1.Prüss-Ustün, A. et al. Burden of disease from inadequate water, sanitation and hygiene in low- and middle-income settings: a retrospective analysis of data from 145 countries. Trop. Med. Int. Heal. 19, 894–905 (2014).Article
Google Scholar
2.WHO & UNICEF. Progress on Drinking Water, Sanitation and Hygiene in Households 2000-2020: Five Years into the SDGs (WHO & UNICEF, 2021).3.World Health Organization. Guidelines for Drinking-water Quality 4th edn. (WHO, 2011) https://doi.org/10.1016/S1462-0758(00)00006-6.4.Gil, M. I., Gómez-López, V. M., Hung, Y.-C. & Allende, A. Potential of electrolyzed water as an alternative disinfectant agent in the fresh-cut industry. Food Bioprocess Technol. 8, 1336–1348 (2015).CAS
Article
Google Scholar
5.Drinking Water Inspectorate. Guidance on the implementation of the water supply (water quality) regulations 2000 (as amended) in England. Drinking Water Inspectorate vol. 2000 (Drinking Water Inspectorate, 2012).6.Chowdhury, S. Trihalomethanes in drinking water: effect of natural organic matter distribution. Water SA 39, 1–8 (2013).CAS
Google Scholar
7.Grunwald, A., Nikolaou, A. D., Golfinopoulos, S. K. & Lekkas, T. D. Formation of organic by-products during chlorination of natural waters. J. Environ. Monit. 4, 910–916 (2002).Article
Google Scholar
8.Clayton, G. E., Thorn, R. M. S. & Reynolds, D. M. Comparison of trihalomethane formation using chlorine-based disinfectants within a model system; applications within point-of-use drinking water treatment. Front. Environ. Sci. 7, 35 (2019).Article
Google Scholar
9.Malliarou, E., Collins, C., Graham, N. & Nieuwenhuijsen, M. J. Haloacetic acids in drinking water in the United Kingdom. Water Res. 39, 2722–2730 (2005).CAS
Article
Google Scholar
10.World Health Organization. Trihalomethanes in Drinking-water (World Health Organization, 2005).11.Fawell, J. & Nieuwenhuijsen, M. J. Contaminants in drinking water. Br. Med. Bull. 68, 199–208 (2003).CAS
Article
Google Scholar
12.Carratalà, A. et al. Solar disinfection of viruses in polyethylene terephthalate bottles. Appl. Environ. Microbiol. 82, 279–288 (2016).Article
CAS
Google Scholar
13.Zhu, J., Fan, X. J., Tao, Y., Wei, D. Q. & Zhang, X. H. Study on an integrated process combining ozonation with ceramic ultra-filtration for decentralized supply of drinking water. J. Environ. Sci. Heal. 49, 1296–1303 (2014).CAS
Article
Google Scholar
14.Glaze, W. H., Kang, J.-W. & Chapin, D. H. The chemistry of water treatment processes involving ozone, hydrogen peroxide and ultraviolet radiation. Ozone Sci. Eng. 9, 335–352 (1987).CAS
Article
Google Scholar
15.McGuire, M. J. Drinking Water Chlorination (American Chemistry Council, 2016). https://chlorine.americanchemistry.com/Chlorine-Benefits/Safe-Water/Disinfection-Practices.pdf 10.1002/(SICI)1521-401X(199902)27:23.3.CO;2-1.16.Han, Q. et al. Removal of foodborne pathogen biofilms by acidic electrolyzed water. Front. Microbiol. 8, 1–12 (2017).
Google Scholar
17.Thorn, R. M. S., Pendred, J. & Reynolds, D. M. Assessing the antimicrobial potential of aerosolised electrochemically activated solutions (ECAS) for reducing the microbial bio-burden on fresh food produce held under cooled or cold storage conditions. Food Microbiol. 68, 41–50 (2017).CAS
Article
Google Scholar
18.Kirkpatrick, R. D. The mechanism of antimicrobial action of Electro-Chemically Activated (ECA) water and its healthcare applications (University of Pretoria, 2009).19.Thorn, R. M. S., Lee, S. W. H., Robinson, G. M., Greenman, J. & Reynolds, D. M. Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments. Eur. J. Clin. Microbiol. Infect. Dis. 31, 641–653 (2012).CAS
Article
Google Scholar
20.Ghebremichael, K., Muchelemba, E., Petrusevski, B. & Amy, G. Electrochemically activated water as an alternative to chlorine for decentralized disinfection. J. Water Supply.: Res. Technol.—Aqua 60, 210–218 (2011).CAS
Article
Google Scholar
21.Venczel, L. V., Likirdopulos, C. A., Robinson, C. E. & Sobsey, M. D. Inactivation of enteric microbes in water by electro-chemical oxidant from brine (NaCl) and free chlorine. Water Sci. Technol. 50, 141–146 (2004).CAS
Article
Google Scholar
22.Kerwick, M. I., Reddy, S. M., Chamberlain, A. H. L. & Holt, D. M. Electrochemical disinfection, an environmentally acceptable method of drinking water disinfection? Electrochim. Acta 50, 5270–5277 (2005).CAS
Article
Google Scholar
23.Liao, L. B., Chen, W. M. & Xiao, X. M. The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water. J. Food Eng. 78, 1326–1332 (2007).CAS
Article
Google Scholar
24.Robinson, G. M., Lee, S. W.-H., Greenman, J., Salisbury, V. C. & Reynolds, D. M. Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Lett. Appl. Microbiol. 50, 289–294 (2010).CAS
Article
Google Scholar
25.Cherney, D. P., Duirk, S. E., Tarr, J. C. & Collette, T. W. Monitoring the speciation of aqueous free chlorine from pH 1 to 12 with Raman spectroscopy to determine the identity of the potent low-pH oxidant. Appl. Spectrosc. 60, 764–772 (2006).CAS
Article
Google Scholar
26.Nakagawara, S. et al. Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Jpn. Soc. Anal. Sci. 14, 691–698 (1998).CAS
Article
Google Scholar
27.Jeong, J., Kim, J. Y. & Yoon, J. The role of reactive oxygen species in the electrochemical inactivation of microorganisms. Environ. Sci. Technol. 40, 3–4 (2006).Article
Google Scholar
28.Martínez-Huitle, C. A. A., Brillas, E., Martinez-Huitle, C. A. & Brillas, E. Electrochemical alternatives for drinking water disinfection. Angew. Chem. Int. Ed. 47, 1998–2005 (2008).Article
CAS
Google Scholar
29.Inoue, Y. et al. Trial of electrolyzed strong acid aqueous solution lavage in the treatment of peritonitis and intraperitoneal abscess. Artif. Organs 21, 28–31 (1997).CAS
Article
Google Scholar
30.Bernstein, R. et al. ‘Should I stay or should I go?’ Bacterial attachment vs biofilm formation on surface-modified membranes. Biofouling 30, 367–376 (2014).CAS
Article
Google Scholar
31.Schwering, M., Song, J., Louie, M., Turner, R. J. & Ceri, H. Multi-species biofilms defined from drinking water microorganisms provide increased protection against chlorine disinfection. Biofouling 29, 917–928 (2013).CAS
Article
Google Scholar
32.O’Toole, G., Kaplan, H. B. & Kolter, R. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79 (2000).Article
Google Scholar
33.Flemming, H.-C. C. et al. Biofilms: an emergent form of bacterial life. Nat. Rev. Microbiol. 14, 563–575 (2016).CAS
Article
Google Scholar
34.Ashbolt, N. J. Microbial contamination of drinking water and human health from community water systems. Curr. Environ. Heal. Rep. 2, 95–106 (2015).CAS
Article
Google Scholar
35.Skraber, S., Schijven, J., Gantzer, C. & de Roda Husman, A. M. Pathogenic viruses in drinking-water biofilms: a public health risk? Biofilms 2, 105–117 (2005).Article
Google Scholar
36.Crozes, G. F., Jacangelo, J. G., Anselme, C. & Laîné, J. M. Impact of ultrafiltration operating conditions on membrane irreversible fouling. J. Memb. Sci. 124, 63–76 (1997).CAS
Article
Google Scholar
37.Sillanpää, M. In Natural Organic Matter in Water 1–15 (Butterworth-Heinemann, 2015). https://doi.org/10.1016/B978-0-12-801503-2.00001-X.38.Wingender, J. & Flemming, H.-C. Biofilms in drinking water and their role as reservoir for pathogens. Int. J. Hyg. Environ. Health 214, 417–423 (2011).Article
Google Scholar
39.De Beer, D., Srinivasan, R. & Stewart, P. S. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60, 4339–4344 (1994).Article
Google Scholar
40.Stewart, P. S., Rayner, J., Roe, F. & Rees, W. M. Biofilm penetration and disinfection efficacy of alkaline hypochlorite and chlorosulfamates. J. Appl. Microbiol. 91, 525–532 (2001).CAS
Article
Google Scholar
41.British Standards Institution. Chemical disinfectants and antiseptics—quantitative suspension test for the evaluation of basic bactericidal activity of chemical disinfectants and antiseptics—test method and requirements (phase 1). European Committee for Standardization vol. 3 http://www.cen.eu/cen/Sectors/TechnicalCommitteesWorkshops/CENTechnicalCommittees/Pages/Standards.aspx?param=6197&title=Chemical disinfectants and antiseptics (2005).42.British Standards Institution. Chemical disinfectants and antiseptics—Quantitative suspension test for the evaluation of bactericidal activity of chemical disinfectants and antiseptics used in food, industrial, domestic and institutional areas—Test method and requirements (phase 2, European Committee for Standardization vol. 3 http://www.cen.eu/cen/Sectors/TechnicalCommitteesWorkshops/CENTechnicalCommittees/Pages/Standards.aspx?param=6197&title=Chemical disinfectants and antiseptics (2009).43.Clayton, G. E., Thorn, R. M. S. & Reynolds, D. M. Development of a novel off-grid drinking water production system integrating electrochemically activated solutions and ultrafiltration membranes. J. Water Process Eng. 30, (2019).44.Loret, J. F. et al. Comparison of disinfectants for biofilm, protozoa and Legionella control. J. Water Health 3, 423–433 (2005).CAS
Article
Google Scholar
45.Diao, H., Li, X., Gu, J., Shi, H. & Xie, Z. Electron microscopic investigation of the bactericidal action of electrochemical disinfection in comparison with chlorination, ozonation and Fenton reaction. Process Biochem. 39, 1421–1426 (2004).CAS
Article
Google Scholar
46.Clasen, T. & Edmondson, P. Sodium dichloroisocyanurate (NaDCC) tablets as an alternative to sodium hypochlorite for the routine treatment of drinking water at the household level. Int. J. Hyg. Environ. Health 209, 173–181 (2006).CAS
Article
Google Scholar
47.Fukuzaki, S. Mechanisms of actions of sodium hypochlorite in cleaning and disinfection processes. Biocontrol Sci. 11, 147–157 (2006).CAS
Article
Google Scholar
48.Bloomfield, S. F., Arthur, M., Looney, E., Begun, K. & Patel, H. Comparative testing of disinfectant and antiseptic products using proposed European suspension testing methods. Lett. Appl. Microbiol. 13, 233–237 (1991).CAS
Article
Google Scholar
49.European Chemicals Agency. Regulation (EU) No 528/2012 concerning the making available on the market and use of biocidal products. Active chlorine released from sodium hypochloriteProduct-type 4 (Food and feed area). https://echa.europa.eu/documents/10162/3b7a78a9-9bda-f684-a088-418dc4a56adb (2017).50.Oomori, T., Oka, T., Inuta, T. & Arata, Y. The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal. Sci. 16, 365–369 (2005).Article
Google Scholar
51.Ayebah, B., Hung, Y.-C., Kim, C. & Frank, J. F. Efficacy of electrolyzed water in the inactivation of planktonic and biofilm Listeria monocytogenes in the presence of organic matter. J. Food Prot. 69, 2143–2150 (2006).Article
Google Scholar
52.Robinson, G., Thorn, R. & Reynolds, D. The effect of long-term storage on the physiochemical and bactericidal properties of electrochemically activated solutions. Int. J. Mol. Sci. 14, 457–469 (2013).CAS
Article
Google Scholar
53.Ignatov, I. et al. The evaluation of the mathematical model of interaction of electrochemically activated water solutions (anolyte and catholyte) with water. Eur. Rev. Chem. Res. 4, 72–86 (2015).Article
Google Scholar
54.Cotruvo, J., Giddings, M., Jackson, P., Magara, Y. & Ohanian, E. Sodium Dichloroisocyanurate in Drinking-water (2007).55.Xuan, X. et al. Storage stability of slightly acidic electrolyzed water and circulating electrolyzed water and their property changes after application. J. Food Sci. 81, E610–E617 (2016).CAS
Article
Google Scholar
56.Richards, J. J. & Melander, C. Controlling bacterial biofilms. ChemBioChem 10, 2287–2294 (2009).CAS
Article
Google Scholar
57.Stewart, P. S. In Microbial Biofilms (eds. Mukherjee, P. K., Ghannoum, M., Whiteley, M. & Parsek, M.) 269–286 (American Society of Microbiology, 2015). https://doi.org/10.1128/9781555817466.58.Kim, C., Hung, Y.-C., Bracket, R. E. & Frank, J. F. Inactivation of listeria monocytogenes biofilms by electrolyzed oxidizing water. J. Food Process. Preserv. 25, 91–100 (2011).Article
Google Scholar
59.Flemming, H. C. & Wingender, J. The biofilm matrix. Nat. Rev. Microbiol. 8, 623–633 (2010).CAS
Article
Google Scholar
60.Zinkevich, V., Beech, I. B., Tapper, R. & Bogdarina, I. The effect of super-oxidized water on Escherichia coli. J. Hosp. Infect. 46, 153–156 (2000).CAS
Article
Google Scholar
61.Cloete, T. E., Thantsha, M. S., Maluleke, M. R. & Kirkpatrick, R. The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analysis. J. Appl. Microbiol. 107, 379–384 (2009).CAS
Article
Google Scholar
62.Ding, T., Oh, D. H. & Liu, D. Electrolyzed Water in Food: Fundamentals and Applications (2019). https://doi.org/10.1007/978-981-13-3807-6.63.Hall-Stoodley, L., Costerton, J. W. & Stoodley, P. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2, 95–108 (2004).CAS
Article
Google Scholar
64.BioSurface Technologies Corp. CDC Biofilm Reactor Operator’ s Manual (BioSurface Technologies Corp.) More