More stories

  • in

    MIT D-Lab students design global energy solutions through collaboration

    This semester, MIT D-Lab students built prototype solutions to help farmers in Afghanistan, people living in informal settlements in Argentina, and rural poultry farmers in Cameroon. The projects span continents and collectively stand to improve thousands of lives — and they all trace back to two longstanding MIT D-Lab classes.For nearly two decades, 2.651 / EC.711 (Introduction to Energy in Global Development) and 2.652 / EC.712 (Applications of Energy in Global Development) have paired students with international organizations and communities to learn D-Lab’s participatory approach to design and study energy technologies in low-resource environments. Hundreds of students from across MIT have taken the courses, which feature visits from partners and trips to the communities after the semester. They often discover a passion for helping people in low-resource settings that lasts a lifetime.“Through the trips, students often gain an appreciation for what they have at home, and they can’t forget about what they see,” says D-Lab instructor Josh Maldonado ’23, who took both courses as a student. “For me, it changed my entire career. Students maintain relationships with the people they work with. They stay on the group chats with community members and meet up with them when they travel. They come back and want to mentor for the class. You can just see it has a lasting effect.”The introductory course takes place each spring and is followed by summer trips for students. The applications class, which is more focused on specific projects, is held in the fall and followed by student travel over winter break.“MIT has always advocated for going out and impacting the world,” Maldonado says. “The fact that we can use what we learn here in such a meaningful way while still a student is awesome. It gets back to MIT’s motto, ‘mens et manus’ (‘mind and hand’).”Curriculum for impactIntroduction to Energy in Global Development has been taught since around 2008, with past projects focusing on mitigating the effects of aquatic weeds for fisherman in Ghana, making charcoal for cookstoves in Uganda, and creating brick evaporative coolers to extend the shelf life of fruits and vegetables in Mali.The class follows MIT D-Lab’s participatory design philosophy in which students design solutions in close collaboration with local communities. Along the way, students learn about different energy technologies and how they might be implemented cheaply in rural communities that lack basic infrastructure.“In product design, the idea is to get out and meet your customer where they are,” Maldonado explains. “The problem is our partners are often in remote, low-resource regions of the world. We put a big emphasis on designing with the local communities and increasing their creative capacity building to show them they can build solutions themselves.”Students from across MIT, including graduates and undergraduates, along with students from Harvard University and Wellesley College, can enroll in both courses. MIT senior Kanokwan Tungkitkancharoen took the introductory class this spring.“There are students from chemistry, computer science, civil engineering, policy, and more,” says Tungkitkancharoen. “I think that convergence models how things get done in real life. The class also taught me how to communicate the same information in different ways to cater to different people. It helped me distill my approach to what is this person trying to learn and how can I convey that information.”Tungkitkancharoen’s team worked with a nonprofit called Weatherizers Without Borders to implement weatherization strategies that enhance housing conditions and environmental resilience for people in the southern Argentinian community of Bariloche.The team built model homes and used heat sensing cameras to show the impact of weatherization strategies to locals and policymakers in the region.“Our partners live in self-built homes, but the region is notorious for being very cold in the winter and very hot in the summer,” Tungkitkancharoen says. “We’re helping our partners retrofit homes so they can withstand the weather better. Before the semester, I was interested in working directly with people impacted by these technologies and the current climate situation. D-Lab helped me work with people on the ground, and I’ve been super grateful to our community partners.”The project to design micro-irrigation systems to support agricultural productivity and water conservation in Afghanistan is in partnership with the Ecology and Conservation Organization of Afghanistan and a team from a local university in Afghanistan.“I love the process of coming into class with a practical question you need to solve and working closely with community partners,” says MIT master’s student Khadija Ghanizada, who has served as a teacher’s assistant for both the introductory and applications courses. “All of these projects will have a huge impact, but being from Afghanistan, I know this will make a difference because it’s a land-locked country, it’s dealing with droughts, and 80 percent of our economy depends on agriculture. We also make sure students are thinking about scalability of their solutions, whether scaling worldwide or just nationally. Every project has its own impact story.”Meeting community partnersNow that the spring semester is over, many students from the introductory class will travel to the regions they studied with instructors and local guides over the summer.“The traveling and implementation are things students always look forward to,” Maldonado says. “Students do a lot of prep work, thinking about the tools they need, the local resources they need, and working with partners to acquire those resources.”Following travel, students write a report on how the trip went, which helps D-Lab refine the course for next semester.“Oftentimes instructors are also doing research in these regions while they teach the class,” Maldonado says. “To be taught by people who were just in the field two weeks before the class started, and to see pictures of what they’re doing, is really powerful.”Students who have taken the class have gone on to careers in international development, nonprofits, and to start companies that grow the impact of their class projects. But the most immediate impact can be seen in the communities that students work with.“These solutions should be able to be built locally, sourced locally, and potentially also lead to the creation of localized markets based around the technology,” Maldonado says. “Almost everything the D-Lab does is open-sourced, so when we go to these communities, we don’t just teach people how to use these solutions, we teach them how to make them. Technology, if implemented correctly by mindful engineers and scientists, can be highly adopted and can grow a community of makers and fabricators and local businesses.” More

  • in

    MIT students turn vision to reality

    Life is a little brighter in Kapiyo these days.For many in this rural Kenyan town, nightfall used to signal the end to schoolwork and other family activities. Now, however, the darkness is pierced by electric lights from newly solar-powered homes. Inside, children in this off-the-grid area can study while parents extend daily activities past dusk, thanks to a project conceived by an MIT mechanical engineering student and financed by the MIT African Students Association (ASA) Impact Fund.There are changes coming, too, in the farmlands of Kashusha in the Democratic Republic of Congo (DRC), where another ASA Impact Fund project is working with local growers to establish an energy-efficient mill for processing corn — adding value, creating jobs, and sparking new economic opportunities. Similarly, plans are underway to automate processing of locally-grown cashews in the Mtwara area of Tanzania — an Impact Fund project meant to increase the income of farmers who now send over 90 percent of their nuts abroad for processing.Inspired by a desire by MIT students to turn promising ideas into practical solutions for people in their home countries, the ASA Impact Fund is a student-run initiative that launched during the 2023-24 academic year. Backed by an alumni board, the fund empowers students to conceive, design, and lead projects with social and economic impact in communities across Africa.After financing three projects its first year, the ASA Impact Fund received eight project proposals earlier this year and plans to announce its second round of two to four grants sometime this spring, says Pamela Abede, last year’s fund president. Last year’s awards totaled approximately $15,000.The fund is an outgrowth of MIT’s African Learning Circle, a seminar open to the entire MIT community where biweekly discussions focus on ways to apply MIT’s educational resources, entrepreneurial spirit, and innovation to improve lives on the African continent.“The Impact Fund was created,” says MIT African Students Association president Victory Yinka-Banjo, “to take this to the next level … to go from talking to execution.”Aimed at bridging a gap between projects Learning Circle participants envision and resources available to fund them, the ASA Impact Fund “exists as an avenue to assist our members in undertaking social impact projects on the African continent,” the initiative’s website states, “thereby combining theoretical learning with practical application in alignment with MIT’s motto.”The fund’s value extends to the Cambridge campus as well, says ASA Impact Fund board member and 2021 MIT graduate Bolu Akinola.“You can do cool projects anywhere,” says Akinola, who is originally from Nigeria and currently pursuing a master’s degree in business administration at Harvard University. “Where this is particularly catalyzing is in incentivizing folks to go back home and impact life back on the continent of Africa.”MIT-Africa managing director Ari Jacobovits, who helped students get the fund off the ground last year, agrees.“I think it galvanized the community, bringing people together to bridge a programmatic gap that had long felt like a missed opportunity,” Jacobovits says. “I’m always impressed by the level of service-mindedness ASA members have towards their home communities. It’s something we should all be celebrating and thinking about incorporating into our home communities, wherever they may be.”Alumni Board president Selam Gano notes that a big part of the Impact Fund’s appeal is the close connections project applicants have with the communities they’re working with. MIT engineering major Shekina Pita, for example, is from Kapiyo, and recalls “what it was like growing up in a place with unreliable electricity,” which “would impact every aspect of my life and the lives of those that I lived around.” Pita’s personal experience and familiarity with the community informed her proposal to install solar panels on Kapiyo homes.So far, the ASA Impact Fund has financed installation of solar panels for five households where families had been relying on candles so their children could do homework after dark.“A candle is 15 Kenya shillings, and I don’t always have that amount to buy candles for my children to study. I am grateful for your help,” comments one beneficiary of the Kapiyo solar project.Pita anticipates expanding the project, 10 homes at a time, and involving some college-age residents of those homes in solar panel installation apprenticeships.“In general, we try to balance projects where we fund some things that are very concrete solutions to a particular community’s problems — like a water project or solar energy — and projects with a longer-term view that could become an organization or a business — like a novel cashew nut processing method,” says Gano, who conducted projects in his father’s homeland of Ethiopia while an MIT student. “I think striking that balance is something I am particularly proud of. We believe that people in the community know best what they need, and it’s great to empower students from those same communities.”  Vivian Chinoda, who received a grant from the ASA Impact Fund and was part of the African Students Association board that founded it, agrees.“We want to address problems that can seem trivial without the lived experience of them,” says Chinoda. “For my friend and I, getting funding to go to Tanzania and drive more than 10 hours to speak to remotely located small-scale cashew farmers … made a difference. We were able to conduct market research and cross-check our hypotheses on a project idea we brainstormed in our dorm room in ways we would not have otherwise been able to access remotely.”Similarly, Florida Mahano’s Impact Fund-financed project is benefiting from her experience growing up near farms in the DRC. Partnering with her brother, a mechanical engineer in her home community of Bukavu in eastern DRC, Mahano is on her way to developing a processing plant that will serve the needs of local farmers. Informed by market research involving about 500 farmers, consumers, and retailers that took place in January, the plant will likely be operational by summer 2026, says Mahano, who has also received funding from MIT’s Priscilla King Gray (PKG) Public Service Center.“The ASA Impact Fund was the starting point for us,” paving the way for additional support, she says. “I feel like the ASA Impact Fund was really amazing because it allowed me to bring my idea to life.”Importantly, Chinoda notes that the Impact Fund has already had early success in fostering ties between undergraduate students and MIT alumni.“When we sent out the application to set up the alumni board, we had a volume of respondents coming in quite quickly, and it was really encouraging to see how the alums were so willing to be present and use their skill sets and connections to build this from the ground up,” she says.Abede, who is originally from Ghana, would like to see that enthusiasm continue — increasing alumni awareness about the fund “to get more alums involved … more alums on the board and mentoring the students.”Mentoring is already an important aspect of the ASA Impact Fund, says Akinola. Grantees, she says, get paired with alumni to help them through the process of getting projects underway. “This fund could be a really good opportunity to strengthen the ties between the alumni community and current students,” Akinola says. “I think there are a lot of opportunities for funds like this to tap into the MIT alumni community. I think where there is real value is in the advisory nature — mentoring and coaching current students, helping the transfer of skills and resources.”As more projects are proposed and funded each year, awareness of the ASA Impact Fund among MIT alumni will increase, Gano predicts.“We’ve had just one year of grantees so far, and all of the projects they’ve conducted have been great,” he says. “I think even if we just continue functioning at this scale, if we’re able to sustain the fund, we can have a real lasting impact as students and alumni and build more and more partnerships on the continent.” More

  • in

    Uplifting West African communities, one cashew at a time

    Ever wonder how your favorite snack was sourced? Joshua Reed-Diawuoh thinks more people should.Reed-Diawuoh MBA ’20 is the founder and CEO of GRIA Food Company, which partners with companies that ethically source and process food in West Africa to support local food economies and help communities in the region more broadly.“It’s very difficult for these agribusinesses and producers to start sustainable businesses and build up that value chain in the area,” says Reed-Diawuoh, who started the company as a student in the MIT Sloan School of Management. “We want to support these companies that put in the work to build integrated businesses that are employing people and uplifting communities.”GRIA, which stands for “Grown in Africa,” is currently selling six types of flavored cashews sourced from Benin, Togo, and Burkina Faso. All of the cashews are certified by Fairtrade International, which means in addition to offering sustainable wages, access to financing, and decent working conditions, the companies receive a “Fairtrade Premium” on top of the selling price that allows them to invest in the long-term health of their communities.“That premium is transformational,” Reed-Diawuoh says. “The premium goes to the producer cooperatives, or the farmers working the land, and they can invest that in any way they choose. They can put it back into their business, they can start new community development projects, like building schools or improving wastewater infrastructure, whatever they want.”Cracking the nutReed-Diawuoh’s family is from Ghana, and before coming to MIT Sloan, he worked to support agriculture and food manufacturing for countries in Sub-Saharan Africa, with particular focus on uplifting small-scale farmers. That’s where he learned about difficulties with financing and infrastructure constraints that held many companies back.“I wanted to get my hands dirty and start my own business that contributed to improving agricultural development in West Africa,” Reed-Diawuoh says.He entered MIT Sloan in 2018, taking entrepreneurship classes and exploring several business ideas before deciding to ethically source produce from farmers and sell directly to consumers. He says MIT Sloan’s Sustainability Business Lab offered particularly valuable lessons for how to structure his business.In his second year, Reed-Diawuoh was selected for a fellowship at the Legatum Center, which connected him to other entrepreneurs working in emerging markets around the world.“Legatum was a pivotal milestone for me,” he says. “It provided me with some structure and space to develop this idea. It also gave me an incredible opportunity to take risks and explore different business concepts in a way I couldn’t have done if I was working in industry.”The business model Reed-Diawuoh settled on for GRIA sources product from agribusiness partners in West Africa that adhere to the strictest environmental and labor standards. Reed-Diawuoh decided to start with cashews because they have many manual processing steps — from shelling to peeling and roasting — that are often done after the cashews are shipped out of West Africa, limiting the growth of local food economies and taking wealth out of communities.Each of GRIA’s partners, from the companies harvesting cashews to the processing facilities, works directly with farmer cooperatives and small-scale farmers and is certified by Fairtrade International.“Without proper oversight and regulations, workers oftentimes get exploited, and child labor is a huge problem across the agriculture sector,” Reed-Diawuoh says. “Fairtrade certifications try and take a robust and rigorous approach to auditing all of the businesses and their supply chains, from producers to farmers to processors. They do on-site visits and they audit financial documents. We went through this over the course of a thorough three-month review.”After importing cashew kernels, GRIA flavors and packages them at a production facility in Boston. Reed-Diawuoh started by selling to small independent retailers in Greater Boston before scaling up GRIA’s online sales. He started ramping up production in the beginning of 2023.“Every time we sell our product, if people weren’t already familiar with Fairtrade or ethical sourcing, we provide information on our packaging and all of our collateral,” Reed-Diawuoh says. “We want to spread this message about the importance of ethical sourcing and the importance of building up food manufacturing in West Africa in particular, but also in rising economies throughout the world.”Making ethical sourcing mainstreamGRIA currently imports about a ton of Fairtrade cashews and kernels each quarter, and Reed-Diawuoh hopes to double that number each year for the foreseeable future.“For each pound, we pay premiums for the kernels, and that supports this ecosystem where producers get compensated fairly for their work on the land, and agribusinesses are able to build more robust and profitable business models, because they have an end market for these Fairtrade-certified products.”Reed-Diawuoh is currently trying out different packaging and flavors and is in discussions with partners to expand production capacity and move into Ghana. He’s also exploring corporate collaborations and has provided MIT with product over the past two years for conferences and other events.“We’re experimenting with different growth strategies,” Reed-Diawuoh says. “We’re very much still in startup mode, but really trying to ramp up our sales and production.”As GRIA scales, Reed-Diawuoh hopes it pushes consumers to start asking more of their favorite food brands.“It’s absolutely critical that, if we’re sourcing produce in markets like the U.S. from places like West Africa, we’re hyper-focused on doing it in an ethical manner,” Reed-Diawuoh says. “The overall goal of GRIA is to ensure we are adhering to and promoting strict sourcing standards and being rigorous and thoughtful about the way we import product.” More

  • in

    D-Lab off-grid brooder saves chicks and money using locally manufactured thermal batteries

    MIT D-Lab students and instructors are improving the efficacy and economics of a brooder technology for newborn chicks that utilizes a practical, local resource: beeswax.Developed through participatory design with agricultural partners in Cameroon, their Off-Grid Brooder is a solution aimed at improving the profitability of the African nation’s small- and medium-scale poultry farms. Since it is common for smallholders in places with poor electricity supply to tend open fires overnight to keep chicks warm, the invention might also let farmers catch up on their sleep.“The target is eight hours. If farmers can sustain the warmth for eight hours, then they get to sleep,” says D-Lab instructor and former student Ahmad (Zak) Zakka SM ’23, who traveled to Cameroon in May to work on implementing brooder improvements tested at the D-Lab, along with D-Lab students, collaborators from African Solar Generation (ASG), and the African Diaspora Council of Switzerland – Branch Cameroon (CDAS–BC).Poultry farming is heavily concentrated in lower- and middle-income countries, where it is an important component of rural economies and provides an inexpensive source of protein for residents. Raising chickens is fraught with economic risk, however, largely because it is hard for small-scale farmers to keep newborn chicks warm enough to survive (33 to 35 degrees Celsius, or 91 to 95 degrees Fahrenheit, depending on age). After the cost of feed, firewood used to heat the chick space is the biggest input for rural poultry farmers.According to D-Lab researchers, an average smallholder in Cameroon using traditional brooding methods spends $17 per month on firewood, achieves a 10 percent profit margin, and experiences chick mortality that can be as high as a total loss due to overheating or insufficient heat. The Off-Grid Brooder is designed to replace open fires with inexpensive, renewable, and locally available beeswax — a phase-change material used to make thermal batteries.ASG initially developed a brooder technology, the SolarBox, that used photovoltaic panels and electric batteries to power incandescent bulbs. While this provided effective heating, it was prohibitively expensive and difficult to maintain. In 2020, students from the D-Lab Energy class took on the challenge of reducing the cost and complexity of the SolarBox heating system to make it more accessible to small farmers in Cameroon. Through participatory design — a collaborative approach that involves all stakeholders in early stages of the design process — the team discovered a unique solution. Beeswax stored in a used glass container (such as a mayonnaise jar) is melted using a double boiler over a fire and then installed inside insulated brooder boxes alongside the chicks. As the beeswax cools and solidifies, it releases heat for several hours, keeping the brooder within the temperature range that chicks need to grow and develop. Farmers can then recharge the cooled wax batteries and repeat the process again and again. “The big challenge was how to get heat,” says D-Lab Research Scientist Daniel Sweeney, who, with Zakka, co-teaches two D-Lab classes, 2.651/EC.711 (Introduction to Energy in Global Development), and 2.652/EC.712 (Applications of Energy in Global Development). “Decoupling the heat supplied by biomass (wood) from the heat the chicks need at night in the brooder, that’s the core of the innovation here.”D-Lab instructors, researchers, and students have tested and tuned the system with partners in Cameroon. A research box constructed during a D-Lab trip to Cameroon in January 2023 worked well, but was “very expensive to build,” Zakka says. “The research box was a proof of concept in the field. The next step was to figure out how to make it affordable,” he continues.A new brooder box, made entirely of locally sourced recycled materials at 5 percent of the cost of the research prototype, was developed during D-Lab’s January 2024 trip to Cameroon. Designed and produced in collaboration with CDAS-BC, the new brooder is much more affordable, but its functionality still needs fine-tuning. From late-May through mid-June, the D-Lab team, led by Zakka, worked with Cameroonian collaborators to improve the system again. This time, they assessed the efficacy of using straw, a readily available and low-cost material, arranged in panels to insulate the brooder box.The MIT team was hosted by CDAS-BC, including its president and founder Carole Erlemann Mengue and secretary and treasurer Kathrin Witschi, who operate an organic poultry farm in Afambassi, Cameroon. “The students will experiment with the box and try to improve the insulation of the box without neglecting that the chicks will need ventilation,” they say.In addition, the CDAS-BC partners say that they hoped to explore increasing the number of chicks that the box can keep warm. “If the system could heat 500 to 1,000 chicks at a time,” they note, “it would help farmers save firewood, to sleep through the night, and to minimize the risk of fire in the building and the risk of stepping on chicks while replacing firewood.” Earlier this spring, Erlemann Mengue and Witschi tested the low-cost Off-Grid Brooder Box, which can hold 30 to 40 chicks in its current design.“They were very interested in partnering with us to evaluate the technology. They are running the tests and doing a lot of technical measurement to track the temperature inside the brooder over time,” says Sweeney, adding that the CDAS-BC partners are amassing datasets that they send to the MIT D-Lab team. Sweeney and Zakka, along with PhD candidate Aly Kombargi, who worked on the research box in Cameroon last year, hope to not only improve the functionality of the Off-Grid Poultry Brooder but also broaden its use beyond Cameroon.“The goal of our trip was to have a working prototype, and the goal since then has been to scale this up,” Kombargi says. “It’s absolutely scalable.”Concurring that “the technology should work across developing countries in small-scale poultry sectors,” Zakka says this spring’s D-Lab trip included workshops for area poultry farmers to teach them about benefits of the Off-Grid Brooder and how to make their own. “I’m excited to see if we can get people excited about pushing this as a business … to see if they would build and sell it to other people in the community,” Zakka says.Adds Sweeney, “This isn’t rocket science. If we have some guidance and some open-source information we could share, I’m pretty sure (farmers) could put them together on their own.”Already, he says, partners identified through MIT’s networks in Zambia and Uganda are building their own brooders based on the D-Lab design.MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), which supports research, innovation, and cross-disciplinary collaborations involving water and food systems, awarded the Off-Grid Brooder project a $25,000 research and development grant in 2022. The program is “pleased that the project’s approach was grounded in engagement with MIT students and community collaborators,” says Executive Director Renee Robins. “The participatory design process helped produce innovative prototypes that are already making positive impacts for smallholder poultry farmers.”That process and the very real impact on communities in Cameroon is what draws students to the project and keeps them committed.Sweeney says a recent D-Lab design review for the chick brooder highlighted that the project continued to attract the attention and curiosity of students who participated in earlier stages and still want to be involved.“There’s something about this project. There’s this whole tribe of students that are still active on the broader project,” he says. “There’s something about it.” More

  • in

    Q&A: Exploring ethnic dynamics and climate change in Africa

    Evan Lieberman is the Total Professor of Political Science and Contemporary Africa at MIT, and is also director of the Center for International Studies. During a semester-long sabbatical, he’s currently based at the African Climate and Development Initiative at the University of Cape Town.In this Q&A, Lieberman discusses several climate-related research projects he’s pursuing in South Africa and surrounding countries. This is part of an ongoing series exploring how the School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: South Africa is a nation whose political and economic development you have long studied and written about. Do you see this visit as an extension of the kind of research you have been pursuing, or a departure from it?A: Much of my previous work has been animated by the question of understanding the causes and consequences of group-based disparities, whether due to AIDS or Covid. These are problems that know no geographic boundaries, and where ethnic and racial minorities are often hardest hit. Climate change is an analogous problem, with these minority populations living in places where they are most vulnerable, in heat islands in cities, and in coastal areas where they are not protected. The reality is they might get hit much harder by longer-term trends and immediate shocks.In one line of research, I seek to understand how people in different African countries, in different ethnic groups, perceive the problems of climate change and their governments’ response to it. There are ethnic divisions of labor in terms of what people do — whether they are farmers or pastoralists, or live in cities. So some ethnic groups are simply more affected by drought or extreme weather than others, and this can be a basis for conflict, especially when competing for often limited government resources.In this area, just like in my previous research, learning what shapes ordinary citizen perspectives is really important, because these views affect people’s everyday practices, and the extent to which they support certain kinds of policies and investments their government makes in response to climate-related challenges. But I will also try to learn more about the perspectives of policymakers and various development partners who seek to balance climate-related challenges against a host of other problems and priorities.Q: You recently published “Until We Have Won Our Liberty,” which examines the difficult transition of South Africa from apartheid to a democratic government, scrutinizing in particular whether the quality of life for citizens has improved in terms of housing, employment, discrimination, and ethnic conflicts. How do climate change-linked issues fit into your scholarship?A: I never saw myself as a climate researcher, but a number of years ago, heavily influenced by what I was learning at MIT, I began to recognize more and more how important the issue of climate change is. And I realized there were lots of ways in which the climate problem resonated with other kinds of problems I had tackled in earlier parts of my work.There was once a time when climate and the environment was the purview primarily of white progressives: the “tree huggers.” And that’s really changed in recent decades as it has become evident that the people who’ve been most affected by the climate emergency are ethnic and racial minorities. We saw with Hurricane Katrina and other places [that] if you are Black, you’re more likely to live in a vulnerable area and to just generally experience more environmental harms, from pollution and emissions, leaving these communities much less resilient than white communities. Government has largely not addressed this inequity. When you look at American survey data in terms of who’s concerned about climate change, Black Americans, Hispanic Americans, and Asian Americans are more unified in their worries than are white Americans.There are analogous problems in Africa, my career research focus. Governments there have long responded in different ways to different ethnic groups. The research I am starting looks at the extent to which there are disparities in how governments try to solve climate-related challenges.Q: It’s difficult enough in the United States taking the measure of different groups’ perceptions of the impact of climate change and government’s effectiveness in contending with it. How do you go about this in Africa?A: Surprisingly, there’s only been a little bit of work done so far on how ordinary African citizens, who are ostensibly being hit the hardest in the world by the climate emergency, are thinking about this problem. Climate change has not been politicized there in a very big way. In fact, only 50 percent of Africans in one poll had heard of the term.In one of my new projects, with political science faculty colleague Devin Caughey and political science doctoral student Preston Johnston, we are analyzing social and climate survey data [generated by the Afrobarometer research network] from over 30 African countries to understand within and across countries the ways in which ethnic identities structure people’s perception of the climate crisis, and their beliefs in what government ought to be doing. In largely agricultural African societies, people routinely experience drought, extreme rain, and heat. They also lack the infrastructure that can shield them from the intense variability of weather patterns. But we’re adding a lens, which is looking at sources of inequality, especially ethnic differences.I will also be investigating specific sectors. Africa is a continent where in most places people cannot take for granted universal, piped access to clean water. In Cape Town, several years ago, the combination of failure to replace infrastructure and lack of rain caused such extreme conditions that one of the world’s most important cities almost ran out of water.While these studies are in progress, it is clear that in many countries, there are substantively large differences in perceptions of the severity of climate change, and attitudes about who should be doing what, and who’s capable of doing what. In several countries, both perceptions and policy preferences are differentiated along ethnic lines, more so than with respect to generational or class differences within societies.This is interesting as a phenomenon, but substantively, I think it’s important in that it may provide the basis for how politicians and government actors decide to move on allocating resources and implementing climate-protection policies. We see this kind of political calculation in the U.S. and we shouldn’t be surprised that it happens in Africa as well.That’s ultimately one of the challenges from the perch of MIT, where we’re really interested in understanding climate change, and creating technological tools and policies for mitigating the problem or adapting to it. The reality is frustrating. The political world — those who make decisions about whether to acknowledge the problem and whether to implement resources in the best technical way — are playing a whole other game. That game is about rewarding key supporters and being reelected.Q: So how do you go from measuring perceptions and beliefs among citizens about climate change and government responsiveness to those problems, to policies and actions that might actually reduce disparities in the way climate-vulnerable African groups receive support?A: Some of the work I have been doing involves understanding what local and national governments across Africa are actually doing to address these problems. We will have to drill down into government budgets to determine the actual resources devoted to addressing a challenge, what sorts of practices the government follows, and the political ramifications for governments that act aggressively versus those that don’t. With the Cape Town water crisis, for example, the government dramatically changed residents’ water usage through naming and shaming, and transformed institutional practices of water collection. They made it through a major drought by using much less water, and doing it with greater energy efficiency. Through the government’s strong policy and implementation, and citizens’ active responses, an entire city, with all its disparate groups, gained resilience. Maybe we can highlight creative solutions to major climate-related problems and use them as prods to push more effective policies and solutions in other places.In the MIT Global Diversity Lab, along with political science faculty colleague Volha Charnysh, political science doctoral student Jared Kalow, and Institute for Data, Systems and Society doctoral student Erin Walk, we are exploring American perspectives on climate-related foreign aid, asking survey respondents whether the U.S. should be giving more to people in the global South who didn’t cause the problems of climate change but have to suffer the externalities. We are particularly interested in whether people’s desire to help vulnerable communities rests on the racial or national identity of those communities.From my new seat as director of the Center for International Studies (CIS), I hope to do more and more to connect social science findings to relevant policymakers, whether in the U.S. or in other places. CIS is making climate one of our thematic priority areas, directing hundreds of thousands of dollars for MIT faculty to spark climate collaborations with researchers worldwide through the Global Seed Fund program. COP 28 (the U.N. Climate Change Conference), which I attended in December in Dubai, really drove home the importance of people coming together from around the world to exchange ideas and form networks. It was unbelievably large, with 85,000 people. But so many of us shared the belief that we are not doing enough. We need enforceable global solutions and innovation. We need ways of financing. We need to provide opportunities for journalists to broadcast the importance of this problem. And we need to understand the incentives that different actors have and what sorts of messages and strategies will resonate with them, and inspire those who have resources to be more generous. More

  • in

    Optimizing nuclear fuels for next-generation reactors

    In 2010, when Ericmoore Jossou was attending college in northern Nigeria, the lights would flicker in and out all day, sometimes lasting only for a couple of hours at a time. The frustrating experience reaffirmed Jossou’s realization that the country’s sporadic energy supply was a problem. It was the beginning of his path toward nuclear engineering.

    Because of the energy crisis, “I told myself I was going to find myself in a career that allows me to develop energy technologies that can easily be scaled to meet the energy needs of the world, including my own country,” says Jossou, an assistant professor in a shared position between the departments of Nuclear Science and Engineering (NSE), where is the John Clark Hardwick (1986) Professor, and of Electrical Engineering and Computer Science.

    Today, Jossou uses computer simulations for rational materials design, AI-aided purposeful development of cladding materials and fuels for next-generation nuclear reactors. As one of the shared faculty hires between the MIT Schwarzman College of Computing and departments across MIT, his appointment recognizes his commitment to computing for climate and the environment.

    A well-rounded education in Nigeria

    Growing up in Lagos, Jossou knew education was about more than just bookish knowledge, so he was eager to travel and experience other cultures. He would start in his own backyard by traveling across the Niger river and enrolling in Ahmadu Bello University in northern Nigeria. Moving from the south was a cultural education with a different language and different foods. It was here that Jossou got to try and love tuwo shinkafa, a northern Nigerian rice-based specialty, for the first time.

    After his undergraduate studies, armed with a bachelor’s degree in chemistry, Jossou was among a small cohort selected for a specialty master’s training program funded by the World Bank Institute and African Development Bank. The program at the African University of Science and Technology in Abuja, Nigeria, is a pan-African venture dedicated to nurturing homegrown science talent on the continent. Visiting professors from around the world taught intensive three-week courses, an experience which felt like drinking from a fire hose. The program widened Jossou’s views and he set his sights on a doctoral program with an emphasis on clean energy systems.

    A pivot to nuclear science

    While in Nigeria, Jossou learned of Professor Jerzy Szpunar at the University of Saskatchewan in Canada, who was looking for a student researcher to explore fuels and alloys for nuclear reactors. Before then, Jossou was lukewarm on nuclear energy, but the research sounded fascinating. The Fukushima, Japan, incident was recently in the rearview mirror and Jossou remembered his early determination to address his own country’s energy crisis. He was sold on the idea and graduated with a doctoral degree from the University of Saskatchewan on an international dean’s scholarship.

    Jossou’s postdoctoral work registered a brief stint at Brookhaven National Laboratory as staff scientist. He leaped at the opportunity to join MIT NSE as a way of realizing his research interest and teaching future engineers. “I would really like to conduct cutting-edge research in nuclear materials design and to pass on my knowledge to the next generation of scientists and engineers and there’s no better place to do that than at MIT,” Jossou says.

    Merging material science and computational modeling

    Jossou’s doctoral work on designing nuclear fuels for next-generation reactors forms the basis of research his lab is pursuing at MIT NSE. Nuclear reactors that were built in the 1950s and ’60s are getting a makeover in terms of improved accident tolerance. Reactors are not confined to one kind, either: We have micro reactors and are now considering ones using metallic nuclear fuels, Jossou points out. The diversity of options is enough to keep researchers busy testing materials fit for cladding, the lining that prevents corrosion of the fuel and release of radioactive fission products into the surrounding reactor coolant.

    The team is also investigating fuels that improve burn-up efficiencies, so they can last longer in the reactor. An intriguing approach has been to immobilize the gas bubbles that arise from the fission process, so they don’t grow and degrade the fuel.

    Since joining MIT in July 2023, Jossou is setting up a lab that optimizes the composition of accident-tolerant nuclear fuels. He is leaning on his materials science background and looping computer simulations and artificial intelligence in the mix.

    Computer simulations allow the researchers to narrow down the potential field of candidates, optimized for specific parameters, so they can synthesize only the most promising candidates in the lab. And AI’s predictive capabilities guide researchers on which materials composition to consider next. “We no longer depend on serendipity to choose our materials, our lab is based on rational materials design,” Jossou says, “we can rapidly design advanced nuclear fuels.”

    Advancing energy causes in Africa

    Now that he is at MIT, Jossou admits the view from the outside is different. He now harbors a different perspective on what Africa needs to address some of its challenges. “The starting point to solve our problems is not money; it needs to start with ideas,” he says, “we need to find highly skilled people who can actually solve problems.” That job involves adding economic value to the rich arrays of raw materials that the continent is blessed with. It frustrates Jossou that Niger, a country rich in raw material for uranium, has no nuclear reactors of its own. It ships most of its ore to France. “The path forward is to find a way to refine these materials in Africa and to be able to power the industries on that continent as well,” Jossou says.

    Jossou is determined to do his part to eliminate these roadblocks.

    Anchored in mentorship, Jossou’s solution aims to train talent from Africa in his own lab. He has applied for a MIT Global Experiences MISTI grant to facilitate travel and research studies for Ghanaian scientists. “The goal is to conduct research in our facility and perhaps add value to indigenous materials,” Jossou says.

    Adding value has been a consistent theme of Jossou’s career. He remembers wanting to become a neurosurgeon after reading “Gifted Hands,” moved by the personal story of the author, Ben Carson. As Jossou grew older, however, he realized that becoming a doctor wasn’t necessarily what he wanted. Instead, he was looking to add value. “What I wanted was really to take on a career that allows me to solve a societal problem.” The societal problem of clean and safe energy for all is precisely what Jossou is working on today. More

  • in

    Ayomikun Ayodeji ’22 named a 2024 Rhodes Scholar

    Ayomikun “Ayo” Ayodeji ’22 from Lagos, Nigeria, has been selected as a Rhodes Scholar for West Africa. He will begin fully funded postgraduate studies at Oxford University in the U.K. next fall.

    Ayodeji was supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development, and received additional mentorship from the Presidential Committee on Distinguished Fellowships.

    “Ayo has worked hard to develop his vision and to express it in ways that will capture the imagination of the broader world. It is a thrill to see him recognized this year as a Rhodes Scholar,” says Professor Nancy Kanwisher, who co-chairs the committee along with Professor Will Broadhead.

    Ayodeji graduated from MIT in 2022 with BS degrees in chemical engineering and management. He is currently an associate at Boston Consulting Group.

    He is passionate about championing reliable energy access across the African landscape and fostering culturally inclusive communities. As a Rhodes Scholar, he will pursue an MSc in energy systems and an MSc in global governance and diplomacy.

    During his time at MIT, Ayodeji’s curiosity for energy innovations was fueled by his research on perovskite solar cells under the MIT Energy Initiative. He then went on to intern at Pioneer Natural Resources where he explored the boundless applications of machine learning tools in completions. At BCG, Ayodeji supports both public and private sector clients on a variety of renewable energy topics including clean energy transition, decarbonization roadmaps, and workforce development.

    Ayodeji’s community-oriented mindset led him to team up with a group of friends and partner with the Northeast Children’s Trust (NECT), an organization that helps children affected by the Boko Haram insurgency in northeastern Nigeria. The project, sponsored by Davis Projects for Peace and MIT’s PKG Center, expanded NECT’s programs via an offline, portable classroom server.

    Ayodeji served as an undergraduate representative on the MIT Department of Chemical Engineering’s Diversity, Equity, and Inclusion Committee. He was also vice president of the MIT African Students’ Association and a coordinator for the annual MIT International Students Orientation. More

  • in

    New clean air and water labs to bring together researchers, policymakers to find climate solutions

    MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) is launching the Clean Air and Water Labs, with support from Community Jameel, to generate evidence-based solutions aimed at increasing access to clean air and water.

    Led by J-PAL’s Africa, Middle East and North Africa (MENA), and South Asia regional offices, the labs will partner with government agencies to bring together researchers and policymakers in areas where impactful clean air and water solutions are most urgently needed.

    Together, the labs aim to improve clean air and water access by informing the scaling of evidence-based policies and decisions of city, state, and national governments that serve nearly 260 million people combined.

    The Clean Air and Water Labs expand the work of J-PAL’s King Climate Action Initiative, building on the foundational support of King Philanthropies, which significantly expanded J-PAL’s work at the nexus of climate change and poverty alleviation worldwide. 

    Air pollution, water scarcity and the need for evidence 

    Africa, MENA, and South Asia are on the front lines of global air and water crises. 

    “There is no time to waste investing in solutions that do not achieve their desired effects,” says Iqbal Dhaliwal, global executive director of J-PAL. “By co-generating rigorous real-world evidence with researchers, policymakers can have the information they need to dedicate resources to scaling up solutions that have been shown to be effective.”

    In India, about 75 percent of households did not have drinking water on premises in 2018. In MENA, nearly 90 percent of children live in areas facing high or extreme water stress. Across Africa, almost 400 million people lack access to safe drinking water. 

    Simultaneously, air pollution is one of the greatest threats to human health globally. In India, extraordinary levels of air pollution are shortening the average life expectancy by five years. In Africa, rising indoor and ambient air pollution contributed to 1.1 million premature deaths in 2019. 

    There is increasing urgency to find high-impact and cost-effective solutions to the worsening threats to human health and resources caused by climate change. However, data and evidence on potential solutions are limited.

    Fostering collaboration to generate policy-relevant evidence 

    The Clean Air and Water Labs will foster deep collaboration between government stakeholders, J-PAL regional offices, and researchers in the J-PAL network. 

    Through the labs, J-PAL will work with policymakers to:

    co-diagnose the most pressing air and water challenges and opportunities for policy innovation;
    expand policymakers’ access to and use of high-quality air and water data;
    co-design potential solutions informed by existing evidence;
    co-generate evidence on promising solutions through rigorous evaluation, leveraging existing and new data sources; and
    support scaling of air and water policies and programs that are found to be effective through evaluation. 
    A research and scaling fund for each lab will prioritize resources for co-generated pilot studies, randomized evaluations, and scaling projects. 

    The labs will also collaborate with C40 Cities, a global network of mayors of the world’s leading cities that are united in action to confront the climate crisis, to share policy-relevant evidence and identify opportunities for potential new connections and research opportunities within India and across Africa.

    This model aims to strengthen the use of evidence in decision-making to ensure solutions are highly effective and to guide research to answer policymakers’ most urgent questions. J-PAL Africa, MENA, and South Asia’s strong on-the-ground presence will further bridge research and policy work by anchoring activities within local contexts. 

    “Communities across the world continue to face challenges in accessing clean air and water, a threat to human safety that has only been exacerbated by the climate crisis, along with rising temperatures and other hazards,” says George Richards, director of Community Jameel. “Through our collaboration with J-PAL and C40 in creating climate policy labs embedded in city, state, and national governments in Africa and South Asia, we are committed to innovative and science-based approaches that can help hundreds of millions of people enjoy healthier lives.”

    J-PAL Africa, MENA, and South Asia will formally launch Clean Air and Water Labs with government partners over the coming months. J-PAL is housed in the MIT Department of Economics, within the School of Humanities, Arts, and Social Sciences. More