More stories

  • in

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry

    Note: This is the third article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    The industrial sector is the backbone of today’s global economy, yet its activities are among the most energy-intensive and the toughest to decarbonize. Efforts to reach net-zero targets and avert runaway climate change will not succeed without new solutions for replacing sources of carbon emissions with low-carbon alternatives and developing scalable nonemitting applications of hydrocarbons.

    In conversations prepared for MIT News, faculty from three of the teams with projects in the competition’s “Decarbonizing complex industries and processes” category discuss strategies for achieving impact in hard-to-abate sectors, from long-distance transportation and building construction to textile manufacturing and chemical refining. The other Climate Grand Challenges research themes include using data and science to forecast climate-related risk, building equity and fairness into climate solutions, and removing, managing, and storing greenhouse gases. The following responses have been edited for length and clarity.

    Moving toward an all-carbon material approach to building

    Faced with the prospect of building stock doubling globally by 2050, there is a great need for sustainable alternatives to conventional mineral- and metal-based construction materials. Mark Goulthorpe, associate professor in the Department of Architecture, explains the methods behind Carbon >Building, an initiative to develop energy-efficient building materials by reorienting hydrocarbons from current use as fuels to environmentally benign products, creating an entirely new genre of lightweight, all-carbon buildings that could actually drive decarbonization.

    Q: What are all-carbon buildings and how can they help mitigate climate change?

    A: Instead of burning hydrocarbons as fuel, which releases carbon dioxide and other greenhouse gases that contribute to atmospheric pollution, we seek to pioneer a process that uses carbon materially to build at macro scale. New forms of carbon — carbon nanotube, carbon foam, etc. — offer salient properties for building that might effectively displace the current material paradigm. Only hydrocarbons offer sufficient scale to beat out the billion-ton mineral and metal markets, and their perilous impact. Carbon nanotube from methane pyrolysis is of special interest, as it offers hydrogen as a byproduct.

    Q: How will society benefit from the widespread use of all-carbon buildings?

    A: We anticipate reducing costs and timelines in carbon composite buildings, while increasing quality, longevity, and performance, and diminishing environmental impact. Affordability of buildings is a growing problem in all global markets as the cost of labor and logistics in multimaterial assemblies creates a burden that is very detrimental to economic growth and results in overcrowding and urban blight.

    Alleviating these challenges would have huge societal benefits, especially for those in lower income brackets who cannot afford housing, but the biggest benefit would be in drastically reducing the environmental footprint of typical buildings, which account for nearly 40 percent of global energy consumption.

    An all-carbon building sector will not only reduce hydrocarbon extraction, but can produce higher value materials for building. We are looking to rethink the building industry by greatly streamlining global production and learning from the low-labor methods pioneered by composite manufacturing such as wind turbine blades, which are quick and cheap to produce. This technology can improve the sustainability and affordability of buildings — and holds the promise of faster, cheaper, greener, and more resilient modes of dwelling.

    Emissions reduction through innovation in the textile industry

    Collectively, the textile industry is responsible for over 4 billion metric tons of carbon dioxide equivalent per year, or 5 to 10 percent of global greenhouse gas emissions — more than aviation and maritime shipping combined. And the problem is only getting worse with the industry’s rapid growth. Under the current trajectory, consumption is projected to increase 30 percent by 2030, reaching 102 million tons. A diverse group of faculty and researchers led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Yuly Fuentes-Medel, project manager for fiber technologies and research advisor to the MIT Innovation Initiative, is developing groundbreaking innovations to reshape how textiles are selected, sourced, designed, manufactured, and used, and to create the structural changes required for sustained reductions in emissions by this industry.

    Q: Why has the textile industry been difficult to decarbonize?

    A: The industry currently operates under a linear model that relies heavily on virgin feedstock, at roughly 97 percent, yet recycles or downcycles less than 15 percent. Furthermore, recent trends in “fast fashion” have led to massive underutilization of apparel, such that products are discarded on average after only seven to 10 uses. In an industry with high volume and low margins, replacement technologies must achieve emissions reduction at scale while maintaining performance and economic efficiency.

    There are also technical barriers to adopting circular business models, from the challenge of dealing with products comprising fiber blends and chemical additives to the low maturity of recycling technologies. The environmental impacts of textiles and apparel have been estimated using life cycle analysis, and industry-standard indexes are under development to assess sustainability throughout the life cycle of a product, but information and tools are needed to model how new solutions will alter those impacts and include the consumer as an active player to keep our planet safe. This project seeks to deliver both the new solutions and the tools to evaluate their potential for impact.

    Q: Describe the five components of your program. What is the anticipated timeline for implementing these solutions?

    A: Our plan comprises five programmatic sections, which include (1) enabling a paradigm shift to sustainable materials using nontraditional, carbon-negative polymers derived from biomass and additives that facilitate recycling; (2) rethinking manufacturing with processes to structure fibers and fabrics for performance, waste reduction, and increased material efficiency; (3) designing textiles for value by developing products that are customized, adaptable, and multifunctional, and that interact with their environment to reduce energy consumption; (4) exploring consumer behavior change through human interventions that reduce emissions by encouraging the adoption of new technologies, increased utilization of products, and circularity; and (5) establishing carbon transparency with systems-level analyses that measure the impact of these strategies and guide decision making.

    We have proposed a five-year timeline with annual targets for each project. Conservatively, we estimate our program could reduce greenhouse gas emissions in the industry by 25 percent by 2030, with further significant reductions to follow.

    Tough-to-decarbonize transportation

    Airplanes, transoceanic ships, and freight trucks are critical to transporting people and delivering goods, and the cornerstone of global commerce, manufacturing, and tourism. But these vehicles also emit 3.7 billion tons of carbon dioxide annually and, left unchecked, they could take up a quarter of the remaining carbon budget by 2050. William Green, the Hoyt C. Hottel Professor in the Department Chemical Engineering, co-leads a multidisciplinary team with Steven Barrett, professor of aeronautics and astronautics and director of the MIT Laboratory for Aviation and the Environment, that is working to identify and advance economically viable technologies and policies for decarbonizing heavy duty trucking, shipping, and aviation. The Tough to Decarbonize Transportation research program aims to design and optimize fuel chemistry and production, vehicles, operations, and policies to chart the course to net-zero emissions by midcentury.

    Q: What are the highest priority focus areas of your research program?

    A: Hydrocarbon fuels made from biomass are the least expensive option, but it seems impractical, and probably damaging to the environment, to harvest the huge amount of biomass that would be needed to meet the massive and growing energy demands from these sectors using today’s biomass-to-fuel technology. We are exploring strategies to increase the amount of useful fuel made per ton of biomass harvested, other methods to make low-climate-impact hydrocarbon fuels, such as from carbon dioxide, and ways to make fuels that do not contain carbon at all, such as with hydrogen, ammonia, and other hydrogen carriers.

    These latter zero-carbon options free us from the need for biomass or to capture gigatons of carbon dioxide, so they could be a very good long-term solution, but they would require changing the vehicles significantly, and the construction of new refueling infrastructure, with high capital costs.

    Q: What are the scientific, technological, and regulatory barriers to scaling and implementing potential solutions?

    A: Reimagining an aviation, trucking, and shipping sector that connects the world and increases equity without creating more environmental damage is challenging because these vehicles must operate disconnected from the electrical grid and have energy requirements that cannot be met by batteries alone. Some of the concepts do not even exist in prototype yet, and none of the appealing options have been implemented at anywhere near the scale required.

    In most cases, we do not know the best way to make the fuel, and for new fuels the vehicles and refueling systems all need to be developed. Also, new fuels, or large-scale use of biomass, will introduce new environmental problems that need to be carefully considered, to ensure that decarbonization solutions do not introduce big new problems.

    Perhaps most difficult are the policy, economic, and equity issues. A new long-haul transportation system will be expensive, and everyone will be affected by the increased cost of shipping freight. To have the desired climate impact, the transport system must change in almost every country. During the transition period, we will need both the existing vehicle and fuel system to keep running smoothly, even as a new low-greenhouse system is introduced. We will also examine what policies could make that work and how we can get countries around the world to agree to implement them. More

  • in

    Q&A: Climate Grand Challenges finalists on accelerating reductions in global greenhouse gas emissions

    This is the second article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalists, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    Last month, the Intergovernmental Panel on Climate Change (IPCC), an expert body of the United Nations representing 195 governments, released its latest scientific report on the growing threats posed by climate change, and called for drastic reductions in greenhouse gas emissions to avert the most catastrophic outcomes for humanity and natural ecosystems.

    Bringing the global economy to net-zero carbon dioxide emissions by midcentury is complex and demands new ideas and novel approaches. The first-ever MIT Climate Grand Challenges competition focuses on four problem areas including removing greenhouse gases from the atmosphere and identifying effective, economic solutions for managing and storing these gases. The other Climate Grand Challenges research themes address using data and science to forecast climate-related risk, decarbonizing complex industries and processes, and building equity and fairness into climate solutions.

    In the following conversations prepared for MIT News, faculty from three of the teams working to solve “Removing, managing, and storing greenhouse gases” explain how they are drawing upon geological, biological, chemical, and oceanic processes to develop game-changing techniques for carbon removal, management, and storage. Their responses have been edited for length and clarity.

    Directed evolution of biological carbon fixation

    Agricultural demand is estimated to increase by 50 percent in the coming decades, while climate change is simultaneously projected to drastically reduce crop yield and predictability, requiring a dramatic acceleration of land clearing. Without immediate intervention, this will have dire impacts on wild habitat, rob the livelihoods of hundreds of millions of subsistence farmers, and create hundreds of gigatons of new emissions. Matthew Shoulders, associate professor in the Department of Chemistry, talks about the working group he is leading in partnership with Ed Boyden, the Y. Eva Tan professor of neurotechnology and Howard Hughes Medical Institute investigator at the McGovern Institute for Brain Research, that aims to massively reduce carbon emissions from agriculture by relieving core biochemical bottlenecks in the photosynthetic process using the most sophisticated synthetic biology available to science.

    Q: Describe the two pathways you have identified for improving agricultural productivity and climate resiliency.

    A: First, cyanobacteria grow millions of times faster than plants and dozens of times faster than microalgae. Engineering these cyanobacteria as a source of key food products using synthetic biology will enable food production using less land, in a fundamentally more climate-resilient manner. Second, carbon fixation, or the process by which carbon dioxide is incorporated into organic compounds, is the rate-limiting step of photosynthesis and becomes even less efficient under rising temperatures. Enhancements to Rubisco, the enzyme mediating this central process, will both improve crop yields and provide climate resilience to crops needed by 2050. Our team, led by Robbie Wilson and Max Schubert, has created new directed evolution methods tailored for both strategies, and we have already uncovered promising early results. Applying directed evolution to photosynthesis, carbon fixation, and food production has the potential to usher in a second green revolution.

    Q: What partners will you need to accelerate the development of your solutions?

    A: We have already partnered with leading agriculture institutes with deep experience in plant transformation and field trial capacity, enabling the integration of our improved carbon-dioxide-fixing enzymes into a wide range of crop plants. At the deployment stage, we will be positioned to partner with multiple industry groups to achieve improved agriculture at scale. Partnerships with major seed companies around the world will be key to leverage distribution channels in manufacturing supply chains and networks of farmers, agronomists, and licensed retailers. Support from local governments will also be critical where subsidies for seeds are necessary for farmers to earn a living, such as smallholder and subsistence farming communities. Additionally, our research provides an accessible platform that is capable of enabling and enhancing carbon dioxide sequestration in diverse organisms, extending our sphere of partnership to a wide range of companies interested in industrial microbial applications, including algal and cyanobacterial, and in carbon capture and storage.

    Strategies to reduce atmospheric methane

    One of the most potent greenhouse gases, methane is emitted by a range of human activities and natural processes that include agriculture and waste management, fossil fuel production, and changing land use practices — with no single dominant source. Together with a diverse group of faculty and researchers from the schools of Humanities, Arts, and Social Sciences; Architecture and Planning; Engineering; and Science; plus the MIT Schwarzman College of Computing, Desiree Plata, associate professor in the Department of Civil and Environmental Engineering, is spearheading the MIT Methane Network, an integrated approach to formulating scalable new technologies, business models, and policy solutions for driving down levels of atmospheric methane.

    Q: What is the problem you are trying to solve and why is it a “grand challenge”?

    A: Removing methane from the atmosphere, or stopping it from getting there in the first place, could change the rates of global warming in our lifetimes, saving as much as half a degree of warming by 2050. Methane sources are distributed in space and time and tend to be very dilute, making the removal of methane a challenge that pushes the boundaries of contemporary science and engineering capabilities. Because the primary sources of atmospheric methane are linked to our economy and culture — from clearing wetlands for cultivation to natural gas extraction and dairy and meat production — the social and economic implications of a fundamentally changed methane management system are far-reaching. Nevertheless, these problems are tractable and could significantly reduce the effects of climate change in the near term.

    Q: What is known about the rapid rise in atmospheric methane and what questions remain unanswered?

    A: Tracking atmospheric methane is a challenge in and of itself, but it has become clear that emissions are large, accelerated by human activity, and cause damage right away. While some progress has been made in satellite-based measurements of methane emissions, there is a need to translate that data into actionable solutions. Several key questions remain around improving sensor accuracy and sensor network design to optimize placement, improve response time, and stop leaks with autonomous controls on the ground. Additional questions involve deploying low-level methane oxidation systems and novel catalytic materials at coal mines, dairy barns, and other enriched sources; evaluating the policy strategies and the socioeconomic impacts of new technologies with an eye toward decarbonization pathways; and scaling technology with viable business models that stimulate the economy while reducing greenhouse gas emissions.

    Deploying versatile carbon capture technologies and storage at scale

    There is growing consensus that simply capturing current carbon dioxide emissions is no longer sufficient — it is equally important to target distributed sources such as the oceans and air where carbon dioxide has accumulated from past emissions. Betar Gallant, the American Bureau of Shipping Career Development Associate Professor of Mechanical Engineering, discusses her work with Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering and director of the School of Chemical Engineering Practice, to dramatically advance the portfolio of technologies available for carbon capture and permanent storage at scale. (A team led by Assistant Professor Matěj Peč of EAPS is also addressing carbon capture and storage.)

    Q: Carbon capture and storage processes have been around for several decades. What advances are you seeking to make through this project?

    A: Today’s capture paradigms are costly, inefficient, and complex. We seek to address this challenge by developing a new generation of capture technologies that operate using renewable energy inputs, are sufficiently versatile to accommodate emerging industrial demands, are adaptive and responsive to varied societal needs, and can be readily deployed to a wider landscape.

    New approaches will require the redesign of the entire capture process, necessitating basic science and engineering efforts that are broadly interdisciplinary in nature. At the same time, incumbent technologies have been optimized largely for integration with coal- or natural gas-burning power plants. Future applications must shift away from legacy emitters in the power sector towards hard-to-mitigate sectors such as cement, iron and steel, chemical, and hydrogen production. It will become equally important to develop and optimize systems targeted for much lower concentrations of carbon dioxide, such as in oceans or air. Our effort will expand basic science studies as well as human impacts of storage, including how public engagement and education can alter attitudes toward greater acceptance of carbon dioxide geologic storage.

    Q: What are the expected impacts of your proposed solution, both positive and negative?

    A: Renewable energy cannot be deployed rapidly enough everywhere, nor can it supplant all emissions sources, nor can it account for past emissions. Carbon capture and storage (CCS) provides a demonstrated method to address emissions that will undoubtedly occur before the transition to low-carbon energy is completed. CCS can succeed even if other strategies fail. It also allows for developing nations, which may need to adopt renewables over longer timescales, to see equitable economic development while avoiding the most harmful climate impacts. And, CCS enables the future viability of many core industries and transportation modes, many of which do not have clear alternatives before 2050, let alone 2040 or 2030.

    The perceived risks of potential leakage and earthquakes associated with geologic storage can be minimized by choosing suitable geologic formations for storage. Despite CCS providing a well-understood pathway for removing enough of the carbon dioxide already emitted into the atmosphere, some environmentalists vigorously oppose it, fearing that CCS rewards oil companies and disincentivizes the transition away from fossil fuels. We believe that it is more important to keep in mind the necessity of meeting key climate targets for the sake of the planet, and welcome those who can help. More

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More

  • in

    Progress toward a sustainable campus food system

    As part of MIT’s updated climate action plan, known as “Fast Forward,” Institute leadership committed to establishing a set of quantitative goals in 2022 related to food, water, and waste systems that advance MIT’s commitment to climate. Moving beyond the impact of campus energy systems, these newly proposed goals take a holistic view of the drivers of climate change and set the stage for new frontiers of collaborative climate work. “With the release of ‘Fast Forward,’ the MIT Office of Sustainability is setting out to partner with campus groups to study and quantify the climate impact of our campus food, while deeply considering the social, cultural, economic, and health aspects of a sustainable food system,” explains Susy Jones, senior sustainability project manager. 

    While “Fast Forward” is MIT’s first climate action plan to integrate the campus food system, the Division of Student Life (DSL) has long worked with dining vendors, MIT’s Office of Sustainability (MITOS), and other campus partners to advance a more sustainable, affordable, and equitable food system. Initiatives have ranged from increasing access to low-cost groceries on and around campus to sourcing sustainable coffee for campus cafes.

    Even with the complexities of operating during the pandemic, efforts in this area accelerated with the launch of new partnerships, support for local food industries, and even a food-startup incubator in the Stratton Student Center (Building W20). “Despite challenges posed by the pandemic, MIT Dining has been focused on positive change — driven in part by student input, alterations to the food landscape, and our ongoing goal to support a more sustainable and equitable campus food system,” says Mark Hayes, director of MIT Dining.

    New vendors on campus focus on healthy food systems

    For many, a fresh cup of coffee is a daily ritual. At MIT, that cup of coffee also offers an opportunity to make a more sustainable choice at the Forbes Family Café in the Stata Center (Building 32). The cafe now brews coffee by Dean’s Beans, a local roaster whose mission is to “prove that a for-profit business could create meaningful change through ethical business practices rooted in respect for the earth, the farmer, our co-workers, and the consumer.” The choice of Dean’s Beans — a certified B Corporation located in Orange, Massachusetts — as the new vendor in this space helps advance MIT’s commitment to sustainability. Businesses that achieve this certification meet rigorous social and environmental goals. “With choices like this, we’re taking big issues down to the campus level,” says Hayes. Dean’s Beans focuses on long-term producer relationships, organic shade-grown and bird-friendly coffee, a solar-powered roasting facility, and people-centered development programs. These practices contribute to healthier environments and habitats — benefiting farmers, soils, birds, pollinators, and more.

    Another innovative new food concept for the MIT community can be found down the street in the Stratton Student Center. The Launchpad, a nonprofit food business incubator created in partnership with CommonWealth Kitchen (CWK), debuted this fall in the second-floor Lobdell Food Court. It offers the MIT community more variety and healthy food options while also “advancing CWK’s and MIT’s mutual goal to support diverse, local start-up food businesses and to create a more just, equitable, and sustainable food economy,” according to DSL. Work on the Launchpad began in 2018, bringing together the Student Center Dining Concepts Working Group, comprising students from the Undergraduate Association, Graduate Student Council, DormCon, house dining chairs, and other students interested in dining and dining staff from the MITOS and DSL. Their goal was to re-envision dining options available in Lobdell to support local, diverse, and sustainable menus. “We’ve been nurturing a partnership with CommonWealth Kitchen for years and are excited to partner with them on a project that re-imagines the relationship between campus and local food systems,” says Jones. “And, of course, the vegetarian arepas are a highlight,” she adds.

    Local partnerships for sustainability

    The impacts of Covid-19 on local food businesses quickly came into focus in early 2020. For the New England fishing industry, this impact was acute — with restaurant closures, event cancellations, and disruptions in the global supply chain, fisheries suddenly found a dearth of markets for their catch, undermining their source of income. One way to address this confluence of challenges was for fisheries to expand into new markets where they may have had limited knowledge or experience.

    Enter MIT Sea Grant and MIT Dining. Supported in part by funding from the National Oceanic and Atmospheric Administration, MIT Sea Grant created the Covid-19 Rapid Response Program to develop new markets for local fisheries, including local food banks and direct sales to organizations including MIT. Though MIT Dining was stretched thin by the pandemic, the partnership offered a singular opportunity to support vital regional businesses and enhance menus in campus dining venues. “The stress level was unimaginable as more people were testing positive in the early days of the pandemic — it was the worst and most stressful time to do anything outside of what was completely necessary, and I get this phone call about chowder,” recalls Hayes. “Everyone is wearing two masks and standing six feet apart, but in about 15 seconds, I said to myself, ‘This is the exact time this needs to happen — in the middle of a pandemic when fishermen need support, families need support, people need support.’”

    Shortly after getting the call, Hayes and MIT Dining hosted a tasting event featuring “Small Boats, Big Taste Haddock Chowder,” developed through MIT Sea Grant’s work with the Cape Cod Commercial Fishermen’s Alliance, which helped independent fishermen stay on the water during Covid-19. The tasting event also offered students a break to stop by and sample the chowder, which later debuted and continues to be served at MIT dining halls. For Hayes, one success of the partnership was the agility it demonstrated. “We don’t know what the next crisis is going to be, but these experiences will make us stronger to handle the next moment when people need the food system to work,” he says.

    In addition to ready-made options for students, MIT Dining and partners have also been working to support students who prepare their own meals, collaborating with local businesses to provide students access to lower-cost and at-cost groceries and food products. The Food Security Action Team, convened by Senior Associate Dean for Student Support and Well-being David Randall and DSL Executive Director for Administration Peter Cummings, is focused on taking action, tracking, and updating the community on food security efforts. These efforts have included collaborating with the Daily Table, a new nonprofit community grocer in Central Square. The store now accepts TechCASH and recently worked with the committee to host an interactive food tour for students.

    Because food systems are so interdependent and partnerships are critical — on and off campus — Hayes says it’s important to continue to share and learn. “Sharing our stories is crucial because we can help strengthen networks of campuses, institutions, and businesses in New England to grow more sustainable food programs like these.” More

  • in

    First-ever Climate Grand Challenges recognizes 27 finalists

    All-carbon buildings, climate-resilient crops, and new tools to improve the prediction of extreme weather events are just a few of the 27 bold, interdisciplinary research projects selected as finalists from a field of almost 100 proposals in the first MIT Climate Grand Challenges competition. Each of the finalist teams received $100,000 to develop a comprehensive research and innovation plan.

    A subset of the finalists will make up a portfolio of multiyear projects that will receive additional funding and other support to develop high-impact, science-based mitigation and adaptation solutions on an accelerated basis. These flagship projects, which will be announced later this spring, will augment the work of the many MIT units already pursuing climate-related research activities.

    “Climate change poses a suite of challenges of immense urgency, complexity and scale. At MIT, we are bringing our particular strengths to bear through our community — a rare concentration of ingenuity and determination, rooted in a vibrant innovation ecosystem,” President L. Rafael Reif says. “Through MIT’s Climate Grand Challenges, we are engaging hundreds of our brilliant faculty and researchers in the search for solutions with enormous potential for impact.”

    The Climate Grand Challenges launched in July 2020 with the goal of mobilizing the entire MIT research community around developing solutions to some of the most complex unsolved problems in emissions reduction, climate change adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change.

    An event in April will showcase the flagship projects, bringing together public and private sector partners with the MIT teams to begin assembling the necessary resources for developing, implementing, and scaling these solutions rapidly.

    A whole-of-MIT effort

    Part of a wide array of major climate programs outlined last year in “Fast Forward: MIT’s Climate Action Plan for the Decade,” the Climate Grand Challenges focuses on problems where progress depends on the application of forefront knowledge in the physical, life, and social sciences and the advancement of cutting-edge technologies.

    “We don’t have the luxury of time in responding to the intensifying climate crisis,” says Vice President for Research Maria Zuber, who oversees the implementation of MIT’s climate action plan. “The Climate Grand Challenges are about marshaling the wide and deep knowledge and methods of the MIT community around transformative research that can help accelerate our collective response to climate change.”

    If successful, the solutions will have tangible effects, changing the way people live and work. Examples of these new approaches range from developing cost-competitive long-term energy-storage systems to using drone technologies and artificial intelligence to study the role of the deep ocean in the climate crisis. Many projects also aim to increase the humanistic understanding of these phenomena, recognizing that technological advances alone will not address the widespread impacts of climate change, and a comparable behavioral and cultural shift is needed to stave off future threats.

    “To achieve net-zero emissions later this century we must deploy the tools and technologies we already have,” says Richard Lester, associate provost for international activities. “But we’re still far from having everything needed to get there in ways that are equitable and affordable. Nor do we have the solutions in hand that will allow communities — especially the most vulnerable ones — to adapt to the disruptions that will occur even if the world does get to net-zero. Climate Grand Challenges is creating a new opportunity for the MIT research community to attack some of these hard, unsolved problems, and to engage with partners in industry, government, and the nonprofit sector to accelerate the whole cycle of activities needed to implement solutions at scale.” 

    Selecting the finalist projects

    A 24-person faculty committee convened by Lester and Zuber with members from all five of MIT’s schools and the MIT Schwarzman College of Computing led the planning and initial call for ideas. A smaller group of committee members was charged with evaluating nearly 100 letters of interest, representing 90 percent of MIT departments and ​​involving almost 400 MIT faculty members and senior researchers as well as colleagues from other research institutions.

    “Effectively confronting the climate emergency requires risk taking and sustained investment over a period of many decades,” says Anantha Chandrakasan, dean of the School of Engineering. “We have a responsibility to use our incredible resources and expertise to tackle some of the most challenging problems in climate mitigation and adaptation, and the opportunity to make major advances globally.”

    Lester and Zuber charged a second faculty committee with organizing a rigorous and thorough evaluation of the plans developed by the 27 finalist teams. Drawing on an extensive review process involving international panels of prominent experts, MIT will announce a small group of flagship Grand Challenge projects in April. 

    Each of the 27 finalist teams is addressing one of four broad Grand Challenge problems:

    Building equity and fairness into climate solutions

    Policy innovation and experimentation for effective and equitable climate solutions, led by Abhijit Banerjee, Iqbal Dhaliwal, and Claire Walsh
    Protecting and enhancing natural carbon sinks – Natural Climate and Community Solutions (NCCS), led by John Fernandez, Daniela Rus, and Joann de Zegher
    Reducing group-based disparities in climate adaptation, led by Evan Lieberman, Danielle Wood, and Siqi Zheng
    Reinventing climate change adaptation – The Climate Resilience Early Warning System (CREWSnet), led by John Aldridge and Elfatih Eltahir
    The Deep Listening Project: Communication infrastructure for collaborative adaptation, led by Eric Gordon, Yihyun Lim, and James Paradis
    The Equitable Resilience Framework, led by Janelle Knox-Hayes

    Decarbonizing complex industries and processes

    Carbon >Building, led by Mark Goulthorpe
    Center for Electrification and Decarbonization of Industry, led by Yet-Ming Chiang and Bilge Yildiz
    Decarbonizing and strengthening the global energy infrastructure using nuclear batteries, led by Jacopo Buongiorno
    Emissions reduction through innovation in the textile industry, led by Yuly Fuentes-Medel and Greg Rutledge
    Rapid decarbonization of freight mobility, led by Yossi Sheffi and Matthias Winkenbach
    Revolutionizing agriculture with low-emissions, resilient crops, led by Christopher Voigt
    Solar fuels as a vector for climate change mitigation, led by Yuriy Román-Leshkov and Yogesh Surendranath
    The MIT Low-Carbon Co-Design Institute, led by Audun Botterud, Dharik Mallapragada, and Robert Stoner
    Tough to Decarbonize Transportation, led by Steven Barrett and William Green

    Removing, managing, and storing greenhouse gases

    Demonstrating safe, globally distributed geological CO2 storage at scale, led by Bradford Hager, Howard Herzog, and Ruben Juanes
    Deploying versatile carbon capture technologies and storage at scale, led by Betar Gallant, Bradford Hager, and T. Alan Hatton
    Directed Evolution of Biological Carbon Fixation Working Group at MIT (DEBC-MIT), led by Edward Boyden and Matthew Shoulders
    Managing sources and sinks of carbon in terrestrial and coastal ecosystems, led by Charles Harvey, Tami Lieberman, and Heidi Nepf
    Strategies to Reduce Atmospheric Methane, led by Desiree Plata

    The Advanced Carbon Mineralization Initiative, led by Edward Boyden, Matěj Peč, and Yogesh Surendranath

    Using data and science to forecast climate-related risk

    Bringing computation to the climate challenge, led by Noelle Eckley Selin and Raffaele Ferrari
    Ocean vital signs, led by Christopher Hill and Ryan Woosley
    Preparing for a new world of weather and climate extremes, led by Kerry Emanuel, Miho Mazereeuw, and Paul O’Gorman
    Quantifying and managing the risks of sea-level rise, led by Brent Minchew
    Stratospheric Airborne Climate Observatory System to initiate a climate risk forecasting revolution, led by R. John Hansman and Brent Minchew
    The future of coasts – Changing flood risk for coastal communities in the developing world, led by Dara Entekhabi, Miho Mazereeuw, and Danielle Wood

    To learn more about the MIT Climate Grand Challenges, visit climategrandchallenges.mit.edu. More

  • in

    MIT community in 2021: A year in review

    During 2021, the Covid-19 pandemic continued to color much of the year, as MIT saw both the promise of vaccines as well as the rise of troubling new variants. The Institute also made new commitments to climate action, saw the opening of new and renovated spaces, continued in its efforts to support its diverse voices, and celebrated new Nobel laureates and astronaut candidates. Here are some of the top stories in the MIT community this year.

    Continuing to work through CovidVaccines became widely available to the MIT community early in the year — thanks, in significant part, to the ingenuity of MIT scientists and engineers. In response, the Institute developed a policy requiring vaccination for most members of the community and planned a return to fully in-person teaching and working at MIT for the fall 2021 semester.

    With copious protections in place, the fall semester in many ways embodied MIT’s resilience: In-person teaching expanded, staff returned with new flexible arrangements, and community spirit lifted as face-to-face meetings became possible in many cases once again. Some annual traditions, such as Commencement, stayed remote, while others, like the outdoor Great Glass Pumpkin Patch, and 2.009 grand finale, returned, adding smiles and a sense of gratitude among community members.Melissa Nobles appointed chancellor

    In August, Melissa Nobles, the former Kenin Sahin Dean of the MIT School of Humanities, Arts, and Social Sciences, became the Institute’s new chancellor. A political scientist, Nobles succeeded Cynthia Barnhart, who returned to research and teaching after seven years as chancellor.

    In other news related to MIT’s top administration, Martin Schmidt announced in November that after 40 years at MIT, he plans to step down as provost to become the next president of Rensselaer Polytechnic Institute, his alma mater.

    New climate action plan

    MIT unveiled a new action plan to tackle the climate crisis, committing to net-zero emissions by 2026 and charting a course marshaling all of MIT’s capabilities toward decarbonization. The plan includes a broad array of new initiatives and significant expansions of existing programs to address the needs for new technologies, new policies, and new kinds of outreach to bring the Institute’s expertise to bear on this critical global issue.

    In November, a delegation from MIT also traveled to Scotland for COP26, the 2021 United Nations climate change conference, where international negotiators sought to keep global climate goals on track. Approximately 20 MIT faculty, staff, and students were on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    MIT and Harvard transfer edX

    MIT and Harvard University announced in June that assets of edX, the nonprofit they launched in 2012 to provide an open online platform for university courses, would be acquired by the publicly-traded education technology company 2U, and reorganized as a public benefit company under the 2U umbrella. In exchange, 2U was set to transfer net proceeds from the $800 million transaction to a nonprofit organization, also led by MIT and Harvard, to explore the next generation of online education.

    Supporting our diverse communityAs an important step forward in MIT’s ongoing efforts to create a more welcoming and inclusive community, the Institute hired six new assistant deans, one in each school and in the MIT Schwarzman College of Computing, to serve as diversity, equity, and inclusion professionals. In addition, this week Institute Community and Equity Officer John Dozier provided an update on the Strategic Action Plan for Diversity, Equity, and Inclusion, the first draft of which was released in March.

    A community discussion also examined the complexities of Asian American and Pacific Islander identity and acceptance at MIT, while underscoring the need for collaborative work among groups to combat prejudice and create equity. The forum was held amid a string of violent assaults on Asian Americans in the U.S., which raised public awareness about anti-Asian discrimination. Meanwhile, Professor Emma Teng provided historic context for the crisis.

    Three with MIT ties win Nobel PrizesProfessor Joshua Angrist, whose influential work has enhanced rigorous empirical research in economics, shared half of the 2021 Nobel Prize in economic sciences with Guido Imbens of the Stanford Graduate School of Business; the other half went to David Card of the University of California at Berkeley.

    In addition, David Julius ’77, a professor at the University of California at San Francisco, shared the 2021 Nobel Prize in Physiology or Medicine with Ardem Patapoutian, a professor at the Scripps Research Institute, for their discoveries in how the body senses touch and temperature. And Maria Ressa, a journalist in the Philippines and digital fellow at the MIT Initiative on the Digital Economy, shared the 2021 Nobel Peace Prize with journalist Dmitry Muratov of Russia.

    National STEM leadersBefore taking office in January, President Joe Biden selected two MIT faculty leaders for top science and technology posts in his administration. Eric Lander, director of the Broad Institute and professor of biology, was named presidential science advisor and director of the Office of Science and Technology Policy. Maria Zuber, vice president for research and professor of earth, atmospheric, and planetary sciences, was named co-chair of the President’s Council of Advisors on Science and Technology (PCAST), along with Caltech chemical engineer Frances Arnold — the first women ever to co-chair PCAST.

    Paula Hammond, head of the Department of Chemical Engineering, was also chosen to serve as a member of PCAST. Earlier in the year, Hammond, along with chemical engineer Arup Chakraborty, was named an Institute Professor, the highest honor bestowed upon MIT faculty.

    Task Force 2021 final report

    MIT’s Task Force 2021 and Beyond, charged with reimagining the future of MIT, released its final report, 18 months after it began work in the shadow of the Covid-19 pandemic. The report offers 17 recommendations to strengthen and streamline MIT, and make the Institute more successful across its teaching, research, and innovation endeavors. In addition to a providing a substantive list of recommendations, the report suggests routes to implementation, and assigns one or more senior leaders or faculty governance committees with oversight, for every idea presented.

    Newly opened or reopened

    A number of facilities, new or newly redesigned, opened in 2021. These included a new MIT Welcome Center in Kendall Square; the new InnovationHQ, a hub for MIT entrepreneurship; the newly renovated and reimagined Hayden Library and courtyard; and the new MIT Press Bookstore. Two new student residences also opened, and the community welcomed programming from the Institute’s new outdoor open space.

    Students win an impressive number of distinguished fellowshipsAs always, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lostAmong community members who died this year were William Dalzell, Sergio Dominguez, Gene Dresselhaus, Sow Hsin-Chen, Ronald Kurtz, Paul Lagacé, Shirley McBay, ChoKyun Rha, George Shultz, Isadore Singer, James Swan, and Jing Wang. A longer list of 2021 obituaries is available on MIT News.

    In Case You Missed It… 

    Additional top community stories of 2021 included NASA’s selection of three new alumni astronaut candidates; the announcement of the 2021 MIT Solve Global Challenges; the successful conclusion of the MIT Campaign for a Better World; a win for MIT in the American Solar Challenge; a look at chess at the Institute; a roundup of new books from MIT authors; and the introduction of STEM-focused young-adult graphic fiction from the MIT Press. More

  • in

    MIT makes strides on climate action plan

    Two recent online events related to MIT’s ambitious new climate action plan highlighted several areas of progress, including uses of the campus as a real-life testbed for climate impact research, the creation of new planning bodies with opportunities for input from all parts of the MIT community, and a variety of moves toward reducing the Institute’s own carbon footprint in ways that may also provide a useful model for others.

    On Monday, MIT’s Office of Sustainability held its seventh annual “Sustainability Connect” event, bringing together students, faculty, staff, and alumni to learn about and share ideas for addressing climate change. This year’s virtual event emphasized the work toward carrying out the climate plan, titled “Fast Forward: MIT’s Climate Action Plan for the Decade,” which was announced in May. An earlier event, the “MIT Climate Tune-in” on Nov. 3, provided an overview of the many areas of MIT’s work to tackle climate change and featured a video message from Maria Zuber, MIT’s vice president for research, who was attending the COP26 international climate meeting in Glasgow, Scotland, as part of an 18-member team from MIT.

    Zuber pointed out some significant progress that was made at the conference, including a broad agreement by over 100 nations to end deforestation by the end of the decade; she also noted that the U.S. and E.U. are leading a global coalition of countries committed to curbing methane emissions by 30 percent from 2020 levels by decade’s end. “It’s easy to be pessimistic,” she said, “but being here in Glasgow, I’m actually cautiously optimistic, seeing the thousands and thousands of people here who are working toward meaningful climate action. And I know that same spirit exists on our own campus also.”

    As for MIT’s own climate plan, Zuber emphasized three points: “We’re committed to action; second of all, we’re committed to moving fast; and third, we’ve organized ourselves better for success.” That organization includes the creation of the MIT Climate Steering Committee, to oversee and coordinate MIT’s strategies on climate change; the Climate Nucleus, to oversee the management and implementation of the new plan; and three working groups that are forming now, to involve all parts of the MIT community.

    The “Fast Forward” plan calls for reducing the campus’s net greenhouse gas emissions to zero by 2026 and eliminating all such emissions, including indirect ones, by 2050. At Monday’s event, Director of Sustainability Julie Newman pointed out that the climate plan includes no less than 14 specific commitments related to the campus itself. These can be grouped into five broad areas, she said: mitigation, resiliency, electric vehicle infrastructure, investment portfolio sustainability, and climate leadership. “Each of these commitments has due dates, and they range from the tactical to the strategic,” she said. “We’re in the midst of activating our internal teams” to address these commitments, she added, noting that there are 30 teams that involve 75 faculty and researcher members, plus up to eight student positions.

    One specific project that is well underway involves preparing a detailed map of the flood risks to the campus as sea levels rise and storm surges increase. While previous attempts to map out the campus flooding risks had treated buildings essentially as uniform blocks, the new project has already mapped out in detail the location, elevation, and condition of every access point — doors, windows, and drains — in every building in the main campus, and now plans to extend the work to the residence buildings and outlying parts of campus. The project’s methods for identifying and quantifying the risks to specific parts of the campus, Newman said, represents “part of our mission for leveraging the campus as a test bed” by creating a map that is “true to the nature of the topography and the infrastructure,” in order to be prepared for the effects of climate change.

    Also speaking at the Sustainability Connect event, Vice President for Campus Services and Stewardship Joe Higgins outlined a variety of measures that are underway to cut the carbon footprint of the campus as much as possible, as quickly as possible. Part of that, he explained, involves using the campus as a testbed for the development of the equivalent of a “smart thermostat” system for campus buildings. While such products exist commercially for homeowners, there is no such system yet for large institutional or commercial buildings.

    There is a team actively developing such a pilot program in some MIT buildings, he said, focusing on some large lab buildings that have especially high energy usage. They are examining the use of artificial intelligence to reduce energy consumption, he noted. By adding systems to monitor energy use, temperatures, occupancy, and so on, and to control heating, lighting and air conditioning systems, Higgins said at least a 3 to 5 percent reduction in energy use can be realized. “It may be well beyond that,” he added. “There’s a huge opportunity here.”

    Higgins also outlined the ongoing plan to convert the existing steam distribution system for campus heating into a hot water system. Though the massive undertaking may take decades to complete, he said that project alone may reduce campus carbon emissions by 10 percent. Other efforts include the installation of an additional 400 kilowatts of rooftop solar installations.

    Jeremy Gregory, executive director of MIT’s climate and sustainability consortium, described efforts to deal with the most far-reaching areas of greenhouse gas emission, the so-called Scope 3 emissions. He explained that Scope 1 is the direct emissions from the campus itself, from buildings and vehicles; Scope 2 includes indirect emissions from the generation of electricity; and Scope 3 is “everything else.” That includes employee travel, buildings that MIT leases from others and to others, and all goods and services, he added, “so it includes a lot of different categories of emissions.” Gregory said his team, including several student fellows, is actively investigating and quantifying these Scope 3 emissions at MIT, along with potential methods of reducing them.

    Professor Noelle Selin, who was recently named as co-chair of the new Climate Nucleus along with Professor Anne White, outlined their plans for the coming year, including the setting up of the three working groups.

    Selin said the nucleus consists of representatives of departments, labs, centers, and institutes that have significant responsibilities under the climate plan. That body will make recommendations to the steering committee, which includes the deans of all five of MIT’s schools and the MIT Schwarzman College of Computing, “about how to amplify MIT’s impact in the climate sphere. We have an implementation role, but we also have an accelerator pedal that can really make MIT’s climate impact more ambitious, and really push the buttons and make sure that the Institute’s commitments are actually borne out in reality.”

    The MIT Climate Tune-In also featured Selin and White, as well as a presentation on MIT’s expanded educational offerings on climate and sustainability, from Sarah Meyers, ESI’s education program manager; students Derek Allmond and Natalie Northrup; and postdoc Peter Godart. Professor Dennis Whyte also spoke about MIT and Commonwealth Fusion Systems’ recent historical advance toward commercial fusion energy. Organizers said that the Climate Tune-In event is the first of what they hope will be many opportunities to hear updates on the wide range of work happening across campus to implement the Fast Forward plan, and to spark conversations within the MIT community. More

  • in

    MIT appoints members of new faculty committee to drive climate action plan

    In May, responding to the world’s accelerating climate crisis, MIT issued an ambitious new plan, “Fast Forward: MIT’s Climate Action Plan for the Decade.” The plan outlines a broad array of new and expanded initiatives across campus to build on the Institute’s longstanding climate work.

    Now, to unite these varied climate efforts, maximize their impact, and identify new ways for MIT to contribute climate solutions, the Institute has appointed more than a dozen faculty members to a new committee established by the Fast Forward plan, named the Climate Nucleus.

    The committee includes leaders of a number of climate- and energy-focused departments, labs, and centers that have significant responsibilities under the plan. Its membership spans all five schools and the MIT Schwarzman College of Computing. Professors Noelle Selin and Anne White have agreed to co-chair the Climate Nucleus for a term of three years.

    “I am thrilled and grateful that Noelle and Anne have agreed to step up to this important task,” says Maria T. Zuber, MIT’s vice president for research. “Under their leadership, I’m confident that the Climate Nucleus will bring new ideas and new energy to making the strategy laid out in the climate action plan a reality.”

    The Climate Nucleus has broad responsibility for the management and implementation of the Fast Forward plan across its five areas of action: sparking innovation, educating future generations, informing and leveraging government action, reducing MIT’s own climate impact, and uniting and coordinating all of MIT’s climate efforts.

    Over the next few years, the nucleus will aim to advance MIT’s contribution to a two-track approach to decarbonizing the global economy, an approach described in the Fast Forward plan. First, humanity must go as far and as fast as it can to reduce greenhouse gas emissions using existing tools and methods. Second, societies need to invest in, invent, and deploy new tools — and promote new institutions and policies — to get the global economy to net-zero emissions by mid-century.

    The co-chairs of the nucleus bring significant climate and energy expertise, along with deep knowledge of the MIT community, to their task.

    Selin is a professor with joint appointments in the Institute for Data, Systems, and Society and the Department of Earth, Atmospheric and Planetary Sciences. She is also the director of the Technology and Policy Program. She began at MIT in 2007 as a postdoc with the Center for Global Change Science and the Joint Program on the Science and Policy of Global Change. Her research uses modeling to inform decision-making on air pollution, climate change, and hazardous substances.

    “Climate change affects everything we do at MIT. For the new climate action plan to be effective, the Climate Nucleus will need to engage the entire MIT community and beyond, including policymakers as well as people and communities most affected by climate change,” says Selin. “I look forward to helping to guide this effort.”

    White is the School of Engineering’s Distinguished Professor of Engineering and the head of the Department of Nuclear Science and Engineering. She joined the MIT faculty in 2009 and has also served as the associate director of MIT’s Plasma Science and Fusion Center. Her research focuses on assessing and refining the mathematical models used in the design of fusion energy devices, such as tokamaks, which hold promise for delivering limitless zero-carbon energy.

    “The latest IPCC report underscores the fact that we have no time to lose in decarbonizing the global economy quickly. This is a problem that demands we use every tool in our toolbox — and develop new ones — and we’re committed to doing that,” says White, referring to an August 2021 report from the Intergovernmental Panel on Climate Change, a UN climate science body, that found that climate change has already affected every region on Earth and is intensifying. “We must train future technical and policy leaders, expand opportunities for students to work on climate problems, and weave sustainability into every one of MIT’s activities. I am honored to be a part of helping foster this Institute-wide collaboration.”

    A first order of business for the Climate Nucleus will be standing up three working groups to address specific aspects of climate action at MIT: climate education, climate policy, and MIT’s own carbon footprint. The working groups will be responsible for making progress on their particular areas of focus under the plan and will make recommendations to the nucleus on ways of increasing MIT’s effectiveness and impact. The working groups will also include student, staff, and alumni members, so that the entire MIT community has the opportunity to contribute to the plan’s implementation.  

    The nucleus, in turn, will report and make regular recommendations to the Climate Steering Committee, a senior-level team consisting of Zuber; Richard Lester, the associate provost for international activities; Glen Shor, the executive vice president and treasurer; and the deans of the five schools and the MIT Schwarzman College of Computing. The new plan created the Climate Steering Committee to ensure that climate efforts will receive both the high-level attention and the resources needed to succeed.

    Together the new committees and working groups are meant to form a robust new infrastructure for uniting and coordinating MIT’s climate action efforts in order to maximize their impact. They replace the Climate Action Advisory Committee, which was created in 2016 following the release of MIT’s first climate action plan.

    In addition to Selin and White, the members of the Climate Nucleus are:

    Bob Armstrong, professor in the Department of Chemical Engineering and director of the MIT Energy Initiative;
    Dara Entekhabi, professor in the departments of Civil and Environmental Engineering and Earth, Atmospheric and Planetary Sciences;
    John Fernández, professor in the Department of Architecture and director of the Environmental Solutions Initiative;
    Stefan Helmreich, professor in the Department of Anthropology;
    Christopher Knittel, professor in the MIT Sloan School of Management and director of the Center for Energy and Environmental Policy Research;
    John Lienhard, professor in the Department of Mechanical Engineering and director of the Abdul Latif Jameel Water and Food Systems Lab;
    Julie Newman, director of the Office of Sustainability and lecturer in the Department of Urban Studies and Planning;
    Elsa Olivetti, professor in the Department of Materials Science and Engineering and co-director of the Climate and Sustainability Consortium;
    Christoph Reinhart, professor in the Department of Architecture and director of the Building Technology Program;
    John Sterman, professor in the MIT Sloan School of Management and director of the Sloan Sustainability Initiative;
    Rob van der Hilst, professor and head of the Department of Earth, Atmospheric and Planetary Sciences; and
    Chris Zegras, professor and head of the Department of Urban Studies and Planning. More