More stories

  • in

    Matthew Shoulders named head of the Department of Chemistry

    Matthew D. Shoulders, the Class of 1942 Professor of Chemistry, a MacVicar Faculty Fellow, and an associate member of the Broad Institute of MIT and Harvard, has been named head of the MIT Department of Chemistry, effective Jan. 16, 2026. “Matt has made pioneering contributions to the chemistry research community through his research on mechanisms of proteostasis and his development of next-generation techniques to address challenges in biomedicine and agriculture,” says Nergis Mavalvala, dean of the MIT School of Science and the Curtis and Kathleen Marble Professor of Astrophysics. “He is also a dedicated educator, beloved by undergraduates and graduates alike. I know the department will be in good hands as we double down on our commitment to world-leading research and education in the face of financial headwinds.”Shoulders succeeds Troy Van Voorhis, the Robert T. Haslam and Bradley Dewey Professor of Chemistry, who has been at the helm since October 2019.“I am tremendously grateful to Troy for his leadership the past six years, building a fantastic community here in our department. We face challenges, but also many exciting opportunities, as a department in the years to come,” says Shoulders. “One thing is certain: Chemistry innovations are critical to solving pressing global challenges. Through the research that we do and the scientists we train, our department has a huge role to play in shaping the future.”Shoulders studies how cells fold proteins, and he develops ​and applies novel protein engineering techniques to challenges in biotechnology. His work across chemistry and biochemistry fields including proteostasis, extracellular matrix biology, virology, evolution, and synthetic biology is yielding not just important insights into topics like how cells build healthy tissues and how proteins evolve, but also influencing approaches to disease therapy and biotechnology development.“Matt is an outstanding researcher whose work touches on fundamental questions about how the cell machinery directs the synthesis and folding of proteins. His discoveries about how that machinery breaks down as a result of mutations or in response to stress has a fundamental impact on how we think about and treat human diseases,” says Van Voorhis.In one part of Matt’s current research program, he is studying how protein folding systems in cells — known as chaperones — shape the evolution of their clients. Amongst other discoveries, his lab has shown that viral pathogens hijack human chaperones to enable their rapid evolution and escape from host immunity. In related recent work, they have discovered that these same chaperones can promote access to malignancy-driving mutations in tumors. Beyond fundamental insights into evolutionary biology, these findings hold potential to open new therapeutic strategies to target cancer and viral infections.“Matt’s ability to see both the details and the big picture makes him an outstanding researcher and a natural leader for the department,” says Timothy Swager, the John D. MacArthur Professor of Chemistry. “MIT Chemistry can only benefit from his dedication to understanding and addressing the parts and the whole.” Shoulders also leads a food security project through the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Shoulders, along with MIT Research Scientist Robbie Wilson, assembled an interdisciplinary team based at MIT to enhance climate resilience in agriculture by improving one of the most inefficient aspects of photosynthesis, the carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk, high-reward MIT Grand Challenge project in 2023, and it has received further support from federal research agencies and the Grantham Foundation for the Protection of the Environment. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists, creating a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team is making a concerted effort using state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”In addition to his research contributions, Shoulders has taught multiple classes for Course V, including 5.54 (Advances in Chemical Biology) and 5.111 (Principles of Chemical Science), along with a number of other key chemistry classes. His contributions to a 5.111 “bootcamp” through the MITx platform served to address gaps in the classroom curriculum by providing online tools to help undergraduate students better grasp the material in the chemistry General Institute Requirement (GIR). His development of Guided Learning Demonstrations to support first-year chemistry courses at MIT has helped bring the lab to the GIR, and also contributed to the popularity of 5.111 courses offered regularly via MITx.“I have had the pleasure of teaching with Matt on several occasions, and he is a fantastic educator. He is an innovator both inside and outside the classroom and has an unwavering commitment to his students’ success,” says Van Voorhis of Shoulders, who was named a 2022 MacVicar Faculty Fellow, and who received a Committed to Caring award through the Office of Graduate Education.Shoulders also founded the MIT Homeschool Internship Program for Science and Technology, which brings high school students to campus for paid summer research experiences in labs across the Institute.He is a founding member of the Department of Chemistry’s Quality of Life Committee and chair for the last six years, helping to improve all aspects of opportunity, professional development, and experience in the department: “countless changes that have helped make MIT a better place for all,” as Van Voorhis notes, including creating a peer mentoring program for graduate students and establishing universal graduate student exit interviews to collect data for department-wide assessment and improvement.At the Institute level, Shoulders has served on the Committee on Graduate Programs, Committee on Sexual Misconduct Prevention and Response (in which he co-chaired the provost’s working group on the Faculty and Staff Sexual Misconduct Survey), and the Committee on Assessment of Biohazards and Embryonic Stem Cell Research Oversight, among other roles.Shoulders graduated summa cum laude from Virginia Tech in 2004, earning a BS in chemistry with a minor in biochemistry. He earned a PhD in chemistry at the University of Wisconsin at Madison in 2009 under Professor Ronald Raines. Following an American Cancer Society Postdoctoral Fellowship at Scripps Research Institute, working with professors Jeffery Kelly and Luke Wiseman, Shoulders joined the MIT Department of Chemistry faculty as an assistant professor in 2012. Shoulders also serves as an associate member of the Broad Institute and an investigator at the Center for Musculoskeletal Research at Massachusetts General Hospital.Among his many awards, Shoulders has received a NIH Director’s New Innovator Award under the NIH High-Risk, High-Reward Research Program; an NSF CAREER Award; an American Cancer Society Research Scholar Award; the Camille Dreyfus Teacher-Scholar Award; and most recently the Ono Pharma Foundation Breakthrough Science Award. More

  • in

    A cysteine-rich diet may promote regeneration of the intestinal lining, study suggests

    A diet rich in the amino acid cysteine may have rejuvenating effects in the small intestine, according to a new study from MIT. This amino acid, the researchers discovered, can turn on an immune signaling pathway that helps stem cells to regrow new intestinal tissue.This enhanced regeneration may help to heal injuries from radiation, which often occur in patients undergoing radiation therapy for cancer. The research was conducted in mice, but if future research shows similar results in humans, then delivering elevated quantities of cysteine, through diet or supplements, could offer a new strategy to help damaged tissue heal faster, the researchers say.“The study suggests that if we give these patients a cysteine-rich diet or cysteine supplementation, perhaps we can dampen some of the chemotherapy or radiation-induced injury,” says Omer Yilmaz, director of the MIT Stem Cell Initiative, an associate professor of biology at MIT, and a member of MIT’s Koch Institute for Integrative Cancer Research. “The beauty here is we’re not using a synthetic molecule; we’re exploiting a natural dietary compound.”While previous research has shown that certain types of diets, including low-calorie diets, can enhance intestinal stem cell activity, the new study is the first to identify a single nutrient that can help intestinal cells to regenerate.Yilmaz is the senior author of the study, which appears today in Nature. Koch Institute postdoc Fangtao Chi is the paper’s lead author.Boosting regenerationIt is well-established that diet can affect overall health: High-fat diets can lead to obesity, diabetes, and other health problems, while low-calorie diets have been shown to extend lifespans in many species. In recent years, Yilmaz’s lab has investigated how different types of diets influence stem cell regeneration, and found that high-fat diets, as well as short periods of fasting, can enhance stem cell activity in different ways.“We know that macro diets such as high-sugar diets, high-fat diets, and low-calorie diets have a clear impact on health. But at the granular level, we know much less about how individual nutrients impact stem cell fate decisions, as well as tissue function and overall tissue health,” Yilmaz says.In their new study, the researchers began by feeding mice a diet high in one of 20 different amino acids, the building blocks of proteins. For each group, they measured how the diet affected intestinal stem cell regeneration. Among these amino acids, cysteine had the most dramatic effects on stem cells and progenitor cells (immature cells that differentiate into adult intestinal cells).Further studies revealed that cysteine initiates a chain of events leading to the activation of a population of immune cells called CD8 T cells. When cells in the lining of the intestine absorb cysteine from digested food, they convert it into CoA, a cofactor that is released into the mucosal lining of the intestine. There, CD8 T cells absorb CoA, which stimulates them to begin proliferating and producing a cytokine called IL-22.IL-22 is an important player in the regulation of intestinal stem cell regeneration, but until now, it wasn’t known that CD8 T cells can produce it to boost intestinal stem cells. Once activated, those IL-22-releasing T cells are primed to help combat any kind of injury that could occur within the intestinal lining.“What’s really exciting here is that feeding mice a cysteine-rich diet leads to the expansion of an immune cell population that we typically don’t associate with IL-22 production and the regulation of intestinal stemness,” Yilmaz says. “What happens in a cysteine-rich diet is that the pool of cells that make IL-22 increases, particularly the CD8 T-cell fraction.”These T cells tend to congregate within the lining of the intestine, so they are already in position when needed. The researchers found that the stimulation of CD8 T cells occurred primarily in the small intestine, not in any other part of the digestive tract, which they believe is because most of the protein that we consume is absorbed by the small intestine.Healing the intestineIn this study, the researchers showed that regeneration stimulated by a cysteine-rich diet could help to repair radiation damage to the intestinal lining. Also, in work that has not been published yet, they showed that a high-cysteine diet had a regenerative effect following treatment with a chemotherapy drug called 5-fluorouracil. This drug, which is used to treat colon and pancreatic cancers, can also damage the intestinal lining.Cysteine is found in many high-protein foods, including meat, dairy products, legumes, and nuts. The body can also synthesize its own cysteine, by converting the amino acid methionine to cysteine — a process that takes place in the liver. However, cysteine produced in the liver is distributed through the entire body and doesn’t lead to a buildup in the small intestine the way that consuming cysteine in the diet does.“With our high-cysteine diet, the gut is the first place that sees a high amount of cysteine,” Chi says.Cysteine has been previously shown to have antioxidant effects, which are also beneficial, but this study is the first to demonstrate its effect on intestinal stem cell regeneration. The researchers now hope to study whether it may also help other types of stem cells regenerate new tissues. In one ongoing study, they are investigating whether cysteine might stimulate hair follicle regeneration.They also plan to further investigate some of the other amino acids that appear to influence stem cell regeneration.“I think we’re going to uncover multiple new mechanisms for how these amino acids regulate cell fate decisions and gut health in the small intestine and colon,” Yilmaz says.The research was funded, in part, by the National Institutes of Health, the V Foundation, the Kathy and Curt Marble Cancer Research Award, the Koch Institute-Dana-Farber/Harvard Cancer Center Bridge Project, the American Federation for Aging Research, the MIT Stem Cell Initiative, and the Koch Institute Support (core) Grant from the National Cancer Institute. More

  • in

    J-WAFS welcomes Daniela Giardina as new executive director

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced that Daniela Giardina has been named the new J-WAFS executive director. Giardina stepped into the role at the start of the fall semester, replacing founding executive director Renee J. Robins ’83, who is retiring after leading the program since its launch in 2014.“Daniela brings a deep background in water and food security, along with excellent management and leadership skills,” says Robins. “Since I first met her nearly 10 years ago, I have been impressed with her commitment to working on global water and food challenges through research and innovation. I am so happy to know that I will be leaving J-WAFS in her experienced and capable hands.”A decade of impactJ-WAFS fuels research, innovation, and collaboration to solve global water and food systems challenges. The mission of J-WAFS is to ensure safe and resilient supplies of water and food to meet the local and global needs of a dramatically growing population on a rapidly changing planet. J-WAFS funding opportunities are open to researchers in every MIT department, lab, and center, spanning all disciplines. Supported research projects include those involving engineering, science, technology, business, social science, economics, architecture, urban planning, and more. J-WAFS research and related activities include early-stage projects, sponsored research, commercialization efforts, student activities and mentorship, events that convene local and global experts, and international-scale collaborations.The global water, food, and climate emergency makes J-WAFS’ work both timely and urgent. J-WAFS-funded researchers are achieving tangible, real-time solutions and results. Since its inception, J-WAFS has distributed nearly $26 million in grants, fellowships, and awards to the MIT community, supporting roughly 10 percent of MIT’s faculty and 300 students, postdocs, and research staff from 40 MIT departments, labs, and centers. J-WAFS grants have also helped researchers launch 13 startups and receive over $25 million in follow-on funding.Giardina joins J-WAFS at an exciting time in the program’s history; in the spring, J-WAFS celebrated 10 years of supporting water and food research at MIT. The milestone was commemorated at a special event attended by MIT leadership, researchers, students, staff, donors, and others in the J-WAFS community. As J-WAFS enters its second decade, interest and opportunities for water and food research continue to grow. “I am truly honored to join J-WAFS at such a pivotal moment,” Giardina says.Putting research into real-world practiceGiardina has nearly two decades of experience working with nongovernmental organizations and research institutions on humanitarian and development projects. Her work has taken her to Africa, Latin America, the Caribbean, and Central and Southeast Asia, where she has focused on water and food security projects. She has conducted technical trainings and assessments, and managed projects from design to implementation, including monitoring and evaluation.Giardina comes to MIT from Oxfam America, where she directed disaster risk reduction and climate resilience initiatives, working on approaches to strengthen local leadership, community-based disaster risk reduction, and anticipatory action. Her role at Oxfam required her to oversee multimillion-dollar initiatives, supervising international teams, managing complex donor portfolios, and ensuring rigorous monitoring across programs. She connected hands-on research with community-oriented implementation, for example, by partnering with MIT’s D-Lab to launch an innovation lab in rural El Salvador. Her experience will help guide J-WAFS as it pursues impactful research that will make a difference on the ground.Beyond program delivery, Giardina has played a strategic leadership role in shaping Oxfam’s global disaster risk reduction strategy and representing the organization at high-level U.N. and academic forums. She is multilingual and adept at building partnerships across cultures, having worked with governments, funders, and community-based organizations to strengthen resilience and advance equitable access to water and food.Giardina holds a PhD in sustainable development from the University of Brescia in Italy. She also holds a master’s degree in environmental engineering from the Politecnico of Milan in Italy and is a chartered engineer since 2005 (equivalent to a professional engineering license in the United States). She also serves as vice chair of the Boston Network for International Development, a nonprofit that connects and strengthens Boston’s global development community.“I have seen first-hand how climate change, misuse of resources, and inequality are undermining water and food security around the globe,” says Giardina. “What particularly excites me about J-WAFS is its interdisciplinary approach in facilitating meaningful partnerships to solve many of these problems through research and innovation. I am eager to help expand J-WAFS’ impact by strengthening existing programs, developing new initiatives, and building strategic partnerships that translate MIT’s groundbreaking research into real-world solutions,” she adds.A legacy of leadershipRenee Robins will retire with over 23 years of service to MIT. Years before joining the staff, she graduated from MIT with dual bachelor’s degrees in both biology and humanities/anthropology. She then went on to earn a master’s degree in public policy from Carnegie Mellon University. In 1998, she came back to MIT to serve in various roles across campus, including with the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She also worked at the Harvard Graduate School of Education, where she managed a $15 million research program as it scaled from implementation in one public school district to 59 schools in seven districts across North Carolina.In late 2014, Robins joined J-WAFS as its founding executive director, playing a pivotal role in building it from the ground up and expanding the team to six full-time professionals. She worked closely with J-WAFS founding director Professor John H. Lienhard V to develop and implement funding initiatives, develop, and shepherd corporate-sponsored research partnerships, and mentor students in the Water Club and Food and Agriculture Club, as well as numerous other students. Throughout the years, Robins has inspired a diverse range of researchers to consider how their capabilities and expertise can be applied to water and food challenges. Perhaps most importantly, her leadership has helped cultivate a vibrant community, bringing together faculty, students, and research staff to be exposed to unfamiliar problems and new methodologies, to explore how their expertise might be applied, to learn from one another, and to collaborate.At the J-WAFS 10th anniversary event in May, Robins noted, “it has been a true privilege to work alongside John Lienhard, our dedicated staff, and so many others. It’s been particularly rewarding to see the growth of an MIT network of water and food researchers that J-WAFS has nurtured, which grew out of those few individuals who saw themselves to be working in solitude on these critical challenges.”Lienhard also spoke, thanking Robins by saying she “was my primary partner in building J-WAFS and [she is] a strong leader and strategic thinker.”Not only is Robins a respected leader, she is also a dear friend to so many at MIT and beyond. In 2021, she was recognized for her outstanding leadership and commitment to J-WAFS and the Institute with an MIT Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research.Outside of MIT, Robins has served on the Board of Trustees for the International Honors Program — a comparative multi-site study abroad program, where she previously studied comparative culture and anthropology in seven countries around the world. Robins has also acted as an independent consultant, including work on program design and strategy around the launch of the Université Mohammed VI Polytechnique in Morocco.Continuing the tradition of excellenceGiardina will report to J-WAFS director Rohit Karnik, the Abdul Latif Jameel Professor of Water and Food in the MIT Department of Mechanical Engineering. Karnik was named the director of J-WAFS in January, succeeding John Lienhard, who retired earlier this year.As executive director, Giardina will be instrumental in driving J-WAFS’ mission and impact. She will work with Karnik to help shape J-WAFS’ programs, long-term strategy, and goals. She will also be responsible for supervising J-WAFS staff, managing grant administration, and overseeing and advising on financial decisions.“I am very grateful to John and Renee, who have helped to establish J-WAFS as the Institute’s preeminent program for water and food research and significantly expanded MIT’s research efforts and impact in the water and food space,” says Karnik. “I am confident that with Daniela as executive director, J-WAFS will continue in the tradition of excellence that Renee and John put into place, as we move into the program’s second decade,” he notes.Giardina adds, “I am inspired by the lab’s legacy of Renee Robins and Professor Lienhard, and I look forward to working with Professor Karnik and the J-WAFS staff.” More

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    Would you like that coffee with iron?

    Around the world, about 2 billion people suffer from iron deficiency, which can lead to anemia, impaired brain development in children, and increased infant mortality.To combat that problem, MIT researchers have come up with a new way to fortify foods and beverages with iron, using small crystalline particles. These particles, known as metal-organic frameworks, could be sprinkled on food, added to staple foods such as bread, or incorporated into drinks like coffee and tea.“We’re creating a solution that can be seamlessly added to staple foods across different regions,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. “What’s considered a staple in Senegal isn’t the same as in India or the U.S., so our goal was to develop something that doesn’t react with the food itself. That way, we don’t have to reformulate for every context — it can be incorporated into a wide range of foods and beverages without compromise.”The particles designed in this study can also carry iodine, another critical nutrient. The particles could also be adapted to carry important minerals such as zinc, calcium, or magnesium.“We are very excited about this new approach and what we believe is a novel application of metal-organic frameworks to potentially advance nutrition, particularly in the developing world,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute.Jaklenec and Langer are the senior authors of the study, which appears today in the journal Matter. MIT postdoc Xin Yang and Linzixuan (Rhoda) Zhang PhD ’24 are the lead authors of the paper.Iron stabilizationFood fortification can be a successful way to combat nutrient deficiencies, but this approach is often challenging because many nutrients are fragile and break down during storage or cooking. When iron is added to foods, it can react with other molecules in the food, giving the food a metallic taste.In previous work, Jaklenec’s lab has shown that encapsulating nutrients in polymers can protect them from breaking down or reacting with other molecules. In a small clinical trial, the researchers found that women who ate bread fortified with encapsulated iron were able to absorb the iron from the food.However, one drawback to this approach is that the polymer adds a lot of bulk to the material, limiting the amount of iron or other nutrients that end up in the food.“Encapsulating iron in polymers significantly improves its stability and reactivity, making it easier to add to food,” Jaklenec says. “But to be effective, it requires a substantial amount of polymer. That limits how much iron you can deliver in a typical serving, making it difficult to meet daily nutritional targets through fortified foods alone.”To overcome that challenge, Yang came up with a new idea: Instead of encapsulating iron in a polymer, they could use iron itself as a building block for a crystalline particle known as a metal-organic framework, or MOF (pronounced “moff”).MOFs consist of metal atoms joined by organic molecules called ligands to create a rigid, cage-like structure. Depending on the combination of metals and ligands chosen, they can be used for a wide variety of applications.“We thought maybe we could synthesize a metal-organic framework with food-grade ligands and food-grade micronutrients,” Yang says. “Metal-organic frameworks have very high porosity, so they can load a lot of cargo. That’s why we thought we could leverage this platform to make a new metal-organic framework that could be used in the food industry.”In this case, the researchers designed a MOF consisting of iron bound to a ligand called fumaric acid, which is often used as a food additive to enhance flavor or help preserve food.This structure prevents iron from reacting with polyphenols — compounds commonly found in foods such as whole grains and nuts, as well as coffee and tea. When iron does react with those compounds, it forms a metal polyphenol complex that cannot be absorbed by the body.The MOFs’ structure also allows them to remain stable until they reach an acidic environment, such as the stomach, where they break down and release their iron payload.Double-fortified saltsThe researchers also decided to include iodine in their MOF particle, which they call NuMOF. Iodized salt has been very successful at preventing iodine deficiency, and many efforts are now underway to create “double-fortified salts” that would also contain iron.Delivering these nutrients together has proven difficult because iron and iodine can react with each other, making each one less likely to be absorbed by the body. In this study, the MIT team showed that once they formed their iron-containing MOF particles, they could load them with iodine, in a way that the iron and iodine do not react with each other.In tests of the particles’ stability, the researchers found that the NuMOFs could withstand long-term storage, high heat and humidity, and boiling water.Throughout these tests, the particles maintained their structure. When the researchers then fed the particles to mice, they found that both iron and iodine became available in the bloodstream within several hours of the NuMOF consumption.The researchers are now working on launching a company that is developing coffee and other beverages fortified with iron and iodine. They also hope to continue working toward a double-fortified salt that could be consumed on its own or incorporated into staple food products.The research was partially supported by J-WAFS Fellowships for Water and Food Solutions.Other authors of the paper include Fangzheng Chen, Wenhao Gao, Zhiling Zheng, Tian Wang, Erika Yan Wang, Behnaz Eshaghi, and Sydney MacDonald. More

  • in

    Creeping crystals: Scientists observe “salt creep” at the single-crystal scale

    Salt creeping, a phenomenon that occurs in both natural and industrial processes, describes the collection and migration of salt crystals from evaporating solutions onto surfaces. Once they start collecting, the crystals climb, spreading away from the solution. This creeping behavior, according to researchers, can cause damage or be harnessed for good, depending on the context. New research published June 30 in the journal Langmuir is the first to show salt creeping at a single-crystal scale and beneath a liquid’s meniscus.“The work not only explains how salt creeping begins, but why it begins and when it does,” says Joseph Phelim Mooney, a postdoc in the MIT Device Research Laboratory and one of the authors of the new study. “We hope this level of insight helps others, whether they’re tackling water scarcity, preserving ancient murals, or designing longer-lasting infrastructure.”The work is the first to directly visualize how salt crystals grow and interact with surfaces underneath a liquid meniscus, something that’s been theorized for decades but never actually imaged or confirmed at this level, and it offers fundamental insights that could impact a wide range of fields — from mineral extraction and desalination to anti-fouling coatings, membrane design for separation science, and even art conservation, where salt damage is a major threat to heritage materials.In civil engineering applications, for example, the research can help explain why and when salt crystals start growing across surfaces like concrete, stone, or building materials. “These crystals can exert pressure and cause cracking or flaking, reducing the long-term durability of structures,” says Mooney. “By pinpointing the moment when salt begins to creep, engineers can better design protective coatings or drainage systems to prevent this form of degradation.”For a field like art conservation, where salt can be devastating to murals, frescoes, and ancient artifacts, often forming beneath the surface before visible damage appears, the work can help identify the exact conditions that cause salt to start moving and spreading, allowing conservators to act earlier and more precisely to protect heritage objects.The work began during Mooney’s Marie Curie Fellowship at MIT. “I was focused on improving desalination systems and quickly ran into [salt buildup as] a major roadblock,” he says. “[Salt] was everywhere, coating surfaces, clogging flow paths, and undermining the efficiency of our designs. I realized we didn’t fully understand how or why salt starts creeping across surfaces in the first place.”That experience led Mooney to team up with colleagues to dig into the fundamentals of salt crystallization at the air–liquid–solid interface. “We wanted to zoom in, to really see the moment salt begins to move, so we turned to in situ X-ray microscopy,” he says. “What we found gave us a whole new way to think about surface fouling, material degradation, and controlled crystallization.”The new research may, in fact, allow better control of a crystallization processes required to remove salt from water in zero-liquid discharge systems. It can also be used to explain how and when scaling happens on equipment surfaces, and may support emerging climate technologies that depend on smart control of evaporation and crystallization.The work also supports mineral and salt extraction applications, where salt creeping can be both a bottleneck and an opportunity. In these applications, Mooney says, “by understanding the precise physics of salt formation at surfaces, operators can optimize crystal growth, improving recovery rates and reducing material losses.”Mooney’s co-authors on the paper include fellow MIT Device Lab researchers Omer Refet Caylan, Bachir El Fil (now an associate professor at Georgia Tech), and Lenan Zhang (now an associate professor at Cornell University); Jeff Punch and Vanessa Egan of the University of Limerick; and Jintong Gao of Cornell.The research was conducted using in situ X-ray microscopy. Mooney says the team’s big realization moment occurred when they were able to observe a single salt crystal pinning itself to the surface, which kicked off a cascading chain reaction of growth.“People had speculated about this, but we captured it on X-ray for the first time. It felt like watching the microscopic moment where everything tips, the ignition points of a self-propagating process,” says Mooney. “Even more surprising was what followed: The salt crystal didn’t just grow passively to fill the available space. It pierced through the liquid-air interface and reshaped the meniscus itself, setting up the perfect conditions for the next crystal. That subtle, recursive mechanism had never been visually documented before — and seeing it play out in real time completely changed how we thought about salt crystallization.”The paper, “In Situ X-ray Microscopy Unraveling the Onset of Salt Creeping at a Single-Crystal Level,” is available now in the journal Langmuir. Research was conducted in MIT.nano.  More

  • in

    Study shows a link between obesity and what’s on local restaurant menus

    For many years, health experts have been concerned about “food deserts,” places where residents lack good nutritional options. Now, an MIT-led study of three major global cities uses a new, granular method to examine the issue, and concludes that having fewer and less nutritional eating options nearby correlates with obesity and other health outcomes.Rather than just mapping geographic areas, the researchers examined the dietary value of millions of food items on roughly 30,000 restaurant menus and derived a more precise assessment of the connection between neighborhoods and nutrition.“We show that what is sold in a restaurant has a direct correlation to people’s health,” says MIT researcher Fabio Duarte, co-author of a newly published paper outlining the study’s results. “The food landscape matters.”The open-access paper, “Data-driven nutritional assessment of urban food landscapes: insights from Boston, London, Dubai,” was published this week in Nature: Scientific Reports.The co-authors are Michael Tufano, a PhD student at Wageningen University, in the Netherlands; Duarte, associate director of MIT’s Senseable City Lab, which uses data to study cities as dynamic systems; Martina Mazzarello, a postdoc at the Senseable City Lab; Javad Eshtiyagh, a research fellow at the Senseable City Lab; Carlo Ratti, professor of the practice and director of the Senseable City Lab; and Guido Camps, a senior researcher at Wageningen University.Scanning the menuTo conduct the study, the researchers examined menus from Boston, Dubai, and London, in the summer of 2023, compiling a database of millions of items available through popular food-delivery platforms. The team then evaluated the food items as rated by the USDA’s FoodData Central database, an information bank with 375,000 kinds of food products listed. The study deployed two main metrics, the Meal Balance Index, and the Nutrient-Rich Foods Index.The researchers examined about 222,000 menu items from over 2,000 restaurants in Boston, about 1.6 million menu items from roughly 9,000 restaurants in Dubai, and about 3.1 million menu items from about 18,000 restaurants in London. In Boston, about 71 percent of the items were in the USDA database; in Dubai and London, that figure was 42 percent and 56 percent, respectively.The team then rated the nutritional value of the items appearing on menus, and correlated the food data with health-outcome data from Boston and London. In London, they found a clear correlation between neighborhood menu offerings and obesity, or the lack thereof; with a slightly less firm correlation in Boston. Areas with food options that include a lot of dietary fibers, sometimes along with fruits and vegetables, tend to have better health data.In Dubai, the researchers did not have the same types of health data available but did observe a strong correlation between rental prices and the nutritional value of neighborhood-level food, suggesting that wealthier residents have better nourishment options.“At the item level, when we have less nutritional food, we see more cases of obsesity,” Tufano says. “It’s true that not only do we have more fast food in poor neighborhoods, but the nutritional value is not the same.”Re-mapping the food landscapeBy conducting the study in this fashion, the scholars added a layer of analysis to past studies of food deserts. While past work has broken ground by identifying neighborhoods and areas lacking good food access, this research makes a more comprehensive assessment of what people consume. The research moves toward evaluating the complex mix of food available in any given area, which can be true even of areas with more limited options.“We were not satisfied with this idea that if you only have fast food, it’s a food desert, but if you have a Whole Foods, it’s not,” Duarte says. “It’s not necessarily like that.”For the Senseable City Lab researchers, the study is a new technique further enabling them to understand city dynamics and the effects of the urban environment on health. Past lab studies have often focused on issues such as urban mobility, while extending to matters such as mobility and air pollution, among other topics.Being able to study food and health at the neighborhood level, though, is still another example of the ways that data-rich spheres of life can be studied in close detail.“When we started working on cities and data, the data resolution was so low,” Ratti says. “Today the amount of data is so immense we see this great opportunity to look at cities and see the influence of the urban environment as a big determinant of health. We see this as one of the new frontiers of our lab. It’s amazing how we can now look at this very precisely in cities.” More

  • in

    MIT chemists boost the efficiency of a key enzyme in photosynthesis

    During photosynthesis, an enzyme called rubisco catalyzes a key reaction — the incorporation of carbon dioxide into organic compounds to create sugars. However, rubisco, which is believed to be the most abundant enzyme on Earth, is very inefficient compared to the other enzymes involved in photosynthesis.MIT chemists have now shown that they can greatly enhance a version of rubisco found in bacteria from a low-oxygen environment. Using a process known as directed evolution, they identified mutations that could boost rubisco’s catalytic efficiency by up to 25 percent.The researchers now plan to apply their technique to forms of rubisco that could be used in plants to help boost their rates of photosynthesis, which could potentially improve crop yields.“This is, I think, a compelling demonstration of successful improvement of a rubisco’s enzymatic properties, holding out a lot of hope for engineering other forms of rubisco,” says Matthew Shoulders, the Class of 1942 Professor of Chemistry at MIT.Shoulders and Robert Wilson, a research scientist in the Department of Chemistry, are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. MIT graduate student Julie McDonald is the paper’s lead author.Evolution of efficiencyWhen plants or photosynthetic bacteria absorb energy from the sun, they first convert it into energy-storing molecules such as ATP. In the next phase of photosynthesis, cells use that energy to transform a molecule known as ribulose bisphosphate into glucose, which requires several additional reactions. Rubisco catalyzes the first of those reactions, known as carboxylation. During that reaction, carbon from CO2 is added to ribulose bisphosphate.Compared to the other enzymes involved in photosynthesis, rubisco is very slow, catalyzing only one to 10 reactions per second. Additionally, rubisco can also interact with oxygen, leading to a competing reaction that incorporates oxygen instead of carbon — a process that wastes some of the energy absorbed from sunlight.“For protein engineers, that’s a really attractive set of problems because those traits seem like things that you could hopefully make better by making changes to the enzyme’s amino acid sequence,” McDonald says.Previous research has led to improvement in rubisco’s stability and solubility, which resulted in small gains in enzyme efficiency. Most of those studies used directed evolution — a technique in which a naturally occurring protein is randomly mutated and then screened for the emergence of new, desirable features.This process is usually done using error-prone PCR, a technique that first generates mutations in vitro (outside of the cell), typically introducing only one or two mutations in the target gene. In past studies on rubisco, this library of mutations was then introduced into bacteria that grow at a rate relative to rubisco activity. Limitations in error-prone PCR and in the efficiency of introducing new genes restrict the total number of mutations that can be generated and screened using this approach. Manual mutagenesis and selection steps also add more time to the process over multiple rounds of evolution.The MIT team instead used a newer mutagenesis technique that the Shoulders Lab previously developed, called MutaT7. This technique allows the researchers to perform both mutagenesis and screening in living cells, which dramatically speeds up the process. Their technique also enables them to mutate the target gene at a higher rate.“Our continuous directed evolution technique allows you to look at a lot more mutations in the enzyme than has been done in the past,” McDonald says.Better rubiscoFor this study, the researchers began with a version of rubisco, isolated from a family of semi-anaerobic bacteria known as Gallionellaceae, that is one of the fastest rubisco found in nature. During the directed evolution experiments, which were conducted in E. coli, the researchers kept the microbes in an environment with atmospheric levels of oxygen, creating evolutionary pressure to adapt to oxygen.After six rounds of directed evolution, the researchers identified three different mutations that improved the rubisco’s resistance to oxygen. Each of these mutations are located near the enzyme’s active site (where it performs carboxylation or oxygenation). The researchers believe that these mutations improve the enzyme’s ability to preferentially interact with carbon dioxide over oxygen, which leads to an overall increase in carboxylation efficiency.“The underlying question here is: Can you alter and improve the kinetic properties of rubisco to operate better in environments where you want it to operate better?” Shoulders says. “What changed through the directed evolution process was that rubisco began to like to react with oxygen less. That allows this rubisco to function well in an oxygen-rich environment, where normally it would constantly get distracted and react with oxygen, which you don’t want it to do.”In ongoing work, the researchers are applying this approach to other forms of rubisco, including rubisco from plants. Plants are believed to lose about 30 percent of the energy from the sunlight they absorb through a process called photorespiration, which occurs when rubisco acts on oxygen instead of carbon dioxide.“This really opens the door to a lot of exciting new research, and it’s a step beyond the types of engineering that have dominated rubisco engineering in the past,” Wilson says. “There are definite benefits to agricultural productivity that could be leveraged through a better rubisco.”The research was funded, in part, by the National Science Foundation, the National Institutes of Health, an Abdul Latif Jameel Water and Food Systems Lab Grand Challenge grant, and a Martin Family Society Fellowship for Sustainability. More