More stories

  • in

    Study shows a link between obesity and what’s on local restaurant menus

    For many years, health experts have been concerned about “food deserts,” places where residents lack good nutritional options. Now, an MIT-led study of three major global cities uses a new, granular method to examine the issue, and concludes that having fewer and less nutritional eating options nearby correlates with obesity and other health outcomes.Rather than just mapping geographic areas, the researchers examined the dietary value of millions of food items on roughly 30,000 restaurant menus and derived a more precise assessment of the connection between neighborhoods and nutrition.“We show that what is sold in a restaurant has a direct correlation to people’s health,” says MIT researcher Fabio Duarte, co-author of a newly published paper outlining the study’s results. “The food landscape matters.”The open-access paper, “Data-driven nutritional assessment of urban food landscapes: insights from Boston, London, Dubai,” was published this week in Nature: Scientific Reports.The co-authors are Michael Tufano, a PhD student at Wageningen University, in the Netherlands; Duarte, associate director of MIT’s Senseable City Lab, which uses data to study cities as dynamic systems; Martina Mazzarello, a postdoc at the Senseable City Lab; Javad Eshtiyagh, a research fellow at the Senseable City Lab; Carlo Ratti, professor of the practice and director of the Senseable City Lab; and Guido Camps, a senior researcher at Wageningen University.Scanning the menuTo conduct the study, the researchers examined menus from Boston, Dubai, and London, in the summer of 2023, compiling a database of millions of items available through popular food-delivery platforms. The team then evaluated the food items as rated by the USDA’s FoodData Central database, an information bank with 375,000 kinds of food products listed. The study deployed two main metrics, the Meal Balance Index, and the Nutrient-Rich Foods Index.The researchers examined about 222,000 menu items from over 2,000 restaurants in Boston, about 1.6 million menu items from roughly 9,000 restaurants in Dubai, and about 3.1 million menu items from about 18,000 restaurants in London. In Boston, about 71 percent of the items were in the USDA database; in Dubai and London, that figure was 42 percent and 56 percent, respectively.The team then rated the nutritional value of the items appearing on menus, and correlated the food data with health-outcome data from Boston and London. In London, they found a clear correlation between neighborhood menu offerings and obesity, or the lack thereof; with a slightly less firm correlation in Boston. Areas with food options that include a lot of dietary fibers, sometimes along with fruits and vegetables, tend to have better health data.In Dubai, the researchers did not have the same types of health data available but did observe a strong correlation between rental prices and the nutritional value of neighborhood-level food, suggesting that wealthier residents have better nourishment options.“At the item level, when we have less nutritional food, we see more cases of obsesity,” Tufano says. “It’s true that not only do we have more fast food in poor neighborhoods, but the nutritional value is not the same.”Re-mapping the food landscapeBy conducting the study in this fashion, the scholars added a layer of analysis to past studies of food deserts. While past work has broken ground by identifying neighborhoods and areas lacking good food access, this research makes a more comprehensive assessment of what people consume. The research moves toward evaluating the complex mix of food available in any given area, which can be true even of areas with more limited options.“We were not satisfied with this idea that if you only have fast food, it’s a food desert, but if you have a Whole Foods, it’s not,” Duarte says. “It’s not necessarily like that.”For the Senseable City Lab researchers, the study is a new technique further enabling them to understand city dynamics and the effects of the urban environment on health. Past lab studies have often focused on issues such as urban mobility, while extending to matters such as mobility and air pollution, among other topics.Being able to study food and health at the neighborhood level, though, is still another example of the ways that data-rich spheres of life can be studied in close detail.“When we started working on cities and data, the data resolution was so low,” Ratti says. “Today the amount of data is so immense we see this great opportunity to look at cities and see the influence of the urban environment as a big determinant of health. We see this as one of the new frontiers of our lab. It’s amazing how we can now look at this very precisely in cities.” More

  • in

    MIT chemists boost the efficiency of a key enzyme in photosynthesis

    During photosynthesis, an enzyme called rubisco catalyzes a key reaction — the incorporation of carbon dioxide into organic compounds to create sugars. However, rubisco, which is believed to be the most abundant enzyme on Earth, is very inefficient compared to the other enzymes involved in photosynthesis.MIT chemists have now shown that they can greatly enhance a version of rubisco found in bacteria from a low-oxygen environment. Using a process known as directed evolution, they identified mutations that could boost rubisco’s catalytic efficiency by up to 25 percent.The researchers now plan to apply their technique to forms of rubisco that could be used in plants to help boost their rates of photosynthesis, which could potentially improve crop yields.“This is, I think, a compelling demonstration of successful improvement of a rubisco’s enzymatic properties, holding out a lot of hope for engineering other forms of rubisco,” says Matthew Shoulders, the Class of 1942 Professor of Chemistry at MIT.Shoulders and Robert Wilson, a research scientist in the Department of Chemistry, are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. MIT graduate student Julie McDonald is the paper’s lead author.Evolution of efficiencyWhen plants or photosynthetic bacteria absorb energy from the sun, they first convert it into energy-storing molecules such as ATP. In the next phase of photosynthesis, cells use that energy to transform a molecule known as ribulose bisphosphate into glucose, which requires several additional reactions. Rubisco catalyzes the first of those reactions, known as carboxylation. During that reaction, carbon from CO2 is added to ribulose bisphosphate.Compared to the other enzymes involved in photosynthesis, rubisco is very slow, catalyzing only one to 10 reactions per second. Additionally, rubisco can also interact with oxygen, leading to a competing reaction that incorporates oxygen instead of carbon — a process that wastes some of the energy absorbed from sunlight.“For protein engineers, that’s a really attractive set of problems because those traits seem like things that you could hopefully make better by making changes to the enzyme’s amino acid sequence,” McDonald says.Previous research has led to improvement in rubisco’s stability and solubility, which resulted in small gains in enzyme efficiency. Most of those studies used directed evolution — a technique in which a naturally occurring protein is randomly mutated and then screened for the emergence of new, desirable features.This process is usually done using error-prone PCR, a technique that first generates mutations in vitro (outside of the cell), typically introducing only one or two mutations in the target gene. In past studies on rubisco, this library of mutations was then introduced into bacteria that grow at a rate relative to rubisco activity. Limitations in error-prone PCR and in the efficiency of introducing new genes restrict the total number of mutations that can be generated and screened using this approach. Manual mutagenesis and selection steps also add more time to the process over multiple rounds of evolution.The MIT team instead used a newer mutagenesis technique that the Shoulders Lab previously developed, called MutaT7. This technique allows the researchers to perform both mutagenesis and screening in living cells, which dramatically speeds up the process. Their technique also enables them to mutate the target gene at a higher rate.“Our continuous directed evolution technique allows you to look at a lot more mutations in the enzyme than has been done in the past,” McDonald says.Better rubiscoFor this study, the researchers began with a version of rubisco, isolated from a family of semi-anaerobic bacteria known as Gallionellaceae, that is one of the fastest rubisco found in nature. During the directed evolution experiments, which were conducted in E. coli, the researchers kept the microbes in an environment with atmospheric levels of oxygen, creating evolutionary pressure to adapt to oxygen.After six rounds of directed evolution, the researchers identified three different mutations that improved the rubisco’s resistance to oxygen. Each of these mutations are located near the enzyme’s active site (where it performs carboxylation or oxygenation). The researchers believe that these mutations improve the enzyme’s ability to preferentially interact with carbon dioxide over oxygen, which leads to an overall increase in carboxylation efficiency.“The underlying question here is: Can you alter and improve the kinetic properties of rubisco to operate better in environments where you want it to operate better?” Shoulders says. “What changed through the directed evolution process was that rubisco began to like to react with oxygen less. That allows this rubisco to function well in an oxygen-rich environment, where normally it would constantly get distracted and react with oxygen, which you don’t want it to do.”In ongoing work, the researchers are applying this approach to other forms of rubisco, including rubisco from plants. Plants are believed to lose about 30 percent of the energy from the sunlight they absorb through a process called photorespiration, which occurs when rubisco acts on oxygen instead of carbon dioxide.“This really opens the door to a lot of exciting new research, and it’s a step beyond the types of engineering that have dominated rubisco engineering in the past,” Wilson says. “There are definite benefits to agricultural productivity that could be leveraged through a better rubisco.”The research was funded, in part, by the National Science Foundation, the National Institutes of Health, an Abdul Latif Jameel Water and Food Systems Lab Grand Challenge grant, and a Martin Family Society Fellowship for Sustainability. More

  • in

    MIT Open Learning bootcamp supports effort to bring invention for long-term fentanyl recovery to market

    Evan Kharasch, professor of anesthesiology and vice chair for innovation at Duke University, has developed two approaches that may aid in fentanyl addiction recovery. After attending MIT’s Substance Use Disorders (SUD) Ventures Bootcamp, he’s committed to bringing them to market.Illicit fentanyl addiction is still a national emergency in the United States, fueled by years of opioid misuse. As opioid prescriptions fell by 50 percent over 15 years, many turned to street drugs. Among those drugs, fentanyl stands out for its potency — just 2 milligrams can be fatal — and its low production cost. Often mixed with other drugs, it contributed to a large portion of over 80,000 overdose deaths in 2024. It has been particularly challenging to treat with currently available medications for opioid use disorder.  ​​As an anesthesiologist, Kharasch is highly experienced with opioids, including methadone, one of only three drugs approved in the United States for treating opioid use disorder. Methadone is a key option for managing fentanyl use. It’s employed to transition patients off fentanyl and to support ongoing maintenance, but access is limited, with only 20 percent of eligible patients receiving it. Initiating and adjusting methadone treatment can take weeks due to its clinical characteristics, often causing withdrawal and requiring longer hospital stays. Maintenance demands daily visits to one of just over 2,000 clinics, disrupting work or study and leading most patients to drop out after a few months.To tackle these challenges, Kharasch developed two novel methadone formulations: one for faster absorption to cut initiation time from weeks to days — or even hours — and one to slow elimination, thereby potentially requiring only weekly, rather than daily, dosing. As a clinician, scientist, and entrepreneur, he sees the science as demanding, but bringing these treatments to patients presents an even greater challenge. Kharasch learned about the SUD Ventures Bootcamp, part of MIT Open Learning, as a recipient of research funding from the National Institute on Drug Abuse (NIDA). He decided to apply to bridge the gap in his expertise and was selected to attend as a fellow.Each year, the SUD Ventures Bootcamp unites innovators — including scientists, entrepreneurs, and medical professionals — to develop bold, cross-disciplinary solutions to substance use disorders. Through online learning and an intensive one-week in-person bootcamp, teams tackle challenges in different “high priority” areas. Guided by experts in science, entrepreneurship, and policy, they build and pitch ventures aimed at real-world impact. Beyond the multidisciplinary curriculum, the program connects people deeply committed to this space and equipped to drive progress.Throughout the program, Kharasch’s concepts were validated by the invited industry experts, who highlighted the potential impact of a longer-acting methadone formulation, particularly in correctional settings. Encouragement from MIT professors, coaches, and peers energized Kharasch to fully pursue commercialization. He has already begun securing intellectual property rights, validating the regulatory pathway through the U.S Food and Drug Administration, and gathering market and patient feedback.The SUD Ventures Bootcamp, he says, both activated and validated his passion for bringing these innovations to patients. “After many years of basic, translational and clinical research on methadone all — supported by NIDA — I experienced that a ha moment of recognizing a potential opportunity to apply the findings to benefit patients at scale,” Kharasch says. “The NIDA-sponsored participation in the MIT SUD Ventures Bootcamp was the critical catalyst which ignited the inspiration and commitment to pursue commercializing our research findings into better treatments for opioid use disorder.”As next steps, Kharasch is seeking an experienced co-founder and finalizing IP protections. He remains engaged with the SUD Ventures network as mentors, industry experts, and peers offer help with advancing this needed solution to market. For example, the program’s mentor, Nat Sims, the Newbower/Eitan Endowed Chair in Biomedical Technology Innovation at Massachusetts General Hospital (MGH) and a fellow anesthesiologist, has helped Kharasch arrange technology validation conversations within the MGH ecosystem and the drug development community.“Evan’s collaboration with the MGH ecosystem can help define an optimum process for commercializing these innovations — identifying who would benefit, how they would benefit, and who is willing to pilot the product once it’s available,” says Sims.Kharasch has also presented his project in the program’s webinar series. Looking ahead, Kharasch hopes to involve MIT Sloan School of Management students in advancing his project through health care entrepreneurship classes, continuing the momentum that began with the SUD Ventures Bootcamp.The program and its research are supported by the NIDA of the National Institutes of Health. Cynthia Breazeal, a professor of media arts and sciences at the MIT Media Lab and dean for digital learning at MIT Open Learning, serves as the principal investigator on the grant. More

  • in

    Universal nanosensor unlocks the secrets to plant growth

    Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group within the Singapore-MIT Alliance for Research and Technology have developed the world’s first near-infrared fluorescent nanosensor capable of real-time, nondestructive, and species-agnostic detection of indole-3-acetic acid (IAA) — the primary bioactive auxin hormone that controls the way plants develop, grow, and respond to stress.Auxins, particularly IAA, play a central role in regulating key plant processes such as cell division, elongation, root and shoot development, and response to environmental cues like light, heat, and drought. External factors like light affect how auxin moves within the plant, temperature influences how much is produced, and a lack of water can disrupt hormone balance. When plants cannot effectively regulate auxins, they may not grow well, adapt to changing conditions, or produce as much food. Existing IAA detection methods, such as liquid chromatography, require taking plant samples from the plant — which harms or removes part of it. Conventional methods also measure the effects of IAA rather than detecting it directly, and cannot be used universally across different plant types. In addition, since IAA are small molecules that cannot be easily tracked in real time, biosensors that contain fluorescent proteins need to be inserted into the plant’s genome to measure auxin, making it emit a fluorescent signal for live imaging.SMART’s newly developed nanosensor enables direct, real-time tracking of auxin levels in living plants with high precision. The sensor uses near infrared imaging to monitor IAA fluctuations non-invasively across tissues like leaves, roots, and cotyledons, and it is capable of bypassing chlorophyll interference to ensure highly reliable readings even in densely pigmented tissues. The technology does not require genetic modification and can be integrated with existing agricultural systems — offering a scalable precision tool to advance both crop optimization and fundamental plant physiology research. By providing real-time, precise measurements of auxin, the sensor empowers farmers with earlier and more accurate insights into plant health. With these insights and comprehensive data, farmers can make smarter, data-driven decisions on irrigation, nutrient delivery, and pruning, tailored to the plant’s actual needs — ultimately improving crop growth, boosting stress resilience, and increasing yields.“We need new technologies to address the problems of food insecurity and climate change worldwide. Auxin is a central growth signal within living plants, and this work gives us a way to tap it to give new information to farmers and researchers,” says Michael Strano, co-lead principal investigator at DiSTAP, Carbon P. Dubbs Professor of Chemical Engineering at MIT, and co-corresponding author of the paper. “The applications are many, including early detection of plant stress, allowing for timely interventions to safeguard crops. For urban and indoor farms, where light, water, and nutrients are already tightly controlled, this sensor can be a valuable tool in fine-tuning growth conditions with even greater precision to optimize yield and sustainability.”The research team documented the nanosensor’s development in a paper titled, “A Near-Infrared Fluorescent Nanosensor for Direct and Real-Time Measurement of Indole-3-Acetic Acid in Plants,” published in the journal ACS Nano. The sensor comprises single-walled carbon nanotubes wrapped in a specially designed polymer, which enables it to detect IAA through changes in near infrared fluorescence intensity. Successfully tested across multiple species, including Arabidopsis, Nicotiana benthamiana, choy sum, and spinach, the nanosensor can map IAA responses under various environmental conditions such as shade, low light, and heat stress. “This sensor builds on DiSTAP’s ongoing work in nanotechnology and the CoPhMoRe technique, which has already been used to develop other sensors that can detect important plant compounds such as gibberellins and hydrogen peroxide. By adapting this approach for IAA, we’re adding to our inventory of novel, precise, and nondestructive tools for monitoring plant health. Eventually, these sensors can be multiplexed, or combined, to monitor a spectrum of plant growth markers for more complete insights into plant physiology,” says Duc Thinh Khong, research scientist at DiSTAP and co-first author of the paper.“This small but mighty nanosensor tackles a long-standing challenge in agriculture: the need for a universal, real-time, and noninvasive tool to monitor plant health across various species. Our collaborative achievement not only empowers researchers and farmers to optimize growth conditions and improve crop yield and resilience, but also advances our scientific understanding of hormone pathways and plant-environment interactions,” says In-Cheol Jang, senior principal investigator at TLL, principal investigator at DiSTAP, and co-corresponding author of the paper.Looking ahead, the research team is looking to combine multiple sensing platforms to simultaneously detect IAA and its related metabolites to create a comprehensive hormone signaling profile, offering deeper insights into plant stress responses and enhancing precision agriculture. They are also working on using microneedles for highly localized, tissue-specific sensing, and collaborating with industrial urban farming partners to translate the technology into practical, field-ready solutions. The research was carried out by SMART, and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise program. More

  • in

    Guardian Ag’s crop-spraying drone is replacing dangerous pilot missions

    Every year during the growing season, thousands of pilots across the country climb into small planes loaded with hundreds of pounds of pesticides and fly extremely close to the ground at upward of 140 miles an hour, unloading their cargo onto rows of corn, cotton, and soybeans.The world of agricultural aviation is as dangerous as it is vital to America’s farms. Unfortunately, fatal crashes are common. Now Guardian Ag, founded by former MIT Electronics Research Society (MITERS) makers Adam Bercu and Charles Guan ’11, is offering an alternative in the form of a large, purpose-built drone that can autonomously deliver 200-pound payloads across farms. The company’s drones feature an 18-foot spray radius, 80-inch rotors, a custom battery pack, and aerospace-grade materials designed to make crop spraying more safe, efficient, and inexpensive for farmers.“We’re trying to bring technology to American farms that are hundreds or thousands of acres, where you’re not replacing a human with a hand pump — you’re replacing a John Deere tractor or a helicopter or an airplane,” Bercu says.“With Guardian, the operator shows up about 30 minutes before they want to spray, they mix the product, path plan the field in our app, and it gives an estimate for how long the job will take,” he says. “With our fast charging, you recharge the aircraft while you fill the tank, and those two operations take about the same amount of time.”

    Play video

    From Battlebots to farmlandsAt a young age, Bercu became obsessed with building robots. Growing up in south Florida, he’d attend robotic competitions, build prototypes, and even dumpster dive for particularly hard-to-find components. At one competition, Bercu met Charles Guan, who would go on to major in mechanical engineering at MIT, and the two robot enthusiasts became lifelong friends.“When Charles came to MIT, he basically convinced me to move to Cambridge,” Bercu says. “He said, ‘You need to come up here. I found more people like us. Hackers!’”Bercu visited Cambridge, Massachusetts, and indeed fell in love with the region’s makerspaces and hacker culture. He moved soon after, and he and Guan began spending free time at spaces including the Artisans Asylum makerspace in Somerville, Massachusetts; MIT’s International Design Center; and the MIT Electronics Research Society (MITERS) makerspace. Guan held several leadership positions at MITERS, including facilities manager, treasurer, and president.“MIT offered enormous latitude to its students to be independent and creative, which was reflected in the degree of autonomy they permit student-run organizations like MITERS to have compared to other top-tier schools,” Guan says. “It was a key selling point to me when I was touring mechanical engineering labs as a junior in high school. I was well-known in the department circle for being at MITERS all the time, possibly even more than I spent on classes.”After Guan graduated, he and Bercu started a hardware consulting business and competed in the robot combat show Battlebots. Guan also began working as a design instructor in MIT’s Department of Mechanical Engineering, where he taught a section of Course 2.007 that tasked students with building go-karts.Eventually, Guan and Bercu decided to use their experience to start a drone company.“Over the course of Battlebots and building go-karts, we knew electric batteries were getting really cheap and electric vehicle supply chains were established,” Bercu explains. “People were raising money to build eVTOL [electric vertical take-off and landing] vehicles to transport people, but we knew diesel fuel still outperformed batteries over long distances. Where electric systems did outperform combustion engines was in areas where you needed peak power for short periods of time. Basically, batteries are awesome when you have a short mission.”That idea made the founders think crop spraying could be a good early application. Bercu’s family runs an aviation business, and he knew pilots who would spray crops as their second jobs.“It’s one of those high-paying but very dangerous jobs,” Bercu says. “Even in the U.S., we lose between 1 and 2 percent of all agriculture pilots each year to fatal accidents. These people are rolling the dice every time they do this: You’re flying 6 feet off the ground at 140 miles an hour with 800 gallons of pesticide in your tank.”After cobbling together spare parts from Battlebots and their consulting business, the founders built a 600-pound drone. When they finally got it to fly, they decided the time was right to launch their company, receiving crucial early guidance and their first funding from the MIT-affiliated investment firm the E14 Fund.The founders spent the next year interviewing crop dusters and farmers. They also started engaging with the Federal Aviation Administration.“There was no category for anything like this,” Bercu explains. “With the FAA, we not only got through the approval process, we helped them build the process as we went through it, because we wanted to establish some common-sense standards.”Guardian custom-built its batteries to optimize throughput and utilization rate of its drones. Depending on the farm, Bercu says his machines can unload about 1.5 to 2 tons of payload per hour.Guardian’s drones can also spray more precisely than planes, reducing the environmental impact of pesticides, which often pollute the landscapes and waterways surrounding farms.“This thing has the precision to spray the ‘Mona Lisa’ on 20 acres, but we’re not leveraging that functionality today,” Bercu says. “For the operator we want to make it very easy. The goal is to take someone who sprays with a tractor and teach them to spray with a drone in less than a week.”Scaling for farmersTo date, Guardian Ag has built eight of its aircraft, which are actively delivering payloads over California farms in trials with paying customers. The company is currently ramping up manufacturing in its 60,000-square-foot facility in Massachusetts, and Bercu says Guardian has a backlog of hundreds of millions of dollars-worth of drones.“Grower demand has been exceptional,” Bercu says. “We don’t need to educate them on the need for this. They see the big drone with the big tank and they’re in.”Bercu envisions Guardian’s drones helping with a number of other tasks like ship-to-ship logistics, delivering supplies to offshore oil rigs, mining, and other areas where helicopters and small aircraft are currently flown through difficult terrain. But for now, the company is focused on starting with agriculture.“Agriculture is such an important and foundational aspect of our country,” says Guardian Ag chief operating officer Ashley Ferguson MBA ’19. “We work with multigenerational farming families, and when we talk to them, it’s clear aerial spray has taken hold in the industry. But there’s a large shortage of pilots, especially for agriculture applications. So, it’s clear there’s a big opportunity.”Seven years since founding Guardian, Bercu remains grateful that MIT’s community opened its doors for him when he moved to Cambridge.“Without the MIT community, this company wouldn’t be possible,” Bercu says. “I was never able to go to college, but I’d love to one day apply to MIT and do my engineering undergrad or go to the Sloan School of Management. I’ll never forget MIT’s openness to me. It’s a place I hold near and dear to my heart.” More

  • in

    Imaging technique removes the effect of water in underwater scenes

    The ocean is teeming with life. But unless you get up close, much of the marine world can easily remain unseen. That’s because water itself can act as an effective cloak: Light that shines through the ocean can bend, scatter, and quickly fade as it travels through the dense medium of water and reflects off the persistent haze of ocean particles. This makes it extremely challenging to capture the true color of objects in the ocean without imaging them at close range.Now a team from MIT and the Woods Hole Oceanographic Institution (WHOI) has developed an image-analysis tool that cuts through the ocean’s optical effects and generates images of underwater environments that look as if the water had been drained away, revealing an ocean scene’s true colors. The team paired the color-correcting tool with a computational model that converts images of a scene into a three-dimensional underwater “world,” that can then be explored virtually.The researchers have dubbed the new tool “SeaSplat,” in reference to both its underwater application and a method known as 3D gaussian splatting (3DGS), which takes images of a scene and stitches them together to generate a complete, three-dimensional representation that can be viewed in detail, from any perspective.“With SeaSplat, it can model explicitly what the water is doing, and as a result it can in some ways remove the water, and produces better 3D models of an underwater scene,” says MIT graduate student Daniel Yang.The researchers applied SeaSplat to images of the sea floor taken by divers and underwater vehicles, in various locations including the U.S. Virgin Islands. The method generated 3D “worlds” from the images that were truer and more vivid and varied in color, compared to previous methods.The team says SeaSplat could help marine biologists monitor the health of certain ocean communities. For instance, as an underwater robot explores and takes pictures of a coral reef, SeaSplat would simultaneously process the images and render a true-color, 3D representation, that scientists could then virtually “fly” through, at their own pace and path, to inspect the underwater scene, for instance for signs of coral bleaching.“Bleaching looks white from close up, but could appear blue and hazy from far away, and you might not be able to detect it,” says Yogesh Girdhar, an associate scientist at WHOI. “Coral bleaching, and different coral species, could be easier to detect with SeaSplat imagery, to get the true colors in the ocean.”Girdhar and Yang will present a paper detailing SeaSplat at the IEEE International Conference on Robotics and Automation (ICRA). Their study co-author is John Leonard, professor of mechanical engineering at MIT.Aquatic opticsIn the ocean, the color and clarity of objects is distorted by the effects of light traveling through water. In recent years, researchers have developed color-correcting tools that aim to reproduce the true colors in the ocean. These efforts involved adapting tools that were developed originally for environments out of water, for instance to reveal the true color of features in foggy conditions. One recent work accurately reproduces true colors in the ocean, with an algorithm named “Sea-Thru,” though this method requires a huge amount of computational power, which makes its use in producing 3D scene models challenging.In parallel, others have made advances in 3D gaussian splatting, with tools that seamlessly stitch images of a scene together, and intelligently fill in any gaps to create a whole, 3D version of the scene. These 3D worlds enable “novel view synthesis,” meaning that someone can view the generated 3D scene, not just from the perspective of the original images, but from any angle and distance.But 3DGS has only successfully been applied to environments out of water. Efforts to adapt 3D reconstruction to underwater imagery have been hampered, mainly by two optical underwater effects: backscatter and attenuation. Backscatter occurs when light reflects off of tiny particles in the ocean, creating a veil-like haze. Attenuation is the phenomenon by which light of certain wavelengths attenuates, or fades with distance. In the ocean, for instance, red objects appear to fade more than blue objects when viewed from farther away.Out of water, the color of objects appears more or less the same regardless of the angle or distance from which they are viewed. In water, however, color can quickly change and fade depending on one’s perspective. When 3DGS methods attempt to stitch underwater images into a cohesive 3D whole, they are unable to resolve objects due to aquatic backscatter and attenuation effects that distort the color of objects at different angles.“One dream of underwater robotic vision that we have is: Imagine if you could remove all the water in the ocean. What would you see?” Leonard says.A model swimIn their new work, Yang and his colleagues developed a color-correcting algorithm that accounts for the optical effects of backscatter and attenuation. The algorithm determines the degree to which every pixel in an image must have been distorted by backscatter and attenuation effects, and then essentially takes away those aquatic effects, and computes what the pixel’s true color must be.Yang then worked the color-correcting algorithm into a 3D gaussian splatting model to create SeaSplat, which can quickly analyze underwater images of a scene and generate a true-color, 3D virtual version of the same scene that can be explored in detail from any angle and distance.The team applied SeaSplat to multiple underwater scenes, including images taken in the Red Sea, in the Carribean off the coast of Curaçao, and the Pacific Ocean, near Panama. These images, which the team took from a pre-existing dataset, represent a range of ocean locations and water conditions. They also tested SeaSplat on images taken by a remote-controlled underwater robot in the U.S. Virgin Islands.From the images of each ocean scene, SeaSplat generated a true-color 3D world that the researchers were able to virtually explore, for instance zooming in and out of a scene and viewing certain features from different perspectives. Even when viewing from different angles and distances, they found objects in every scene retained their true color, rather than fading as they would if viewed through the actual ocean.“Once it generates a 3D model, a scientist can just ‘swim’ through the model as though they are scuba-diving, and look at things in high detail, with real color,” Yang says.For now, the method requires hefty computing resources in the form of a desktop computer that would be too bulky to carry aboard an underwater robot. Still, SeaSplat could work for tethered operations, where a vehicle, tied to a ship, can explore and take images that can be sent up to a ship’s computer.“This is the first approach that can very quickly build high-quality 3D models with accurate colors, underwater, and it can create them and render them fast,” Girdhar says. “That will help to quantify biodiversity, and assess the health of coral reef and other marine communities.”This work was supported, in part, by the Investment in Science Fund at WHOI, and by the U.S. National Science Foundation. More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    Startup helps farmers grow plant-based feed and fertilizer using wastewater

    Farmers today face a number of challenges, from supply chain stability to nutrient and waste management. But hanging over everything is the need to maintain profitability amid changing markets and increased uncertainty.Fyto, founded by former MIT staff member Jason Prapas, is offering a highly automated cultivation system to address several of farmers’ biggest problems at once.At the heart of Fyto’s system is Lemna, a genus of small aquatic plants otherwise known as duckweed. Most people have probably seen thick green mats of Lemna lying on top of ponds and swamps. But Lemna is also rich in protein and capable of doubling in biomass every two days. Fyto has built an automated cropping system that uses nitrogen-rich wastewater from dairy farms to grow Lemna in shallow pools on otherwise less productive farmland. On top of the pools, the company has built what it believes are the largest agricultural robots in the world, which monitor plant health and harvest the Lemna sustainably. The Lemna can then be used on farms as a high-protein cattle feed or fertilizer supplement.Fyto’s systems are designed to rely on minimal land, water, and labor while creating a more sustainable, profitable food system.“We developed from scratch a robotic system that takes the guesswork out of farming this crop,” says Prapas, who previously led the translational research program of MIT’s Tata Center. “It looks at the crop on a daily basis, takes inventory to know how many plants there are, how much should be harvested to have healthy growth the next day, can detect if the color is slightly off or there are nutrient deficiencies, and can suggest different interventions based on all that data.”From kiddie pools to cow farmsPrapas’ first job out of college was with an MIT spinout called Green Fuel that harvested algae to make biofuel. He went back to school for a master’s and then a PhD in mechanical engineering, but he continued working with startups. Following his PhD at Colorado State University, he co-founded Factor[e] Ventures to fund and incubate startups focused on improving energy access in emerging markets.Through that work, Prapas was introduced to MIT’s Tata Center for Technology and Design.“We were really interested in the new technologies being developed at the MIT Tata Center, and in funding new startups taking on some of these global climate challenges in emerging markets,” Prapas recalls. “The Tata Center was interested in making sure these technologies get put into practice rather than patented and put on a shelf somewhere. It was a good synergy.”One of the people Prapas got to know was Rob Stoner, the founding director of the Tata Center, who encouraged Prapas to get more directly involved with commercializing new technologies. In 2017, Prapas joined the Tata Center as the translational research director. During that time, Prapas worked with MIT students, faculty, and staff to test their inventions in the real world. Much of that work involved innovations in agriculture.“Farming is a fact of life for a lot of folks around the world — both subsistence farming but also producing food for the community and beyond,” Prapas says. “That has huge implications for water usage, electricity consumption, labor. For years, I’d been thinking about how we make farming a more attractive endeavor for people: How do we make it less back-breaking, more efficient, and more economical?”Between his work at MIT and Factor[e], Prapas visited hundreds of farms around the world, where he started to think about the lack of good choices for farming inputs like animal feed and fertilizers. The problem represented a business opportunity.Fyto began with kiddie pools. Prapas started growing aquatic plants in his backyard, using them as a fertilizer source for vegetables. The experience taught him how difficult it would be to train people to grow and harvest Lemna at large scales on farms.“I realized we’d have to invent both the farming method — the agronomy — and the equipment and processes to grow it at scale cost effectively,” Prapas explains.Prapas started discussing his ideas with others around 2019.“The MIT and Boston ecosystems are great for pitching somewhat crazy ideas to willing audiences and seeing what sticks,” Prapas says. “There’s an intangible benefit of being at MIT, where you just can’t help but think of bold ideas and try putting them into practice.”Prapas, who left MIT to lead Fyto in 2019, partnered with Valerie Peng ’17, SM ’19, then a graduate student at MIT who became his first hire.“Farmers work so hard, and I have so much respect for what they do,” says Peng, who serves as Fyto’s head of engineering. “People talk about the political divide, but there’s a lot of alignment around using less, doing more with what you have, and making our food systems more resilient to drought, supply chain disruptions, and everything else. There’s more in common with everyone than you’d expect.”A new farming methodLemna can produce much more protein per acre than soy, another common source of protein on farms, but it requires a lot of nitrogen to grow. Fortunately, many types of farmers, especially large dairy farmers, have abundant nitrogen sources in the waste streams that come from washing out cow manure.“These waste streams are a big problem: In California it’s believed to be one of the largest source of greenhouse gas emissions in the agriculture sector despite the fact that hundreds of crops are grown in California,” Prapas says.For the last few years, Fyto has run its systems in pilots on farms, trialing the crop as feed and fertilizer before delivering to its customers. The systems Fyto has deployed so far are about 50 feet wide, but it is actively commissioning its newest version that’s 160 feet wide. Eventually, Fyto plans to sell the systems directly to farmers.Fyto is currently awaiting California’s approval for use in feed, but Lemna has already been approved in Europe. Fyto has also been granted a fertilizer license on its plant-based fertilizer, with promising early results in trials, and plans to sell new fertilizer products this year.Although Fyto is focused on dairy farms for its early deployments, it has also grown Lemna using manure from chicken, and Prapas notes that even people like cheese producers have a nitrogen waste problem that Fyto could solve.“Think of us like a polishing step you could put on the end of any system that has an organic waste stream,” Prapas says. “In that situation, we’re interested in growing our crops on it. We’ve had very few things that the plant can’t grow on. Globally, we see this as a new farming method, and that means it’s got a lot of potential applications.” More