More stories

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    MIT Energy Initiative awards seven Seed Fund grants for early-stage energy research

    The MIT Energy Initiative (MITEI) has awarded seven Seed Fund grants to support novel, early-stage energy research by faculty and researchers at MIT. The awardees hail from a range of disciplines, but all strive to bring their backgrounds and expertise to address the global climate crisis by improving the efficiency, scalability, and adoption of clean energy technologies.

    “Solving climate change is truly an interdisciplinary challenge,” says MITEI Director Robert C. Armstrong. “The Seed Fund grants foster collaboration and innovation from across all five of MIT’s schools and one college, encouraging an ‘all hands on deck approach’ to developing the energy solutions that will prove critical in combatting this global crisis.”

    This year, MITEI’s Seed Fund grant program received 70 proposals from 86 different principal investigators (PIs) across 25 departments, labs, and centers. Of these proposals, 31 involved collaborations between two or more PIs, including 24 that involved multiple departments.

    The winning projects reflect this collaborative nature with topics addressing the optimization of low-energy thermal cooling in buildings; the design of safe, robust, and resilient distributed power systems; and how to design and site wind farms with consideration of wind resource uncertainty due to climate change.

    Increasing public support for low-carbon technologies

    One winning team aims to leverage work done in the behavioral sciences to motivate sustainable behaviors and promote the adoption of clean energy technologies.

    “Objections to scalable low-carbon technologies such as nuclear energy and carbon sequestration have made it difficult to adopt these technologies and reduce greenhouse gas emissions,” says Howard Herzog, a senior research scientist at MITEI and co-PI. “These objections tend to neglect the sheer scale of energy generation required and the inability to meet this demand solely with other renewable energy technologies.”

    This interdisciplinary team — which includes researchers from MITEI, the Department of Nuclear Science and Engineering, and the MIT Sloan School of Management — plans to convene industry professionals and academics, as well as behavioral scientists, to identify common objections, design messaging to overcome them, and prove that these messaging campaigns have long-lasting impacts on attitudes toward scalable low-carbon technologies.

    “Our aim is to provide a foundation for shifting the public and policymakers’ views about these low-carbon technologies from something they, at best, tolerate, to something they actually welcome,” says co-PI David Rand, the Erwin H. Schell Professor and professor of management science and brain and cognitive sciences at MIT Sloan School of Management.

    Siting and designing wind farms

    Michael Howland, an assistant professor of civil and environmental engineering, will use his Seed Fund grant to develop a foundational methodology for wind farm siting and design that accounts for the uncertainty of wind resources resulting from climate change.

    “The optimal wind farm design and its resulting cost of energy is inherently dependent on the wind resource at the location of the farm,” says Howland. “But wind farms are currently sited and designed based on short-term climate records that do not account for the future effects of climate change on wind patterns.”

    Wind farms are capital-intensive infrastructure that cannot be relocated and often have lifespans exceeding 20 years — all of which make it especially important that developers choose the right locations and designs based not only on wind patterns in the historical climate record, but also based on future predictions. The new siting and design methodology has the potential to replace current industry standards to enable a more accurate risk analysis of wind farm development and energy grid expansion under climate change-driven energy resource uncertainty.

    Membraneless electrolyzers for hydrogen production

    Producing hydrogen from renewable energy-powered water electrolyzers is central to realizing a sustainable and low-carbon hydrogen economy, says Kripa Varanasi, a professor of mechanical engineering and a Seed Fund award recipient. The idea of using hydrogen as a fuel has existed for decades, but it has yet to be widely realized at a considerable scale. Varanasi hopes to change that with his Seed Fund grant.

    “The critical economic hurdle for successful electrolyzers to overcome is the minimization of the capital costs associated with their deployment,” says Varanasi. “So, an immediate task at hand to enable electrochemical hydrogen production at scale will be to maximize the effectiveness of the most mature, least complex, and least expensive water electrolyzer technologies.”

    To do this, he aims to combine the advantages of existing low-temperature alkaline electrolyzer designs with a novel membraneless electrolyzer technology that harnesses a gas management system architecture to minimize complexity and costs, while also improving efficiency. Varanasi hopes his project will demonstrate scalable concepts for cost-effective electrolyzer technology design to help realize a decarbonized hydrogen economy.

    Since its establishment in 2008, the MITEI Seed Fund Program has supported 194 energy-focused seed projects through grants totaling more than $26 million. This funding comes primarily from MITEI’s founding and sustaining members, supplemented by gifts from generous donors.

    Recipients of the 2021 MITEI Seed Fund grants are:

    “Design automation of safe, robust, and resilient distributed power systems” — Chuchu Fan of the Department of Aeronautics and Astronautics
    “Advanced MHD topping cycles: For fission, fusion, solar power plants” — Jeffrey Freidberg of the Department of Nuclear Science and Engineering and Dennis Whyte of the Plasma Science and Fusion Center
    “Robust wind farm siting and design under climate-change‐driven wind resource uncertainty” — Michael Howland of the Department of Civil and Environmental Engineering
    “Low-energy thermal comfort for buildings in the Global South: Optimal design of integrated structural-thermal systems” — Leslie Norford of the Department of Architecture and Caitlin Mueller of the departments of Architecture and Civil and Environmental Engineering
    “New low-cost, high energy-density boron-based redox electrolytes for nonaqueous flow batteries” — Alexander Radosevich of the Department of Chemistry
    “Increasing public support for scalable low-carbon energy technologies using behavorial science insights” — David Rand of the MIT Sloan School of Management, Koroush Shirvan of the Department of Nuclear Science and Engineering, Howard Herzog of the MIT Energy Initiative, and Jacopo Buongiorno of the Department of Nuclear Science and Engineering
    “Membraneless electrolyzers for efficient hydrogen production using nanoengineered 3D gas capture electrode architectures” — Kripa Varanasi of the Department of Mechanical Engineering More