More stories

  • in

    Palladium filters could enable cheaper, more efficient generation of hydrogen fuel

    Palladium is one of the keys to jump-starting a hydrogen-based energy economy. The silvery metal is a natural gatekeeper against every gas except hydrogen, which it readily lets through. For its exceptional selectivity, palladium is considered one of the most effective materials at filtering gas mixtures to produce pure hydrogen.Today, palladium-based membranes are used at commercial scale to provide pure hydrogen for semiconductor manufacturing, food processing, and fertilizer production, among other applications in which the membranes operate at modest temperatures. If palladium membranes get much hotter than around 800 kelvins, they can break down.Now, MIT engineers have developed a new palladium membrane that remains resilient at much higher temperatures. Rather than being made as a continuous film, as most membranes are, the new design is made from palladium that is deposited as “plugs” into the pores of an underlying supporting material. At high temperatures, the snug-fitting plugs remain stable and continue separating out hydrogen, rather than degrading as a surface film would.The thermally stable design opens opportunities for membranes to be used in hydrogen-fuel-generating technologies such as compact steam methane reforming and ammonia cracking — technologies that are designed to operate at much higher temperatures to produce hydrogen for zero-carbon-emitting fuel and electricity.“With further work on scaling and validating performance under realistic industrial feeds, the design could represent a promising route toward practical membranes for high-temperature hydrogen production,” says Lohyun Kim PhD ’24, a former graduate student in MIT’s Department of Mechanical Engineering.Kim and his colleagues report details of the new membrane in a study appearing today in the journal Advanced Functional Materials. The study’s co-authors are Randall Field, director of research at the MIT Energy Initiative (MITEI); former MIT chemical engineering graduate student Chun Man Chow PhD ’23; Rohit Karnik, the Jameel Professor in the Department of Mechanical Engineering at MIT and the director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS); and Aaron Persad, a former MIT research scientist in mechanical engineering who is now an assistant professor at the University of Maryland Eastern Shore.Compact futureThe team’s new design came out of a MITEI project related to fusion energy. Future fusion power plants, such as the one MIT spinout Commonwealth Fusion Systems is designing, will involve circulating hydrogen isotopes of deuterium and tritium at extremely high temperatures to produce energy from the isotopes’ fusing. The reactions inevitably produce other gases that will have to be separated, and the hydrogen isotopes will be recirculated into the main reactor for further fusion.Similar issues arise in a number of other processes for producing hydrogen, where gases must be separated and recirculated back into a reactor. Concepts for such recirculating systems would require first cooling down the gas before it can pass through hydrogen-separating membranes — an expensive and energy-intensive step that would involve additional machinery and hardware.“One of the questions we were thinking about is: Can we develop membranes which could be as close to the reactor as possible, and operate at higher temperatures, so we don’t have to pull out the gas and cool it down first?” Karnik says. “It would enable more energy-efficient, and therefore cheaper and compact, fusion systems.”The researchers looked for ways to improve the temperature resistance of palladium membranes. Palladium is the most effective metal used today to separate hydrogen from a variety of gas mixtures. It naturally attracts hydrogen molecules (H2) to its surface, where the metal’s electrons interact with and weaken the molecule’s bonds, causing H2 to temporarily break apart into its respective atoms. The individual atoms then diffuse through the metal and join back up on the other side as pure hydrogen.Palladium is highly effective at permeating hydrogen, and only hydrogen, from streams of various gases. But conventional membranes typically can operate at temperatures of up to 800 kelvins before the film starts to form holes or clumps up into droplets, allowing other gases to flow through.Plugging inKarnik, Kim and their colleagues took a different design approach. They observed that at high temperatures, palladium will start to shrink up. In engineering terms, the material is acting to reduce surface energy. To do this, palladium, and most other materials and even water, will pull apart and form droplets with the smallest surface energy. The lower the surface energy, the more stable the material can be against further heating.This gave the team an idea: If a supporting material’s pores could be “plugged” with deposits of palladium — essentially already forming a droplet with the lowest surface energy — the tight quarters might substantially increase palladium’s heat tolerance while preserving the membrane’s selectivity for hydrogen.To test this idea, they fabricated small chip-sized samples of membrane using a porous silica supporting layer (each pore measuring about half a micron wide), onto which they deposited a very thin layer of palladium. They applied techniques to essentially grow the palladium into the pores, and polished down the surface to remove the palladium layer and leave palladium only inside the pores.They then placed samples in a custom-built apparatus in which they flowed hydrogen-containing gas of various mixtures and temperatures to test its separation performance. The membranes remained stable and continued to separate hydrogen from other gases even after experiencing temperatures of up to 1,000 kelvins for over 100 hours — a significant improvement over conventional film-based membranes.“The use of palladium film membranes are generally limited to below around 800 kelvins, at which point they degrade,” Kim says. “Our plug design therefore extends palladium’s effective heat resilience by roughly at least 200 kelvins and maintains integrity far longer under extreme conditions.”These conditions are within the range of hydrogen-generating technologies such as steam methane reforming and ammonia cracking.Steam methane reforming is an established process that has required complex, energy-intensive systems to preprocess methane to a form where pure hydrogen can be extracted. Such preprocessing steps could be replaced with a compact “membrane reactor,” through which a methane gas would directly flow, and the membrane inside would filter out pure hydrogen. Such reactors would significantly cut down the size, complexity, and cost of producing hydrogen from steam methane reforming, and Kim estimates a membrane would have to work reliably in temperatures of up to nearly 1,000 kelvins. The team’s new membrane could work well within such conditions.Ammonia cracking is another way to produce hydrogen, by “cracking” or breaking apart ammonia. As ammonia is very stable in liquid form, scientists envision that it could be used as a carrier for hydrogen and be safely transported to a hydrogen fuel station, where ammonia could be fed into a membrane reactor that again pulls out hydrogen and pumps it directly into a fuel cell vehicle. Ammonia cracking is still largely in pilot and demonstration stages, and Kim says any membrane in an ammonia cracking reactor would likely operate at temperatures of around 800 kelvins — within the range of the group’s new plug-based design.Karnik emphasizes that their results are just a start. Adopting the membrane into working reactors will require further development and testing to ensure it remains reliable over much longer periods of time.“We showed that instead of making a film, if you make discretized nanostructures you can get much more thermally stable membranes,” Karnik says. “It provides a pathway for designing membranes for extreme temperatures, with the added possibility of using smaller amounts of expensive palladium, toward making hydrogen production more efficient and affordable. There is potential there.”This work was supported by Eni S.p.A. via the MIT Energy Initiative. More

  • in

    J-WAFS welcomes Daniela Giardina as new executive director

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced that Daniela Giardina has been named the new J-WAFS executive director. Giardina stepped into the role at the start of the fall semester, replacing founding executive director Renee J. Robins ’83, who is retiring after leading the program since its launch in 2014.“Daniela brings a deep background in water and food security, along with excellent management and leadership skills,” says Robins. “Since I first met her nearly 10 years ago, I have been impressed with her commitment to working on global water and food challenges through research and innovation. I am so happy to know that I will be leaving J-WAFS in her experienced and capable hands.”A decade of impactJ-WAFS fuels research, innovation, and collaboration to solve global water and food systems challenges. The mission of J-WAFS is to ensure safe and resilient supplies of water and food to meet the local and global needs of a dramatically growing population on a rapidly changing planet. J-WAFS funding opportunities are open to researchers in every MIT department, lab, and center, spanning all disciplines. Supported research projects include those involving engineering, science, technology, business, social science, economics, architecture, urban planning, and more. J-WAFS research and related activities include early-stage projects, sponsored research, commercialization efforts, student activities and mentorship, events that convene local and global experts, and international-scale collaborations.The global water, food, and climate emergency makes J-WAFS’ work both timely and urgent. J-WAFS-funded researchers are achieving tangible, real-time solutions and results. Since its inception, J-WAFS has distributed nearly $26 million in grants, fellowships, and awards to the MIT community, supporting roughly 10 percent of MIT’s faculty and 300 students, postdocs, and research staff from 40 MIT departments, labs, and centers. J-WAFS grants have also helped researchers launch 13 startups and receive over $25 million in follow-on funding.Giardina joins J-WAFS at an exciting time in the program’s history; in the spring, J-WAFS celebrated 10 years of supporting water and food research at MIT. The milestone was commemorated at a special event attended by MIT leadership, researchers, students, staff, donors, and others in the J-WAFS community. As J-WAFS enters its second decade, interest and opportunities for water and food research continue to grow. “I am truly honored to join J-WAFS at such a pivotal moment,” Giardina says.Putting research into real-world practiceGiardina has nearly two decades of experience working with nongovernmental organizations and research institutions on humanitarian and development projects. Her work has taken her to Africa, Latin America, the Caribbean, and Central and Southeast Asia, where she has focused on water and food security projects. She has conducted technical trainings and assessments, and managed projects from design to implementation, including monitoring and evaluation.Giardina comes to MIT from Oxfam America, where she directed disaster risk reduction and climate resilience initiatives, working on approaches to strengthen local leadership, community-based disaster risk reduction, and anticipatory action. Her role at Oxfam required her to oversee multimillion-dollar initiatives, supervising international teams, managing complex donor portfolios, and ensuring rigorous monitoring across programs. She connected hands-on research with community-oriented implementation, for example, by partnering with MIT’s D-Lab to launch an innovation lab in rural El Salvador. Her experience will help guide J-WAFS as it pursues impactful research that will make a difference on the ground.Beyond program delivery, Giardina has played a strategic leadership role in shaping Oxfam’s global disaster risk reduction strategy and representing the organization at high-level U.N. and academic forums. She is multilingual and adept at building partnerships across cultures, having worked with governments, funders, and community-based organizations to strengthen resilience and advance equitable access to water and food.Giardina holds a PhD in sustainable development from the University of Brescia in Italy. She also holds a master’s degree in environmental engineering from the Politecnico of Milan in Italy and is a chartered engineer since 2005 (equivalent to a professional engineering license in the United States). She also serves as vice chair of the Boston Network for International Development, a nonprofit that connects and strengthens Boston’s global development community.“I have seen first-hand how climate change, misuse of resources, and inequality are undermining water and food security around the globe,” says Giardina. “What particularly excites me about J-WAFS is its interdisciplinary approach in facilitating meaningful partnerships to solve many of these problems through research and innovation. I am eager to help expand J-WAFS’ impact by strengthening existing programs, developing new initiatives, and building strategic partnerships that translate MIT’s groundbreaking research into real-world solutions,” she adds.A legacy of leadershipRenee Robins will retire with over 23 years of service to MIT. Years before joining the staff, she graduated from MIT with dual bachelor’s degrees in both biology and humanities/anthropology. She then went on to earn a master’s degree in public policy from Carnegie Mellon University. In 1998, she came back to MIT to serve in various roles across campus, including with the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She also worked at the Harvard Graduate School of Education, where she managed a $15 million research program as it scaled from implementation in one public school district to 59 schools in seven districts across North Carolina.In late 2014, Robins joined J-WAFS as its founding executive director, playing a pivotal role in building it from the ground up and expanding the team to six full-time professionals. She worked closely with J-WAFS founding director Professor John H. Lienhard V to develop and implement funding initiatives, develop, and shepherd corporate-sponsored research partnerships, and mentor students in the Water Club and Food and Agriculture Club, as well as numerous other students. Throughout the years, Robins has inspired a diverse range of researchers to consider how their capabilities and expertise can be applied to water and food challenges. Perhaps most importantly, her leadership has helped cultivate a vibrant community, bringing together faculty, students, and research staff to be exposed to unfamiliar problems and new methodologies, to explore how their expertise might be applied, to learn from one another, and to collaborate.At the J-WAFS 10th anniversary event in May, Robins noted, “it has been a true privilege to work alongside John Lienhard, our dedicated staff, and so many others. It’s been particularly rewarding to see the growth of an MIT network of water and food researchers that J-WAFS has nurtured, which grew out of those few individuals who saw themselves to be working in solitude on these critical challenges.”Lienhard also spoke, thanking Robins by saying she “was my primary partner in building J-WAFS and [she is] a strong leader and strategic thinker.”Not only is Robins a respected leader, she is also a dear friend to so many at MIT and beyond. In 2021, she was recognized for her outstanding leadership and commitment to J-WAFS and the Institute with an MIT Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research.Outside of MIT, Robins has served on the Board of Trustees for the International Honors Program — a comparative multi-site study abroad program, where she previously studied comparative culture and anthropology in seven countries around the world. Robins has also acted as an independent consultant, including work on program design and strategy around the launch of the Université Mohammed VI Polytechnique in Morocco.Continuing the tradition of excellenceGiardina will report to J-WAFS director Rohit Karnik, the Abdul Latif Jameel Professor of Water and Food in the MIT Department of Mechanical Engineering. Karnik was named the director of J-WAFS in January, succeeding John Lienhard, who retired earlier this year.As executive director, Giardina will be instrumental in driving J-WAFS’ mission and impact. She will work with Karnik to help shape J-WAFS’ programs, long-term strategy, and goals. She will also be responsible for supervising J-WAFS staff, managing grant administration, and overseeing and advising on financial decisions.“I am very grateful to John and Renee, who have helped to establish J-WAFS as the Institute’s preeminent program for water and food research and significantly expanded MIT’s research efforts and impact in the water and food space,” says Karnik. “I am confident that with Daniela as executive director, J-WAFS will continue in the tradition of excellence that Renee and John put into place, as we move into the program’s second decade,” he notes.Giardina adds, “I am inspired by the lab’s legacy of Renee Robins and Professor Lienhard, and I look forward to working with Professor Karnik and the J-WAFS staff.” More

  • in

    MIT gears up to transform manufacturing

    “Manufacturing is the engine of society, and it is the backbone of robust, resilient economies,” says John Hart, head of MIT’s Department of Mechanical Engineering (MechE) and faculty co-director of the MIT Initiative for New Manufacturing (INM). “With manufacturing a lively topic in today’s news, there’s a renewed appreciation and understanding of the importance of manufacturing to innovation, to economic and national security, and to daily lives.”Launched this May, INM will “help create a transformation of manufacturing through new technology, through development of talent, and through an understanding of how to scale manufacturing in a way that enables imparts higher productivity and resilience, drives adoption of new technologies, and creates good jobs,” Hart says.INM is one of MIT’s strategic initiatives and builds on the successful three-year-old Manufacturing@MIT program. “It’s a recognition by MIT that manufacturing is an Institute-wide theme and an Institute-wide priority, and that manufacturing connects faculty and students across campus,” says Hart. Alongside Hart, INM’s faculty co-directors are Institute Professor Suzanne Berger and Chris Love, professor of chemical engineering.The initiative is pursuing four main themes: reimagining manufacturing technologies and systems, elevating the productivity and human experience of manufacturing, scaling up new manufacturing, and transforming the manufacturing base.Breaking manufacturing barriers for corporationsAmgen, Autodesk, Flex, GE Vernova, PTC, Sanofi, and Siemens are founding members of INM’s industry consortium. These industry partners will work closely with MIT faculty, researchers, and students across many aspects of manufacturing-related research, both in broad-scale initiatives and in particular areas of shared interests. Membership requires a minimum three-year commitment of $500,000 a year to manufacturing-related activities at MIT, including the INM membership fee of $275,000 per year, which supports several core activities that engage the industry members.One major thrust for INM industry collaboration is the deployment and adoption of AI and automation in manufacturing. This effort will include seed research projects at MIT, collaborative case studies, and shared strategy development.INM also offers companies participation in the MIT-wide New Manufacturing Research effort, which is studying the trajectories of specific manufacturing industries and examining cross-cutting themes such as technology and financing.Additionally, INM will concentrate on education for all professions in manufacturing, with alliances bringing together corporations, community colleges, government agencies, and other partners. “We’ll scale our curriculum to broader audiences, from aspiring manufacturing workers and aspiring production line supervisors all the way up to engineers and executives,” says Hart.In workforce training, INM will collaborate with companies broadly to help understand the challenges and frame its overall workforce agenda, and with individual firms on specific challenges, such as acquiring suitably prepared employees for a new factory.Importantly, industry partners will also engage directly with students. Founding member Flex, for instance, hosted MIT researchers and students at the Flex Institute of Technology in Sorocaba, Brazil, developing new solutions for electronics manufacturing.“History shows that you need to innovate in manufacturing alongside the innovation in products,” Hart comments. “At MIT, as more students take classes in manufacturing, they’ll think more about key manufacturing issues as they decide what research problems they want to solve, or what choices they make as they prototype their devices. The same is true for industry — companies that operate at the frontier of manufacturing, whether through internal capabilities or their supply chains, are positioned to be on the frontier of product innovation and overall growth.”“We’ll have an opportunity to bring manufacturing upstream to the early stage of research, designing new processes and new devices with scalability in mind,” he says.Additionally, MIT expects to open new manufacturing-related labs and to further broaden cooperation with industry at existing shared facilities, such as MIT.nano. Hart says that facilities will also invite tighter collaborations with corporations — not just providing advanced equipment, but working jointly on, say, new technologies for weaving textiles, or speeding up battery manufacturing.Homing in on the United StatesINM is a global project that brings a particular focus on the United States, which remains the world’s second-largest manufacturing economy, but has suffered a significant decline in manufacturing employment and innovation.One key to reversing this trend and reinvigorating the U.S. manufacturing base is advocacy for manufacturing’s critical role in society and the career opportunities it offers.“No one really disputes the importance of manufacturing,” Hart says. “But we need to elevate interest in manufacturing as a rewarding career, from the production workers to manufacturing engineers and leaders, through advocacy, education programs, and buy-in from industry, government, and academia.”MIT is in a unique position to convene industry, academic, and government stakeholders in manufacturing to work together on this vital issue, he points out.Moreover, in times of radical and rapid changes in manufacturing, “we need to focus on deploying new technologies into factories and supply chains,” Hart says. “Technology is not all of the solution, but for the U.S. to expand our manufacturing base, we need to do it with technology as a key enabler, embracing companies of all sizes, including small and medium enterprises.”“As AI becomes more capable, and automation becomes more flexible and more available, these are key building blocks upon which you can address manufacturing challenges,” he says. “AI and automation offer new accelerated ways to develop, deploy, and monitor production processes, which present a huge opportunity and, in some cases, a necessity.”“While manufacturing is always a combination of old technology, new technology, established practice, and new ways of thinking, digital technology gives manufacturers an opportunity to leapfrog competitors,” Hart says. “That’s very, very powerful for the U.S. and any company, or country, that aims to create differentiated capabilities.”Fortunately, in recent years, investors have increasingly bought into new manufacturing in the United States. “They see the opportunity to re-industrialize, to build the factories and production systems of the future,” Hart says.“That said, building new manufacturing is capital-intensive, and takes time,” he adds. “So that’s another area where it’s important to convene stakeholders and to think about how startups and growth-stage companies build their capital portfolios, how large industry can support an ecosystem of small businesses and young companies, and how to develop talent to support those growing companies.”All these concerns and opportunities in the manufacturing ecosystem play to MIT’s strengths. “MIT’s DNA of cross-disciplinary collaboration and working with industry can let us create a lot of impact,” Hart emphasizes. “We can understand the practical challenges. We can also explore breakthrough ideas in research and cultivate successful outcomes, all the way to new companies and partnerships. Sometimes those are seen as disparate approaches, but we like to bring them together.” More

  • in

    Would you like that coffee with iron?

    Around the world, about 2 billion people suffer from iron deficiency, which can lead to anemia, impaired brain development in children, and increased infant mortality.To combat that problem, MIT researchers have come up with a new way to fortify foods and beverages with iron, using small crystalline particles. These particles, known as metal-organic frameworks, could be sprinkled on food, added to staple foods such as bread, or incorporated into drinks like coffee and tea.“We’re creating a solution that can be seamlessly added to staple foods across different regions,” says Ana Jaklenec, a principal investigator at MIT’s Koch Institute for Integrative Cancer Research. “What’s considered a staple in Senegal isn’t the same as in India or the U.S., so our goal was to develop something that doesn’t react with the food itself. That way, we don’t have to reformulate for every context — it can be incorporated into a wide range of foods and beverages without compromise.”The particles designed in this study can also carry iodine, another critical nutrient. The particles could also be adapted to carry important minerals such as zinc, calcium, or magnesium.“We are very excited about this new approach and what we believe is a novel application of metal-organic frameworks to potentially advance nutrition, particularly in the developing world,” says Robert Langer, the David H. Koch Institute Professor at MIT and a member of the Koch Institute.Jaklenec and Langer are the senior authors of the study, which appears today in the journal Matter. MIT postdoc Xin Yang and Linzixuan (Rhoda) Zhang PhD ’24 are the lead authors of the paper.Iron stabilizationFood fortification can be a successful way to combat nutrient deficiencies, but this approach is often challenging because many nutrients are fragile and break down during storage or cooking. When iron is added to foods, it can react with other molecules in the food, giving the food a metallic taste.In previous work, Jaklenec’s lab has shown that encapsulating nutrients in polymers can protect them from breaking down or reacting with other molecules. In a small clinical trial, the researchers found that women who ate bread fortified with encapsulated iron were able to absorb the iron from the food.However, one drawback to this approach is that the polymer adds a lot of bulk to the material, limiting the amount of iron or other nutrients that end up in the food.“Encapsulating iron in polymers significantly improves its stability and reactivity, making it easier to add to food,” Jaklenec says. “But to be effective, it requires a substantial amount of polymer. That limits how much iron you can deliver in a typical serving, making it difficult to meet daily nutritional targets through fortified foods alone.”To overcome that challenge, Yang came up with a new idea: Instead of encapsulating iron in a polymer, they could use iron itself as a building block for a crystalline particle known as a metal-organic framework, or MOF (pronounced “moff”).MOFs consist of metal atoms joined by organic molecules called ligands to create a rigid, cage-like structure. Depending on the combination of metals and ligands chosen, they can be used for a wide variety of applications.“We thought maybe we could synthesize a metal-organic framework with food-grade ligands and food-grade micronutrients,” Yang says. “Metal-organic frameworks have very high porosity, so they can load a lot of cargo. That’s why we thought we could leverage this platform to make a new metal-organic framework that could be used in the food industry.”In this case, the researchers designed a MOF consisting of iron bound to a ligand called fumaric acid, which is often used as a food additive to enhance flavor or help preserve food.This structure prevents iron from reacting with polyphenols — compounds commonly found in foods such as whole grains and nuts, as well as coffee and tea. When iron does react with those compounds, it forms a metal polyphenol complex that cannot be absorbed by the body.The MOFs’ structure also allows them to remain stable until they reach an acidic environment, such as the stomach, where they break down and release their iron payload.Double-fortified saltsThe researchers also decided to include iodine in their MOF particle, which they call NuMOF. Iodized salt has been very successful at preventing iodine deficiency, and many efforts are now underway to create “double-fortified salts” that would also contain iron.Delivering these nutrients together has proven difficult because iron and iodine can react with each other, making each one less likely to be absorbed by the body. In this study, the MIT team showed that once they formed their iron-containing MOF particles, they could load them with iodine, in a way that the iron and iodine do not react with each other.In tests of the particles’ stability, the researchers found that the NuMOFs could withstand long-term storage, high heat and humidity, and boiling water.Throughout these tests, the particles maintained their structure. When the researchers then fed the particles to mice, they found that both iron and iodine became available in the bloodstream within several hours of the NuMOF consumption.The researchers are now working on launching a company that is developing coffee and other beverages fortified with iron and iodine. They also hope to continue working toward a double-fortified salt that could be consumed on its own or incorporated into staple food products.The research was partially supported by J-WAFS Fellowships for Water and Food Solutions.Other authors of the paper include Fangzheng Chen, Wenhao Gao, Zhiling Zheng, Tian Wang, Erika Yan Wang, Behnaz Eshaghi, and Sydney MacDonald. More

  • in

    MIT chemists boost the efficiency of a key enzyme in photosynthesis

    During photosynthesis, an enzyme called rubisco catalyzes a key reaction — the incorporation of carbon dioxide into organic compounds to create sugars. However, rubisco, which is believed to be the most abundant enzyme on Earth, is very inefficient compared to the other enzymes involved in photosynthesis.MIT chemists have now shown that they can greatly enhance a version of rubisco found in bacteria from a low-oxygen environment. Using a process known as directed evolution, they identified mutations that could boost rubisco’s catalytic efficiency by up to 25 percent.The researchers now plan to apply their technique to forms of rubisco that could be used in plants to help boost their rates of photosynthesis, which could potentially improve crop yields.“This is, I think, a compelling demonstration of successful improvement of a rubisco’s enzymatic properties, holding out a lot of hope for engineering other forms of rubisco,” says Matthew Shoulders, the Class of 1942 Professor of Chemistry at MIT.Shoulders and Robert Wilson, a research scientist in the Department of Chemistry, are the senior authors of the new study, which appears this week in the Proceedings of the National Academy of Sciences. MIT graduate student Julie McDonald is the paper’s lead author.Evolution of efficiencyWhen plants or photosynthetic bacteria absorb energy from the sun, they first convert it into energy-storing molecules such as ATP. In the next phase of photosynthesis, cells use that energy to transform a molecule known as ribulose bisphosphate into glucose, which requires several additional reactions. Rubisco catalyzes the first of those reactions, known as carboxylation. During that reaction, carbon from CO2 is added to ribulose bisphosphate.Compared to the other enzymes involved in photosynthesis, rubisco is very slow, catalyzing only one to 10 reactions per second. Additionally, rubisco can also interact with oxygen, leading to a competing reaction that incorporates oxygen instead of carbon — a process that wastes some of the energy absorbed from sunlight.“For protein engineers, that’s a really attractive set of problems because those traits seem like things that you could hopefully make better by making changes to the enzyme’s amino acid sequence,” McDonald says.Previous research has led to improvement in rubisco’s stability and solubility, which resulted in small gains in enzyme efficiency. Most of those studies used directed evolution — a technique in which a naturally occurring protein is randomly mutated and then screened for the emergence of new, desirable features.This process is usually done using error-prone PCR, a technique that first generates mutations in vitro (outside of the cell), typically introducing only one or two mutations in the target gene. In past studies on rubisco, this library of mutations was then introduced into bacteria that grow at a rate relative to rubisco activity. Limitations in error-prone PCR and in the efficiency of introducing new genes restrict the total number of mutations that can be generated and screened using this approach. Manual mutagenesis and selection steps also add more time to the process over multiple rounds of evolution.The MIT team instead used a newer mutagenesis technique that the Shoulders Lab previously developed, called MutaT7. This technique allows the researchers to perform both mutagenesis and screening in living cells, which dramatically speeds up the process. Their technique also enables them to mutate the target gene at a higher rate.“Our continuous directed evolution technique allows you to look at a lot more mutations in the enzyme than has been done in the past,” McDonald says.Better rubiscoFor this study, the researchers began with a version of rubisco, isolated from a family of semi-anaerobic bacteria known as Gallionellaceae, that is one of the fastest rubisco found in nature. During the directed evolution experiments, which were conducted in E. coli, the researchers kept the microbes in an environment with atmospheric levels of oxygen, creating evolutionary pressure to adapt to oxygen.After six rounds of directed evolution, the researchers identified three different mutations that improved the rubisco’s resistance to oxygen. Each of these mutations are located near the enzyme’s active site (where it performs carboxylation or oxygenation). The researchers believe that these mutations improve the enzyme’s ability to preferentially interact with carbon dioxide over oxygen, which leads to an overall increase in carboxylation efficiency.“The underlying question here is: Can you alter and improve the kinetic properties of rubisco to operate better in environments where you want it to operate better?” Shoulders says. “What changed through the directed evolution process was that rubisco began to like to react with oxygen less. That allows this rubisco to function well in an oxygen-rich environment, where normally it would constantly get distracted and react with oxygen, which you don’t want it to do.”In ongoing work, the researchers are applying this approach to other forms of rubisco, including rubisco from plants. Plants are believed to lose about 30 percent of the energy from the sunlight they absorb through a process called photorespiration, which occurs when rubisco acts on oxygen instead of carbon dioxide.“This really opens the door to a lot of exciting new research, and it’s a step beyond the types of engineering that have dominated rubisco engineering in the past,” Wilson says. “There are definite benefits to agricultural productivity that could be leveraged through a better rubisco.”The research was funded, in part, by the National Science Foundation, the National Institutes of Health, an Abdul Latif Jameel Water and Food Systems Lab Grand Challenge grant, and a Martin Family Society Fellowship for Sustainability. More

  • in

    How J-WAFS Solutions grants bring research to market

    For the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), 2025 marks a decade of translating groundbreaking research into tangible solutions for global challenges. Few examples illustrate that mission better than NONA Technologies. With support from a J-WAFS Solutions grant, MIT electrical engineering and biological engineering Professor Jongyoon Han and his team developed a portable desalination device that transforms seawater into clean drinking water without filters or high-pressure pumps. The device stands apart from traditional systems because conventional desalination technologies, like reverse osmosis, are energy-intensive, prone to fouling, and typically deployed at large, centralized plants. In contrast, the device developed in Han’s lab employs ion concentration polarization technology to remove salts and particles from seawater, producing potable water that exceeds World Health Organization standards. It is compact, solar-powered, and operable at the push of a button — making it an ideal solution for off-grid and disaster-stricken areas.This research laid the foundation for spinning out NONA Technologies along with co-founders Junghyo Yoon PhD ’21 from Han’s lab and Bruce Crawford MBA ’22, to commercialize the technology and address pressing water-scarcity issues worldwide. “This is really the culmination of a 10-year journey that I and my group have been on,” said Han in an earlier MIT News article. “We worked for years on the physics behind individual desalination processes, but pushing all those advances into a box, building a system, and demonstrating it in the ocean … that was a really meaningful and rewarding experience for me.” You can watch this video showcasing the device in action.Moving breakthrough research out of the lab and into the world is a well-known challenge. While traditional “seed” grants typically support early-stage research at Technology Readiness Level (TRL) 1-2, few funding sources exist to help academic teams navigate to the next phase of technology development. The J-WAFS Solutions Program is strategically designed to address this critical gap by supporting technologies in the high-risk, early-commercialization phase that is often neglected by traditional research, corporate, and venture funding. By supporting technologies at TRLs 3-5, the program increases the likelihood that promising innovations will survive beyond the university setting, advancing sufficiently to attract follow-on funding.Equally important, the program gives academic researchers the time, resources, and flexibility to de-risk their technology, explore customer need and potential real-world applications, and determine whether and how they want to pursue commercialization. For faculty-led teams like Han’s, the J-WAFS Solutions Program provided the critical financial runway and entrepreneurial guidance needed to refine the technology, test assumptions about market fit, and lay the foundation for a startup team. While still in the MIT innovation ecosystem, Nona secured over $200,000 in non-dilutive funding through competitions and accelerators, including the prestigious MIT delta v Educational Accelerator. These early wins laid the groundwork for further investment and technical advancement.Since spinning out of MIT, NONA has made major strides in both technology development and business viability. What started as a device capable of producing just over half-a-liter of clean drinking water per hour has evolved into a system that now delivers 10 times that capacity, at 5 liters per hour. The company successfully raised a $3.5 million seed round to advance its portable desalination device, and entered into a collaboration with the U.S. Army Natick Soldier Systems Center, where it co-developed early prototypes and began generating revenue while validating the technology. Most recently, NONA was awarded two SBIR Phase I grants totaling $575,000, one from the National Science Foundation and another from the National Institute of Environmental Health Sciences.Now operating out of Greentown Labs in Somerville, Massachusetts, NONA has grown to a dedicated team of five and is preparing to launch its nona5 product later this year, with a wait list of over 1,000 customers. It is also kicking off its first industrial pilot, marking a key step toward commercial scale-up. “Starting a business as a postdoc was challenging, especially with limited funding and industry knowledge,” says Yoon, who currently serves as CTO of NONA. “J-WAFS gave me the financial freedom to pursue my venture, and the mentorship pushed me to hit key milestones. Thanks to J-WAFS, I successfully transitioned from an academic researcher to an entrepreneur in the water industry.”NONA is one of several J-WAFS-funded technologies that have moved from the lab to market, part of a growing portfolio of water and food solutions advancing through MIT’s innovation pipeline. As J-WAFS marks a decade of catalyzing innovation in water and food, NONA exemplifies what is possible when mission-driven research is paired with targeted early-stage support and mentorship.To learn more or get involved in supporting startups through the J-WAFS Solutions Program, please contact jwafs@mit.edu. More

  • in

    MIT students advance solutions for water and food with the help of J-WAFS

    For the past decade, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has been instrumental in promoting student engagement across the Institute to help solve the world’s most pressing water and food system challenges. As part of J-WAFS’ central mission of securing the world’s water and food supply, J-WAFS aims to cultivate the next generation of leaders in the water and food sectors by encouraging MIT student involvement through a variety of programs and mechanisms that provide research funding, mentorship, and other types of support.J-WAFS offers a range of opportunities for both undergraduate and graduate students to engage in the advancement of water and food systems research. These include graduate student fellowships, travel grants for participation in conferences, funding for research projects in India, video competitions highlighting students’ water and food research, and support for student-led organizations and initiatives focused on critical areas in water and food.As J-WAFS enters its second decade, it continues to expose students across the Institute to experiential hands-on water and food research, career and other networking opportunities, and a platform to develop their innovative and collaborative solutions.Graduate student fellowshipsIn 2017, J-WAFS inaugurated two graduate student fellowships: the Rasikbhai L. Meswani Fellowship for Water Solutions and the J-WAFS Graduate Student Fellowship Program. The Rasikbhai L. Meswani Fellowship for Water Solutions is a doctoral fellowship for students pursuing research related to water for human need at MIT. The fellowship is made possible by Elina and Nikhil Meswani and family. Each year, up to two outstanding students are selected to receive fellowship support for one academic semester. Through it, J-WAFS seeks to support distinguished MIT students who are pursuing solutions to the pressing global water supply challenges of our time. The J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship.Aditya Avinash Ghodgaonkar, a PhD student in the Department of Mechanical Engineering (MechE), reflects on how receiving a J-WAFS graduate student fellowship positively impacted his research on the design of low-cost emitters for affordable, resilient drip irrigation for farmers: “My J-WAFS fellowship gave me the flexibility and financial support needed to explore new directions in the area of clog-resistant drip irrigation that had a higher risk element that might not have been feasible to manage on an industrially sponsored project,” Ghodgaonkar explains. Emitters, which control the volume and flow rate of water used during irrigation, often clog due to small particles like sand. Ghodgaonkar worked with Professor Amos Winter, and with farmers in resource-constrained communities in countries like Jordan and Morocco, to develop an emitter that is mechanically more resistant to clogging. Ghodgaonkar reports that their energy-efficient, compact, clog-resistant drip emitters are being commercialized by Toro and may be available for retail in the next few years. The opportunities and funding support Ghodgaonkar has received from J-WAFS contributed greatly to his entrepreneurial success and the advancement of the water and agricultural sectors.Linzixuan (Rhoda) Zhang, a PhD student advised by Professor Robert Langer and Principal Research Scientist Ana Jaklenec of the Department of Chemical Engineering, was a 2022 J-WAFS Graduate Student Fellow. With the fellowship, Zhang was able to focus on her innovative research on a novel micronutrient delivery platform that fortifies food with essential vitamins and nutrients. “We intake micronutrients from basically all the healthy food that we eat; however, around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” Zhang says. Her research involves the development of biodegradable polymers that can deliver these micronutrients in harsh environments in underserved regions of the world. “Vitamin A is not very stable, for example; we have vitamin A in different vegetables but when we cook them, the vitamin can easily degrade,” Zhang explains. However, when vitamin A is encapsulated in the microparticle platform, simulation of boiling and of the stomach environment shows that vitamin A was stabilized. “The meaningful factors behind this experiment are real,” says Zhang. The J-WAFS Fellowship helped position Zhang to win the 2024 Collegiate Inventors Competition for this work.J-WAFS grant for water and food projects in IndiaJ-WAFS India Grants are intended to further the work being pursued by MIT individuals as a part of their research, innovation, entrepreneurship, coursework, or related activities. Faculty, research staff, and undergraduate and graduate students are eligible to apply. The program aims to support projects that will benefit low-income communities in India, and facilitates travel and other expenses related to directly engaging with those communities.Gokul Sampath, a PhD student in the Department of Urban Studies and Planning, and Jonathan Bessette, a PhD student in MechE, initially met through J-WAFS-sponsored conference travel, and discovered their mutual interest in the problem of arsenic in water in India. Together, they developed a cross-disciplinary proposal that received a J-WAFS India Grant. Their project is studying how women in rural India make decisions about where they fetch water for their families, and how these decisions impact exposure to groundwater contaminants like naturally-occurring arsenic. Specifically, they are developing low-cost remote sensors to better understand water-fetching practices. The grant is enabling Sampath and Bessette to equip Indian households with sensor-enabled water collection devices (“smart buckets”) that will provide them data about fetching practices in arsenic-affected villages. By demonstrating the efficacy of a sensor-based approach, the team hopes to address a major data gap in international development. “It is due to programs like the Jameel Water and Food Systems Lab that I was able to obtain the support for interdisciplinary work on connecting water security, public health, and regional planning in India,” says Sampath.J-WAFS travel grants for water conferencesIn addition to funding graduate student research, J-WAFS also provides grants for graduate students to attend water conferences worldwide. Typically, students will only receive travel funding to attend conferences where they are presenting their research. However, the J-WAFS travel grants support learning, networking, and career exploration opportunities for exceptional MIT graduate students who are interested in a career in the water sector, whether in academia, nonprofits, government, or industry.Catherine Lu ’23, MNG ’24 was awarded a 2023 Travel Grant to attend the UNC Water and Health Conference in North Carolina. The conference serves as a curated space for policymakers, practitioners, and researchers to convene and assess data, scrutinize scientific findings, and enhance new and existing strategies for expanding access to and provision of services for water, sanitation, and hygiene (WASH). Lu, who studied civil and environmental engineering, worked with Professor Dara Entekhabi on modeling and predicting droughts in Africa using satellite Soil Moisture Active Passive (SMAP) data. As she evaluated her research trajectory and career options in the water sector, Lu found the conference to be informative and enlightening. “I was able to expand my knowledge on all the sectors and issues that are related to water and the implications they have on my research topic.” Furthermore, she notes: “I was really impressed by the diverse range of people that were able to attend the conference. The global perspective offered at the conference provided a valuable context for understanding the challenges and successes of different regions around the world — from WASH education in schools in Zimbabwe and India to rural water access disparities in the United States … Being able to engage with such passionate and dedicated people has motivated me to continue progress in this sector.” Following graduation, Lu secured a position as a water resources engineer at CDM Smith, an engineering and construction firm.Daniela Morales, a master’s student in city planning in the Department of Urban Studies and Planning, was a 2024 J-WAFS Travel Grant recipient who attended World Water Week in Stockholm, Sweden. The annual global conference is organized by the Stockholm International Water Institute and convenes leading experts, decision-makers, and professionals in the water sector to actively engage in discussions and developments addressing critical water-related challenges. Morales’ research interests involve drinking water quality and access in rural and peri-urban areas affected by climate change impacts, the effects of municipal water shutoffs on marginalized communities, and the relationship between regional water management and public health outcomes. When reflecting on her experience at the conference, Morales writes: “Being part of this event has given me so much motivation to continue my professional and academic journey in water management as it relates to public health and city planning … There was so much energy that was collectively generated in the conference, and so many new ideas that I was able to process around my own career interests and my role as a future planner in water management, that the last day of the conference felt less like an ending and more of the beginning of a new chapter. I am excited to take all the information I learned to work towards my own research, and continue to build relationships with all the new contacts I made.” Morales also notes that without the support of the J-WAFS grant, “I would not have had the opportunity to make it to Stockholm and participate in such a unique week of water wisdom.”Seed grants and Solutions grantsJ-WAFS offers seed grants for early-stage research and Solutions Grants for later-stage research that is ready to move from the lab to the commercial world. Proposals for both types of grants must be submitted and led by an MIT principal investigator, but graduate students, and sometimes undergraduates, are often supported by these grants.Arjav Shah, a PhD-MBA student in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, is currently pursuing the commercialization of a water treatment technology that was first supported through a 2019 J-WAFS seed grant and then a 2022 J-WAFS Solutions Grant with Professor Patrick Doyle. The technology uses hydrogels to remove a broad range of micropollutants from water. The Solutions funding enables entrepreneurial students and postdocs to lay the groundwork to commercialize a technology by assessing use scenarios and exploring business needs with actual potential customers. “With J-WAFS’ support, we were not only able to scale up the technology, but also gain a deeper understanding of market needs and develop a strong business case,” says Shah. Shah and the Solutions team have discovered that the hydrogels could be used in several real-world contexts, ranging from large-scale industrial use to small-scale, portable, off-grid applications. “We are incredibly grateful to J-WAFS for their support, particularly in fostering industry connections and facilitating introductions to investors, potential customers, and experts,” Shah adds.Shah was also a 2023 J-WAFS Travel Grant awardee who attended Stockholm World Water Week that year. He says, “J-WAFS has played a pivotal role in both my academic journey at MIT and my entrepreneurial pursuits. J-WAFS support has helped me grow both as a scientist and an aspiring entrepreneur. The exposure and opportunities provided have allowed me to develop critical skills such as customer discovery, financial modeling, business development, fundraising, and storytelling — all essential for translating technology into real-world impact. These experiences provided invaluable insights into what it takes to bring a technology from the lab to market.”Shah is currently leading efforts to spin out a company to commercialize the hydrogel research. Since receiving J-WAFS support, the team has made major strides toward launching a startup company, including winning the Pillar VC Moonshot Prize, Cleantech Open National Grand Prize, MassCEC Catalyst Award, and participation in the NSF I-Corps National Program.J-WAFS student video competitionsJ-WAFS has hosted two video competitions: MIT Research for a Water Secure Future and MIT Research for a Food Secure Future, in honor of World Water Day and Word Food Day, respectively. In these competitions, students are tasked with creating original videos showcasing their innovative water and food research conducted at MIT. The opportunity is open to MIT students, postdocs, and recent alumni.Following a review by a distinguished panel of judges, Vishnu Jayaprakash SM ’19, PhD ’22 won first place in the 2022 J-WAFS World Food Day Student Video Competition for his video focused on eliminating pesticide pollution and waste. Jayaprakash delved into the science behind AgZen-Cloak, a new generation of agricultural sprays that prevents pesticides from bouncing off of plants and seeping into the ground, thus causing harmful runoff. The J-WAFS competition provided Jayaprakash with a platform to highlight the universal, low-cost, and environmentally sustainable benefits of AgZen-Cloak. Jayaprakash worked on similar technology as a funded student on a J-WAFS Solutions grant with Professor Kripa Varanasi. The Solutions grant, in fact, helped Jayaprakash and Varanasi to launch AgZen, a company that deploys AgZen-Cloak and other products and technologies to control the interactions of droplets and sprays with crop surfaces. AgZen is currently helping farmers sustainably tend to their agricultural plots while also protecting the environment.  In 2021, Hilary Johnson SM ’18, PhD ’22, won first place in the J-WAFS World Water Day video competition. Her video highlighted her work on a novel pump that uses adaptive hydraulics for improved pump efficiency. The pump was part of a sponsored research project with Xylem Inc., a J-WAFS Research Affiliate company, and Professor Alex Slocum of MechE. At the time, Johnson was a PhD student in Slocum’s lab. She was instrumental in the development of the pump by engineering the volute to expand and contract to meet changing system flow rates. Johnson went on to later become a 2021-22 J-WAFS Fellow, and is now a full-time mechanical engineer at the Lawrence Livermore National Laboratory.J-WAFS-supported student clubsJ-WAFS-supported student clubs provide members of the MIT student community the opportunity for networking and professional advancement through events focused on water and food systems topics.J-WAFS is a sponsor of the MIT Water Club, a student-led group that supports and promotes the engagement of the MIT community in water-sector-related activism, dissemination of information, and research innovation. The club allows students to spearhead the organization of conferences, lectures, outreach events, research showcases, and entrepreneurship competitions including the former MIT Water Innovation Prize and MIT Water Summit. J-WAFS not only sponsors the MIT Water Club financially, but offers mentorship and guidance to the leadership team.The MIT Food and Agriculture Club is also supported by J-WAFS. The club’s mission is to promote the engagement of the MIT community in food and agriculture-related topics. In doing so, the students lead initiatives to share the innovative technology and business solutions researchers are developing in food and agriculture systems. J-WAFS assists in the connection of passionate MIT students with those who are actively working in the food and agriculture industry beyond the Institute. From 2015 to 2022, J-WAFS also helped the club co-produce the Rabobank-MIT Food and Agribusiness Innovation Prize — a student business plan competition for food and agricultural startups.From 2023 onward, the MIT Water Club and the MIT Food and Ag Club have been joining forces to organize a combined prize competition: The MIT Water, Food and Agriculture (WFA) Innovation Prize. The WFA Innovation Prize is a business plan competition for student-led startups focused on any region or market. The teams present business plans involving a technology, product, service, or process that is aimed at solving a problem related to water, food, or agriculture. The competition encourages all approaches to innovation, from engineering and product design to policy and data analytics. The goal of the competition is to help emerging entrepreneurs translate research and ideas into businesses, access mentors and resources, and build networks in the water, food, and agriculture industries. J-WAFS offers financial and in-kind support, working with student leaders to plan, organize, and implement the stages of the competition through to the final pitch event. This year, J-WAFS is continuing to support the WFA team, which is led by Ali Decker, an MBA student at MIT Sloan, and Sam Jakshtis, a master’s student in MIT’s science in real estate development program. The final pitch event will take place on April 30 in the MIT Media Lab.“I’ve had the opportunity to work with Renee Robins, executive director of J-WAFS, on MIT’s Water, Food and Agriculture Innovation Prize for the past two years, and it has been both immensely valuable and a delight to have her support,” says Decker. “Renee has helped us in all areas of prize planning: brainstorming new ideas, thinking through startup finalist selection, connecting to potential sponsors and partners, and more. Above all, she supports us with passion and joy; each time we meet, I look forward to our discussion,” Decker adds.J-WAFS eventsThroughout the year, J-WAFS aims to offer events that will engage any in the MIT student community who are working in water or food systems. For example, on April 19, 2023, J-WAFS teamed up with the MIT Energy Initiative (MITEI) and the Environmental Solutions Initiative (ESI) to co-host an MIT student poster session for Earth Month. The theme of the poster session was “MIT research for a changing planet,” and it featured work from 11 MIT students with projects in water, food, energy, and the environment. The students, who represented a range of MIT departments, labs, and centers, were on hand to discuss their projects and engage with those attending the event. Attendees could vote for their favorite poster after being asked to consider which poster most clearly communicated the research problem and the potential solution. At the end of the night, votes were tallied and the winner of the “People’s Choice Award” for best poster was Elaine Liu ’24, an undergraduate in mathematics at the time of the event. Liu’s poster featured her work on managing failure cascades in systems with wind power.J-WAFS also hosts less-structured student networking events. For instance, during MIT’s Independent Activities Period (IAP) in January 2024, J-WAFS hosted an ice cream social for student networking. The informal event was an opportunity for graduate and undergraduate students from across the Institute to meet and mingle with like-minded peers working in, or interested in, water and food systems. Students were able to explain their current and future research, interests, and projects and ask questions while exchanging ideas, engaging with one another, and potentially forming collaborations, or at the very least sharing insights.Looking ahead to 10 more years of student impactOver the past decade, J-WAFS has demonstrated a strong commitment to empowering students in the water and food sectors, fostering an environment where they can confidently drive meaningful change and innovation. PhD student Jonathan Bessette sums up the J-WAFS community as a “one-of-a-kind community that enables essential research in water and food that otherwise would not be pursued. It’s this type of research that is not often the focus of major funding, yet has such a strong impact in sustainable development.”J-WAFS aims to provide students with the support and tools they need to conduct authentic and meaningful water and food-related research that will benefit communities around the world. This support, coupled with an MIT education, enables students to become leaders in sustainable water and food systems. As the second decade of J-WAFS programming begins, the J-WAFS team remains committed to fostering student collaboration across the Institute, driving innovative solutions to revitalize the world’s water and food systems while empowering the next generation of pioneers in these critical fields.  More

  • in

    Rohit Karnik named director of J-WAFS

    Rohit Karnik, the Tata Professor in the MIT Department of Mechanical Engineering, has been named the new director of the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), effective March 1. Karnik, who has served as associate director of J-WAFS since 2023, succeeds founding director John H. Lienhard V, Abdul Latif Jameel Professor of Water and Mechanical Engineering.Karnik assumes the role of director at a pivotal time for J-WAFS, as it celebrates its 10th anniversary. Announcing the appointment today in a letter to the J-WAFS research community, Vice President for Research Ian A. Waitz noted Karnik’s deep involvement with the lab’s research efforts and programming, as well as his accolades as a researcher, teacher, leader, and mentor. “I am delighted that Rohit will bring his talent and vision to bear on the J-WAFS mission, ensuring the program sustains its direct support of research on campus and its important impact around the world,” Waitz wrote.J-WAFS is the only program at MIT focused exclusively on water and food research. Since 2015, the lab has made grants totaling approximately $25M to researchers across the Institute, including from all five schools and 40 departments, labs, and centers. It has supported 300 faculty, research staff, and students combined. Furthermore, the J-WAFS Solutions Program, which supports efforts to commercialize innovative water and food technologies, has spun out 12 companies and two open-sourced products. “We launched J-WAFS with the aim of building a community of water and food researchers at MIT, taking advantage of MIT’s strengths in so many disciplines that contribute to these most essential human needs,” writes Lienhard, who will retire this June. “After a decade’s work, that community is strong and visible. I am delighted that Rohit has agreed to take the reins. He will bring the program to the next level.” Lienhard has served as director since founding J-WAFS in 2014, along with executive director Renee J. Robins ’83, who last fall shared her intent to retire as well. “It’s a big change for a program to turn over both the director and executive director roles at the same time,” says Robins. “Having worked alongside Rohit as our associate director for the past couple of years, I am greatly assured that J-WAFS will be in good hands with a new and steady leadership team.”Karnik became associate director of J-WAFS in July 2023, a move that coincided with the start of a sabbatical for Lienhard. Before that time, Karnik was already well engaged with J-WAFS as a grant recipient, reviewer, and community member. As associate director, Rohit has been integral to J-WAFS operations, planning, and grant management, including the proposal selection process. He was instrumental in planning the second J-WAFS Grand Challenge grant and led workshops at which researchers brainstormed proposal topics and formed teams. Karnik also engaged with J-WAFS’ corporate partners, helped plan lectures and events, and offered project oversight. “The experience gave me broad exposure to the amazing ideas and research at MIT in the water and food space, and the collaborations and synergies across departments and schools that enable excellence in research,” says Karnik. “The strengths of J-WAFS lie in being able to support principal investigators in pursuing research to address humanity’s water and food needs; in creating a community of students though the fellowship program and support of student clubs; and in bringing people together at seminars, workshops, and other events. All of this is made possible by the endowment and a dedicated team with close involvement in the projects after the grants are awarded.”J-WAFS was established through a generous gift from Community Jameel, an independent, global organization advancing science to help communities thrive in a rapidly changing world. The lab was named in honor of the late Abdul Latif Jameel, the founder of the Abdul Latif Jameel company and father of MIT alumnus Mohammed Jameel ’78, who founded and chairs Community Jameel. J-WAFS’ operations are carried out by a small but passionate team of people at MIT who are dedicated to the mission of securing water and food systems. That mission is more important than ever, as climate change, urbanization, and a growing global population are putting tremendous stress on the world’s water and food supplies. These challenges drive J-WAFS’ efforts to mobilize the research, innovation, and technology that can sustainably secure humankind’s most vital resources. As director, Karnik will help shape the research agenda and key priorities for J-WAFS and usher the program into its second decade.Karnik originally joined MIT as a postdoc in the departments of Mechanical and Chemical Engineering in October 2006. In September 2007, he became an assistant professor of mechanical engineering at MIT, before being promoted to associate professor in 2012. His research group focuses on the physics of micro- and nanofluidic flows and applying that to the design of micro- and nanofluidic systems for applications in water, healthcare, energy, and the environment. Past projects include ones on membranes for water filtration and chemical separations, sensors for water, and water filters from waste wood. Karnik has served as associate department head and interim co-department head in the Department of Mechanical Engineering. He also serves as faculty director of the New Engineering Education Transformation (NEET) program in the School of Engineering.Before coming to MIT, Karnik received a bachelor’s degree from the Indian Institute of Technology in Bombay, and a master’s and PhD from the University of California at Berkeley, all in mechanical engineering. He has authored numerous publications, is co-inventor on several patents, and has received awards and honors including the National Science Foundation CAREER Award, the U.S. Department of Energy Early Career Award, the MIT Office of Graduate Education’s Committed to Caring award, and election to the National Academy of Inventors as a senior member. Lienhard, J-WAFS’ outgoing director, has served on the MIT faculty since 1988. His research and educational efforts have focused on heat and mass transfer, water purification and desalination, thermodynamics, and separation processes. Lienhard has directly supervised more than 90 PhD and master’s theses, and he is the author of over 300 peer-reviewed papers and three textbooks. He holds more than 40 U.S. patents, most commercialized through startup companies with his students. One of these, the water treatment company Gradiant Corporation, is now valued over $1 billion and employs more than 1,200 people. Lienhard has received many awards, including the 2024 Lifetime Achievement Award of the International Desalination and Reuse Association.Since 1998, Renee Robins has worked on the conception, launch, and development of a number of large interdisciplinary, international, and partnership-based research and education collaborations at MIT and elsewhere. She served in roles for the Cambridge MIT Institute, the MIT Portugal Program, the Mexico City Program, the Program on Emerging Technologies, and the Technology and Policy Program. She holds two undergraduate degrees from MIT, in biology and humanities/anthropology, and a master’s degree in public policy from Carnegie Mellon University. She has overseen significant growth in J-WAFS’ activities, funding, staffing, and collaborations over the past decade. In 2021, she was awarded an Infinite Mile Award in the area of the Offices of the Provost and Vice President for Research, in recognition of her contributions within her role at J-WAFS to help the Institute carry out its mission.“John and Renee have done a remarkable job in establishing J-WAFS and bringing it up to its present form,” says Karnik. “I’m committed to making sure that the key aspects of J-WAFS that bring so much value to the MIT community, the nation, and the world continue to function well. MIT researchers and alumni in the J-WAFS community are already having an impact on addressing humanity’s water and food needs, and I believe that there is potential for MIT to have an even greater positive impact on securing humanity’s vital resources in the future.” More