the Science and Policy Global Change with a very important partner, [Henry] “Jake” Jacoby. He’s now retired, but at that point he was a professor in the MIT Sloan School of Management. Together, we determined that in order to answer questions related to what we now call sustainability of human activities, you need to combine the natural and social sciences involved in these processes. Based on this, we decided to make a joint program between the CGCS and a center that he directed, the Center for Energy and Environmental Policy Research (CEEPR).It was called the “joint program” and was joint for two reasons — not only were two centers joining, but two disciplines were joining. It was not about simply doing the same science. It was about bringing a team of people together that could tackle these coupled issues of environment, human development and economy. We were the first group in the world to fully integrate these elements together.Q: What has been your most impactful contribution and what effect did it have on the greater public’s overall understanding?A: Our biggest contribution is the development, and more importantly, the application of the Integrated Global System Model [IGSM] framework, looking at human development in both developing countries and developed countries that had a significant impact on the way people thought about climate issues. With IGSM, we were able to look at the interactions among human and natural components, studying the feedbacks and impacts that climate change had on human systems; like how it would alter agriculture and other land activities, how it would alter things we derive from the ocean, and so on.Policies were being developed largely by economists or climate scientists working independently, and we started showing how the real answers and analysis required a coupling of all of these components. We showed, and I think convincingly, that what people used to study independently, must be coupled together, because the impacts of climate change and air pollution affected so many things.To address the value of policy, despite the uncertainty in climate projections, we ran multiple runs of the IGSM with and without policy, with different choices for uncertain IGSM variables. For public communication, around 2005, we introduced our signature Greenhouse Gamble interactive visualization tools; these have been renewed over time as science and policies evolved.Q: What can MIT provide now at this critical juncture in understanding climate change and its impact?A: We need to further push the boundaries of integrated global system modeling to ensure full sustainability of human activity and all of its beneficial dimensions, which is the exciting focus that the CS3 is designed to address. We need to focus on sustainability as a central core element and use it to not just analyze existing policies but to propose new ones. Sustainability is not just climate or air pollution, it’s got to do with human impacts in general. Human health is central to sustainability, and equally important to equity. We need to expand the capability for credibly assessing what the impact policies have not just on developed countries, but on developing countries, taking into account that many places around the world are at artisanal levels of their economies. They cannot be blamed for anything that is changing climate and causing air pollution and other detrimental things that are currently going on. They need our help. That’s what sustainability is in its full dimensions.Our capabilities are evolving toward a modeling system so detailed that we can find out detrimental things about policies even at local levels before investing in changing infrastructure. This is going to require collaboration among even more disciplines and creating a seamless connection between research and decision making; not just for policies enacted in the public sector, but also for decisions that are made in the private sector.  More

  • in

    Creating connection with science communication

    Before completing her undergraduate studies, Sophie Hartley, a student in MIT’s Graduate Program in Science Writing, had an epiphany that was years in the making.“The classes I took in my last undergraduate semester changed my career goals, but it started with my grandfather,” she says when asked about what led her to science writing. She’d been studying comparative human development at the University of Chicago, which Hartley describes as “a combination of psychology and anthropology,” when she took courses in environmental writing and digital science communications.“What if my life could be about learning more of life’s intricacies?” she thought.Hartley’s grandfather introduced her to photography when she was younger, which helped her develop an appreciation for the natural world. Each summer, they would explore tide pools, overgrown forests, and his sprawling backyard. He gave her a camera and encouraged her to take pictures of anything interesting.“Photography was a door into science journalism,” she notes. “It lets you capture the raw beauty of a moment and return to it later.”Lasting impact through storytellingHartley spent time in Wisconsin and Vermont while growing up. That’s when she noticed a divide between rural communities and urban spaces. She wants to tell stories about communities that are less likely to be covered, and “connect them to people in cities who might not otherwise understand what’s happening and why.”People have important roles to play in arresting climate change impacts, improving land management practices and policies, and taking better care of our natural resources, according to Hartley. Challenges related to conservation, land management, and farming affect us all, which is why she believes effective science writing is so important.“We’re way more connected than we believe or understand,” Hartley says. “Climate change is creating problems throughout the entire agricultural supply chain.”For her news writing course, Hartley wrote a story about how flooding in Vermont led to hay shortages, which impacted comestibles as diverse as goat cheese and beef. “When the hay can’t dry, it’s ruined,” she says. “That means cows and goats aren’t eating, which means they can’t produce our beef, milk, and cheese.”Ultimately, Hartley believes her work can build compassion for others while also educating people about how everything we do affects nature and one another.“The connective tissues between humans persist,” she said. “People who live in cities aren’t exempt from rural concerns.”Creating connections with science writingDuring her year-long study in the MIT Graduate Program in Science Writing, Hartley is also busy producing reporting for major news outlets.Earlier this year, Hartley authored a piece for Ars Technica that explored ongoing efforts to develop technology aimed at preventing car collisions with kangaroos. As Hartley reported, given the unique and unpredictable behavior of kangaroos, vehicle animal detection systems have proven ineffective. That’s forced Australian communities to develop alternative solutions, such as virtual fencing, to keep kangaroos away from the roads.In June, Hartley co-produced a story for GBH News with Hannah Richter, a fellow student in the science writing program. They reported on how and why officials at a new Peabody power plant are backtracking on an earlier pledge to run the facility on clean fuels.The story was a collaboration between GBH News and the investigative journalism class in the science writing program. Hartley recalls wonderful experience working with Richter. “We were able to lean on each other’s strengths and learn from each other,” she says. “The piece took a long time to report and write, and it was helpful to have a friend and colleague to continuously motivate me when we would pick it back up after a while.”Co-reporting can also help evenly divide what can sometimes become a massive workload, particularly with deeply, well-researched pieces like the Peabody story. “When there is so much research to do, it’s helpful to have another person to divvy up the work,” she continued. “It felt like everything was stronger and better, from the writing to the fact-checking, because we had two eyes on it during the reporting process.”Hartley’s favorite piece in 2024 focused on beech leaf disease, a deadly pathogen devastating North American forests. Her story, which was later published in The Boston Globe Magazine, followed a team of four researchers racing to discover how the disease works. Beech leaf disease kills swiftly and en masse, leaving space for invasive species to thrive on forest floors. Her interest in land management and natural resources shines through in much of her work.Local news organizations are an endangered species as newsrooms across America shed staff and increasingly rely on aggregated news accounts from larger organizations. What can be lost, however, are opportunities to tell small-scale stories with potentially large-scale impacts. “Small and rural accountability stories are being told less and less,” Hartley notes. “I think it’s important that communities are aware of what is happening around them, especially if it impacts them.” More

  • in

    Study: Rocks from Mars’ Jezero Crater, which likely predate life on Earth, contain signs of water

    In a new study appearing today in the journal AGU Advances, scientists at MIT and NASA report that seven rock samples collected along the “fan front” of Mars’ Jezero Crater contain minerals that are typically formed in water. The findings suggest that the rocks were originally deposited by water, or may have formed in the presence of water.The seven samples were collected by NASA’s Perseverance rover in 2022 during its exploration of the crater’s western slope, where some rocks were hypothesized to have formed in what is now a dried-up ancient lake. Members of the Perseverance science team, including MIT scientists, have studied the rover’s images and chemical analyses of the samples, and confirmed that the rocks indeed contain signs of water, and that the crater was likely once a watery, habitable environment.Whether the crater was actually inhabited is yet unknown. The team found that the presence of organic matter — the starting material for life — cannot be confirmed, at least based on the rover’s measurements. But judging from the rocks’ mineral content, scientists believe the samples are their best chance of finding signs of ancient Martian life once the rocks are returned to Earth for more detailed analysis.“These rocks confirm the presence, at least temporarily, of habitable environments on Mars,” says the study’s lead author, Tanja Bosak, professor of geobiology in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS). “What we’ve found is that indeed there was a lot of water activity. For how long, we don’t know, but certainly for long enough to create these big sedimentary deposits.”What’s more, some of the collected samples may have originally been deposited in the ancient lake more than 3.5 billion years ago — before even the first signs of life on Earth.“These are the oldest rocks that may have been deposited by water, that we’ve ever laid hands or rover arms on,” says co-author Benjamin Weiss, the Robert R. Shrock Professor of Earth and Planetary Sciences at MIT. “That’s exciting, because it means these are the most promising rocks that may have preserved fossils, and signatures of life.”The study’s MIT co-authors include postdoc Eva Scheller, and research scientist Elias Mansbach, along with members of the Perseverance science team.At the front

    NASA’s Perseverance rover collected rock samples from two locations seen in this image of Mars’ Jezero Crater: “Wildcat Ridge” (lower left) and “Skinner Ridge” (upper right).

    Credit: NASA/JPL-Caltech/ASU/MSSS

    Previous item
    Next item

    The new rock samples were collected in 2022 as part of the rover’s Fan Front Campaign — an exploratory phase during which Perseverance traversed Jezero Crater’s western slope, where a fan-like region contains sedimentary, layered rocks. Scientists suspect that this “fan front” is an ancient delta that was created by sediment that flowed with a river and settled into a now bone-dry lakebed. If life existed on Mars, scientists believe that it could be preserved in the layers of sediment along the fan front.In the end, Perseverance collected seven samples from various locations along the fan front. The rover obtained each sample by drilling into the Martian bedrock and extracting a pencil-sized core, which it then sealed in a tube to one day be retrieved and returned to Earth for detailed analysis.

    Composed of multiple images from NASA’s Perseverance Mars rover, this mosaic shows a rocky outcrop called “Wildcat Ridge,” where the rover extracted two rock cores and abraded a circular patch to investigate the rock’s composition.

    Credit: NASA/JPL-Caltech/ASU/MSSS

    Previous item
    Next item

    Prior to extracting the cores, the rover took images of the surrounding sediments at each of the seven locations. The science team then processed the imaging data to estimate a sediment’s average grain size and mineral composition. This analysis showed that all seven collected samples likely contain signs of water, suggesting that they were initially deposited by water.Specifically, Bosak and her colleagues found evidence of certain minerals in the sediments that are known to precipitate out of water.“We found lots of minerals like carbonates, which are what make reefs on Earth,” Bosak says. “And it’s really an ideal material that can preserve fossils of microbial life.”Interestingly, the researchers also identified sulfates in some samples that were collected at the base of the fan front. Sulfates are minerals that form in very salty water — another sign that water was present in the crater at one time — though very salty water, Bosak notes, “is not necessarily the best thing for life.” If the entire crater was once filled with very salty water, then it would be difficult for any form of life to thrive. But if only the bottom of the lake were briny, that could be an advantage, at least for preserving any signs of life that may have lived further up, in less salty layers, that eventually died and drifted down to the bottom.“However salty it was, if there were any organics present, it’s like pickling something in salt,” Bosak says. “If there was life that fell into the salty layer, it would be very well-preserved.”Fuzzy fingerprintsBut the team emphasizes that organic matter has not been confidently detected by the rover’s instruments. Organic matter can be signs of life, but can also be produced by certain geological processes that have nothing to do with living matter. Perseverance’s predecessor, the Curiosity rover, had detected organic matter throughout Mars’ Gale Crater, which scientists suspect may have come from asteroids that made impact with Mars in the past.And in a previous campaign, Perseverance detected what appeared to be organic molecules at multiple locations along Jezero Crater’s floor. These observations were taken by the rover’s Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument, which uses ultraviolet light to scan the Martian surface. If organics are present, they can glow, similar to material under a blacklight. The wavelengths at which the material glows act as a sort of fingerprint for the kind of organic molecules that are present.In Perseverance’s previous exploration of the crater floor, SHERLOC appeared to pick up signs of organic molecules throughout the region, and later, at some locations along the fan front. But a careful analysis, led by MIT’s Eva Scheller, has found that while the particular wavelengths observed could be signs of organic matter, they could just as well be signatures of substances that have nothing to do with organic matter.“It turns out that cerium metals incorporated in minerals actually produce very similar signals as the organic matter,” Scheller says. “When investigated, the potential organic signals were strongly correlated with phosphate minerals, which always contain some cerium.”Scheller’s work shows that the rover’s measurements cannot be interpreted definitively as organic matter.“This is not bad news,” Bosak says. “It just tells us there is not very abundant organic matter. It’s still possible that it’s there. It’s just below the rover’s detection limit.”When the collected samples are finally sent back to Earth, Bosak says laboratory instruments will have more than enough sensitivity to detect any organic matter that might lie within.“On Earth, once we have microscopes with nanometer-scale resolution, and various types of instruments that we cannot staff on one rover, then we can actually attempt to look for life,” she says.This work was supported, in part, by NASA. More

  • in

    Tracking emissions to help companies reduce their environmental footprint

    Amidst a global wave of corporate pledges to decarbonize or reach net-zero emissions, a system for verifying actual greenhouse gas reductions has never been more important. Context Labs, founded by former MIT Sloan Fellow and serial entrepreneur Dan Harple SM ’13, is rising to meet that challenge with an analytics platform that brings more transparency to emissions data.The company’s platform adds context to data from sources like equipment sensors and satellites, provides third-party verification, and records all that information on a blockchain. Context Labs also provides an interactive view of emissions across every aspect of a company’s operations, allowing leaders to pinpoint the dirtiest parts of their business.“There’s an old adage: Unless you measure something, you can’t change it,” says Harple, who is the firm’s CEO. “I think of what we’re doing as an AI-driven digital lens into what’s happening across organizations. Our goal is to help the planet get better, faster.”Context Labs is already working with some of the largest energy companies in the world — including EQT, Williams Companies, and Coterra Energy — to verify emissions reductions. A partnership with Microsoft, announced at last year’s COP28 United Nations climate summit, allows any organization on Microsoft’s Azure cloud to integrate their sensor data into Context Lab’s platform to get a granular view of their environmental impact.Harple says the progress enables more informed sustainability initiatives at scale. He also sees the work as a way to combat overly vague statements about sustainable practices that don’t lead to actual emissions reductions, or what’s known as “greenwashing.”“Just producing data isn’t good enough, and our customers realize that, because they know even if they have good intentions to reduce emissions, no one is going to believe them,” Harple says. “One way to think about our platform is as antigreenwashing insurance, because if you get attacked for your emissions, we unbundle the data like it’s in shrink-wrap and roll it back through time on the blockchain. You can click on it and see exactly where and how it was measured, monitored, timestamped, its serial number, everything. It’s really the gold standard of proof.”An unconventional master’sHarple came to MIT as a serial founder whose companies had pioneered several foundational internet technologies, including real-time video streaming technology still used in applications like Zoom and Netflix, as well as some of the core technology for the popular Chinese microblogging website Weibo.Harple’s introduction to MIT started with a paper he wrote for his venture capital contacts in the U.S. to make the case for investment in the Netherlands, where he was living with his family. The paper caught the attention of MIT Professor Stuart Madnick, the John Norris Maguire Professor of Information Technology at the MIT Sloan School of Management, who suggested Harple come to MIT as a Sloan Fellow to further develop his ideas about what makes a strong innovation ecosystem.Having successfully founded and exited multiple companies, Harple was not a typical MIT student when he began the Sloan Fellows program in 2011. At one point, he held a summit at MIT for a group of leading Dutch entrepreneurs and government officials that included tours of major labs and a meeting with former MIT President L. Rafael Reif.“Everyone was super enamored with MIT, and that kicked off what became a course that I started at MIT called REAL, Regional Entrepreneurial Acceleration Lab,” Harple says. REAL was eventually absorbed by what is now REAP — the Regional Entrepreneurship Acceleration Program, which has worked with communities around the world.Harple describes REAL as a framework vehicle to put his theories on supporting innovation into action. Over his time at MIT, which also included collaborating with the Media Lab, he systematized those theories into what he calls pentalytics, which is a way to measure and predict the resilience of innovation ecosystems.“My sense was MIT should be analytical and data-driven,” Harple says. “The thesis I wrote was a framework for AI-driven network graph analytics. So, you can model things using analytics, and you can use AI to do predictive analytics to see where the innovation ecosystem is going to thrive.”Once Harple’s pentalytics theory was established, he wanted to put it to the test with a company. His initial idea for Context Labs was to build a verification platform to combat fake news, deepfakes, and other misinformation on the internet. Around 2018, Harple met climate investor Jeremy Grantham, who he says helped him realize the most important data are about the planet. Harple began to believe that U.S. Environmental Protection Agency (EPA) emissions estimates for things like driving a car or operating an oil rig were just that — estimates — and left room for improvement.“Our approach was very MIT-ish,” Harple says. “We said, ‘Let’s, measure it and let’s monitor it, and then let’s contextualize that data so you can never go back and say they faked it. I think there’s a lot of fakery that’s happened, and that’s why the voluntary carbon markets cratered in the last year. Our view is they cratered because the data wasn’t empirical enough.”Context Labs’ solution starts with a technology platform it calls Immutably that continuously combines disparate data streams, encrypts that information, and records it on a blockchain. Immutably also verifies the information with one or more third parties. (Context Labs has partnered with the global accounting firm KPMG.)On top of Immutably, Context Labs has built applications, including a product called Decarbonization-as-a-Service (DaaS), which uses Immutably’s data to give companies a digital twin of their entire operations. Customers can use DaaS to explore the emissions of their assets and create a certificate of verified CO2-equivalent emissions, which can be used in carbon credit markets.Putting emissions data into contextContext Labs is working with oil and gas companies, utilities, data centers, and large industrial operators, some using the platform to analyze more than 3 billion data points each day. For instance, EQT, the largest natural gas producer in the U.S., uses Context Labs to verify its lower-emission products and create carbon credits. Other customers include the nonprofits Rocky Mountain Institute and the Environmental Defense Fund.“I often get asked how big the total addressable market is,” Harple says. “My view is it’s the largest market in history. Why? Because every country needs a decarbonization plan, along with instrumentation and a digital platform to execute, as does every company.”With its headquarters in Kendall Square in Cambridge, Massachusetts, Context Labs is also serving as a test for Harple’s pentalytics theory for innovation ecosystems. It also has operations in Houston and Amsterdam.“This company is a living lab for pentalytics,” Harple says. “I believe Kendall Square 1.0 was factory buildings, Kendall Square 2.0 is biotech, and Kendall Square 3.0 will be climate tech.” More

  • in

    MIT School of Science launches Center for Sustainability Science and Strategy

    The MIT School of Science is launching a center to advance knowledge and computational capabilities in the field of sustainability science, and support decision-makers in government, industry, and civil society to achieve sustainable development goals. Aligned with the Climate Project at MIT, researchers at the MIT Center for Sustainability Science and Strategy will develop and apply expertise from across the Institute to improve understanding of sustainability challenges, and thereby provide actionable knowledge and insight to inform strategies for improving human well-being for current and future generations.Noelle Selin, professor at MIT’s Institute for Data, Systems and Society and the Department of Earth, Atmospheric and Planetary Sciences, will serve as the center’s inaugural faculty director. C. Adam Schlosser and Sergey Paltsev, senior research scientists at MIT, will serve as deputy directors, with Anne Slinn as executive director.Incorporating and succeeding both the Center for Global Change Science and Joint Program on the Science and Policy of Global Change while adding new capabilities, the center aims to produce leading-edge research to help guide societal transitions toward a more sustainable future. Drawing on the long history of MIT’s efforts to address global change and its integrated environmental and human dimensions, the center is well-positioned to lead burgeoning global efforts to advance the field of sustainability science, which seeks to understand nature-society systems in their full complexity. This understanding is designed to be relevant and actionable for decision-makers in government, industry, and civil society in their efforts to develop viable pathways to improve quality of life for multiple stakeholders.“As critical challenges such as climate, health, energy, and food security increasingly affect people’s lives around the world, decision-makers need a better understanding of the earth in its full complexity — and that includes people, technologies, and institutions as well as environmental processes,” says Selin. “Better knowledge of these systems and how they interact can lead to more effective strategies that avoid unintended consequences and ensure an improved quality of life for all.”    Advancing knowledge, computational capability, and decision supportTo produce more precise and comprehensive knowledge of sustainability challenges and guide decision-makers to formulate more effective strategies, the center has set the following goals:Advance fundamental understanding of the complex interconnected physical and socio-economic systems that affect human well-being. As new policies and technologies are developed amid climate and other global changes, they interact with environmental processes and institutions in ways that can alter the earth’s critical life-support systems. Fundamental mechanisms that determine many of these systems’ behaviors, including those related to interacting climate, water, food, and socio-economic systems, remain largely unknown and poorly quantified. Better understanding can help society mitigate the risks of abrupt changes and “tipping points” in these systems.Develop, establish and disseminate new computational tools toward better understanding earth systems, including both environmental and human dimensions. The center’s work will integrate modeling and data analysis across disciplines in an era of increasing volumes of observational data. MIT multi-system models and data products will provide robust information to inform decision-making and shape the next generation of sustainability science and strategy.Produce actionable science that supports equity and justice within and across generations. The center’s research will be designed to inform action associated with measurable outcomes aligned with supporting human well-being across generations. This requires engaging a broad range of stakeholders, including not only nations and companies, but also nongovernmental organizations and communities that take action to promote sustainable development — with special attention to those who have historically borne the brunt of environmental injustice.“The center’s work will advance fundamental understanding in sustainability science, leverage leading-edge computing and data, and promote engagement and impact,” says Selin. “Our researchers will help lead scientists and strategists across the globe who share MIT’s commitment to mobilizing knowledge to inform action toward a more sustainable world.”Building a better world at MITBuilding on existing MIT capabilities in sustainability, science, and strategy, the center aims to: focus research, education, and outreach under a theme that reflects a comprehensive state of the field and international research directions, fostering a dynamic community of students, researchers, and faculty;raise the visibility of sustainability science at MIT, emphasizing links between science and action, in the context of existing Institute goals and other efforts on climate and sustainability, and in a way that reflects the vital contributions of a range of natural and social science disciplines to understanding human-environment systems; andre-emphasize MIT’s long-standing expertise in integrated systems modeling while leveraging the Institute’s concurrent leading-edge strengths in data and computing, establishing leadership that harnesses recent innovations, including those in machine learning and artificial intelligence, toward addressing the science challenges of global change and sustainability.“The Center for Sustainability Science and Strategy will provide the necessary synergy for our MIT researchers to develop, deploy, and scale up serious solutions to climate change and other critical sustainability challenges,” says Nergis Mavalvala, the Curtis and Kathleen Marble Professor of Astrophysics and dean of the MIT School of Science. “With Professor Selin at its helm, the center will also ensure that these solutions are created in concert with the people who are directly affected now and in the future.”The center builds on more than three decades of achievements by the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change, both of which were directed or co-directed by professor of atmospheric science Ronald Prinn. More

  • in

    Scientists find a human “fingerprint” in the upper troposphere’s increasing ozone

    Ozone can be an agent of good or harm, depending on where you find it in the atmosphere. Way up in the stratosphere, the colorless gas shields the Earth from the sun’s harsh ultraviolet rays. But closer to the ground, ozone is a harmful air pollutant that can trigger chronic health problems including chest pain, difficulty breathing, and impaired lung function.And somewhere in between, in the upper troposphere — the layer of the atmosphere just below the stratosphere, where most aircraft cruise — ozone contributes to warming the planet as a potent greenhouse gas.There are signs that ozone is continuing to rise in the upper troposphere despite efforts to reduce its sources at the surface in many nations. Now, MIT scientists confirm that much of ozone’s increase in the upper troposphere is likely due to humans.In a paper appearing today in the journal Environmental Science and Technology, the team reports that they detected a clear signal of human influence on upper tropospheric ozone trends in a 17-year satellite record starting in 2005.“We confirm that there’s a clear and increasing trend in upper tropospheric ozone in the northern midlatitudes due to human beings rather than climate noise,” says study lead author Xinyuan Yu, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).“Now we can do more detective work and try to understand what specific human activities are leading to this ozone trend,” adds co-author Arlene Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences.The study’s MIT authors include Sebastian Eastham and Qindan Zhu, along with Benjamin Santer at the University of California at Los Angeles, Gustavo Correa of Columbia University, Jean-François Lamarque at the National Center for Atmospheric Research, and Jerald Zimeke at NASA Goddard Space Flight Center.Ozone’s tangled webUnderstanding ozone’s causes and influences is a challenging exercise. Ozone is not emitted directly, but instead is a product of “precursors” — starting ingredients, such as nitrogen oxides and volatile organic compounds (VOCs), that react in the presence of sunlight to form ozone. These precursors are generated from vehicle exhaust, power plants, chemical solvents, industrial processes, aircraft emissions, and other human-induced activities.Whether and how long ozone lingers in the atmosphere depends on a tangle of variables, including the type and extent of human activities in a given area, as well as natural climate variability. For instance, a strong El Niño year could nudge the atmosphere’s circulation in a way that affects ozone’s concentrations, regardless of how much ozone humans are contributing to the atmosphere that year.Disentangling the human- versus climate-driven causes of ozone trend, particularly in the upper troposphere, is especially tricky. Complicating matters is the fact that in the lower troposphere — the lowest layer of the atmosphere, closest to ground level — ozone has stopped rising, and has even fallen in some regions at northern midlatitudes in the last few decades. This decrease in lower tropospheric ozone is mainly a result of efforts in North America and Europe to reduce industrial sources of air pollution.“Near the surface, ozone has been observed to decrease in some regions, and its variations are more closely linked to human emissions,” Yu notes. “In the upper troposphere, the ozone trends are less well-monitored but seem to decouple with those near the surface, and ozone is more easily influenced by climate variability. So, we don’t know whether and how much of that increase in observed ozone in the upper troposphere is attributed to humans.”A human signal amid climate noiseYu and Fiore wondered whether a human “fingerprint” in ozone levels, caused directly by human activities, could be strong enough to be detectable in satellite observations in the upper troposphere. To see such a signal, the researchers would first have to know what to look for.For this, they looked to simulations of the Earth’s climate and atmospheric chemistry. Following approaches developed in climate science, they reasoned that if they could simulate a number of possible climate variations in recent decades, all with identical human-derived sources of ozone precursor emissions, but each starting with a slightly different climate condition, then any differences among these scenarios should be due to climate noise. By inference, any common signal that emerged when averaging over the simulated scenarios should be due to human-driven causes. Such a signal, then, would be a “fingerprint” revealing human-caused ozone, which the team could look for in actual satellite observations.With this strategy in mind, the team ran simulations using a state-of-the-art chemistry climate model. They ran multiple climate scenarios, each starting from the year 1950 and running through 2014.From their simulations, the team saw a clear and common signal across scenarios, which they identified as a human fingerprint. They then looked to tropospheric ozone products derived from multiple instruments aboard NASA’s Aura satellite.“Quite honestly, I thought the satellite data were just going to be too noisy,” Fiore admits. “I didn’t expect that the pattern would be robust enough.”But the satellite observations they used gave them a good enough shot. The team looked through the upper tropospheric ozone data derived from the satellite products, from the years 2005 to 2021, and found that, indeed, they could see the signal of human-caused ozone that their simulations predicted. The signal is especially pronounced over Asia, where industrial activity has risen significantly in recent decades and where abundant sunlight and frequent weather events loft pollution, including ozone and its precursors, to the upper troposphere.Yu and Fiore are now looking to identify the specific human activities that are leading to ozone’s increase in the upper troposphere.“Where is this increasing trend coming from? Is it the near-surface emissions from combusting fossil fuels in vehicle engines and power plants? Is it the aircraft that are flying in the upper troposphere? Is it the influence of wildland fires? Or some combination of all of the above?” Fiore says. “Being able to separate human-caused impacts from natural climate variations can help to inform strategies to address climate change and air pollution.”This research was funded, in part, by NASA. More