More stories

  • in

    Addressing food insecurity in arid regions with an open-source evaporative cooling chamber design

    Anyone who has ever perspired on a hot summer day understands the principle — and critical value — of evaporative cooling. Our bodies produce droplets of sweat when we overheat, and with a dry breeze or nearby fan those droplets will evaporate, absorbing heat in the process creating a welcome cool feeling.

    That same scientific principle, known as evaporative cooling, can be a game-changer for preserving fruits and vegetables grown on smallholder farms, where the wilting dry heat can quickly degrade freshly harvested produce. If those just-picked red peppers and leafy greens are not consumed in short order, or quickly transferred to cold — or at least cool — storage, much of it can go to waste.

    Now, MIT Professor Leon Glicksman of the Building Technology Program within the Department of Architecture, and Research Engineer Eric Verploegen of MIT D-Lab have released their open-source design for a forced-air evaporative cooling chamber that can be built in a used shipping container and powered by either grid electricity or built-in solar panels. With a capacity of 168 produce crates, the chamber offers great promise for smallholder farmers in hot, dry climates who need an affordable method for quickly bringing down the temperature of freshly harvested fruit and vegetables to ensure they stay fresh.

    “Delicate fruits and vegetables are most vulnerable to spoilage if they are picked during the day,” says Verploegen, a longtime proponent of using evaporative cooling to reduce post-harvest waste. “And if refrigerated cold rooms aren’t feasible or affordable,” he continues, “evaporative cooling can make a big difference for farmers and the communities they feed.”

    Verploegen has made evaporative cooling the focus of his work since 2016, initially focusing on small-scale evaporative cooling “Zeer” pots, typically with a capacity between 10 and 100 liters and great for household use, as well as larger double-brick-walled chambers known as zero-energy cooling chambers or ZECCs, which can store between six and 16 vegetable crates at a time. These designs rely on passive airflow. The newly released design for the forced-air evaporative cooling chamber is differentiated from these two more modest designs by the active airflow system, as well as by significantly larger capacity.

    In 2019, Verploegen turned his attention to the idea of building a larger evaporative cooling room and joined forces with Glicksman to explore using forced, instead of passive, airflow to cool fruit and vegetables. After studying existing cold storage options and conducting user research with farmers in Kenya, they came up with the idea to use active evaporative cooling with a used shipping container as the structure of the chamber. As the Covid-19 pandemic was ramping up in 2020, they procured a used 10-foot shipping container, installed it in the courtyard area outside D-Lab near Village Street, and went to work on a prototype of the forced-air evaporative cooling chamber.

    Here’s how it works: Industrial fans draw hot, dry air into the chamber, which is passed through a porous wet pad. The resulting cool and humid air is then forced through the crates of fruits and vegetables stored inside the chamber. The air is then directed through the raised floor and to a channel between the insulation and the exterior container wall, where it flows to the exhaust holes near the top of the side walls.

    Leon Glicksman, a professor of building technology and mechanical engineering, drew on his previous research in natural ventilation and airflow in buildings to come up with the vertical forced-air design pattern for the chamber. “The key to the design is the close control of the airflow strength, and its direction,” he says. “The strength of the airflow passing directly through the crates of fruits and vegetables, and the airflow pathway itself, are what makes this system work so well. The design promotes rapid cooling of a harvest taken directly from the field.”

    In addition to the novel and effective airflow system, the forced-air evaporative cooling chamber represents so much of what D-Lab is known for in its work in low-resourced and off-grid communities: developing low-cost and low-carbon-footprint technologies with partners. Evaporative cooling is no different. Whether connected to the electrical grid or run from solar panels, the forced-air chamber consumes one-quarter the power of refrigerated cold rooms. And, as the chamber is designed to be built in a used shipping container — ubiquitous the world over — the project is a great example of up-cycling.

    Piloting the design

    As with earlier investigations, Verploegen, Glicksman, and their colleagues have worked closely with farmers and community members. For the forced-air system, the team engaged with community partners who are living the need for better cooling and storage conditions for their produce in the climate conditions where evaporative cooling works best. Two partners, one in Kenya and one in India, each built a pilot chamber, testing and informing the process alongside the work being done at MIT.

    In Kenya, where smallholder farms produce 63 percent of total food consumed and over 50 percent of smallholder produce is lost post-harvest, they worked with Solar Freeze, a cold storage company located in in Kibwezi, Kenya. Solar Freeze, whose founder Dysmus Kisilu was a 2019 MIT D-Lab Scale-Ups Fellow, built an off-grid forced-air evaporative cooling chamber at a produce market between Nairobi and Mombasa at a cost of $15,000, powered by solar photovoltaic panels. “The chamber is offering a safety net against huge post-harvest losses previously experienced by local smallholder farmers,” comments Peter Mumo, an entrepreneur and local politician who oversaw the construction of the Solar Freeze chamber in Makuni County, Kenya.

    As much as 30 percent of fruits and vegetables produced in India are wasted each year due to insufficient cold storage capacity, lack of cold storage close to farms, poor transportation infrastructure, and other gaps in the cold chain. Although the climate varies across the subcontinent, the hot desert climate there, such as in Bhuj where the Hunnarshala Foundation is headquartered, is perfect for evaporative cooling. Hunnarshala signed on to build an on-grid system for $8,100, which they located at an organic farm near Bhuj. “We have really encouraging results,” says Mahavir Acharya, executive director of Hunnarshala Foundation. “In peak summer, when the temperature is 42 [Celsius] we are able to get to 26 degrees [Celsius] inside and 95 percent humidity, which is really good conditions for vegetables to remain fresh for three, four, five, six days. In winter we tested [and saw temperatures reduced from] 35 degrees to 24 degrees [Celsius], and for seven days the quality was quite good.”

    Getting the word out

    With the concept validated and pilots well established, the next step is spreading the word.

    “We’re continuing to test and optimize the system, both in Kenya and India, as well as our test chambers here at MIT,” says Verploegen. “We will continue piloting with users and deploying with farmers and vendors, gathering data on the thermal performance, the shelf life of fruits and vegetables in the chamber, and how using the technology impacts the users. And, we’re also looking to engage with cold storage providers who might want to build this or others in the horticulture value chain such as farmer cooperatives, individual farmers, and local governments.”

    To reach the widest number of potential users, Verploegen and the team chose not to pursue a patent and instead set up a website to disseminate the open-source design with detailed guidance on how to build a forced-air evaporative cooling chamber. In addition to the extensive printed documentation, well-illustrated with detailed CAD drawings and video, the team has created instructional videos.

    As co-principal investigator in the early stages of the project, MIT professor of mechanical engineering Dan Frey contributed to the market research phase of the project and the initial conception of chamber design. “These forced-air evaporative cooling chambers have great potential, and the open-source approach is an excellent choice for this project,” says Frey. “The design’s release is a significant milestone on the path to positive impacts.”

    The forced-air evaporative cooling chamber research and design have been supported by the Abdul Latif Jameel Water and Food Systems Lab through an India Grant, Seed Grant, and a Solutions Grant. More

  • in

    US and UAE governments highlight early warning system for climate resilience

    The following is a joint announcement from MIT and Community Jameel.

    An international project to build community resilience to the effects of climate change, launched by Community Jameel and a research team at MIT, has been recognized as an innovation sprint at the 2023 summit of the United States’ and United Arab Emirates’ Agriculture Innovation Mission for Climate (AIM4C).

    The Jameel Observatory Climate Resilience Early Warning System Network (Jameel Observatory-CREWSnet), one of MIT’s five Climate Grand Challenges flagship projects, aims to empower communities worldwide, specifically within the agriculture sector, to adapt to climate shocks by launching cross-sector collaborations and by combining state-of-the-art climate and socioeconomic forecasting techniques with technological solutions to support communities’ resilience.

    AIM4C is a joint initiative of the U.S. and U.A.E. that seeks to enhance climate action by accelerating agriculture and food systems innovation and investment. Innovation sprints are selected by AIM4C to accelerate their impact following a competitive process that considers scientific excellence and financial support.

    “As we launch Jameel Observatory-CREWSnet, the AIM4C summit offers a great opportunity to share our plans and initial work with all those who are interested in enhancing the capacity of agricultural communities in vulnerable countries to deal with challenges of climate change,” says Elfatih Eltahir, HM King Bhumibol Professor of Hydrology and Climate at MIT and project leader of the Jameel Observatory-CREWSnet.

    Jameel Observatory-CREWSnet seeks to bridge the gap between the knowledge about climate change created at research institutions such as MIT and the local farming communities that are adapting to the impacts of climate change. By effectively informing and engaging local communities, the project seeks to enable farmers to sustainably increase their agricultural productivity and income.     

    The Jameel Observatory-CREWSnet will initially pilot in Bangladesh and Sudan, working with local partners BRAC, a leading international nonprofit headquartered in Bangladesh, and the Agricultural Research Corporation-Sudan, the principal agricultural research arm of the Sudanese government, and with MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL), the global research center working to reduce poverty by ensuring that policy is informed by scientific evidence. Beginning in southwestern Bangladesh, the Jameel Observatory-CREWSnet will integrate next-generation climate forecasting, predictive analytics, new technologies, and financial instruments. In East Africa, with a focus on Sudan, the initiative will emphasize adopting modern technology to use a better variety of heat-resistant seeds, increasing the use of targeted fertilizers, strengthening soils through soil fertility mapping combined with data modeling, and emphasizing vertical expansion of agriculture over traditional horizontal expansion. The work in Sudan is extensible to other regions in Africa. Jameel Observatory-CREWSnet’s activities and timeline will be reevaluated as the team monitors the ongoing situation in Sudan.

    Using local climate insights, communities will be empowered to adapt proactively to climate change by optimally planning their agricultural activities, targeting emergent economic opportunities, and proactively managing risks from climate change.

    George Richards, director of Community Jameel, says: “Community Jameel is proud to be collaborating with MIT, BRAC, and the Agricultural Research Corporation-Sudan to empower agricultural communities to adapt to the ever-growing challenges arising from climate change — challenges which, as we are seeing acutely in Sudan, are compounded by other crises. We welcome the support of the U.S. and U.A.E. governments in selecting the Jameel Observatory-CREWSnet as an AIM4C innovation sprint.”

    Md Liakath Ali, director of climate change, urban development, and disaster risk management at BRAC, says: “Over our five decades working alongside climate-vulnerable communities in Bangladesh, BRAC has seen firsthand how locally led climate adaptation helps protect lives and livelihoods. BRAC is proud to work with Community Jameel and MIT to empower vulnerable communities to proactively adapt to the impacts of climate change.”

    The Jameel Observatory-CREWSnet was launched at COP27 in Sharm El Sheikh as part of the Jameel Observatory, an international collaboration launched in 2021 that focuses on convening researchers and practitioners who use data and technology to help communities adapt to the impacts of climate change and short-term climate shocks.

    The Jameel Observatory focuses on using data and evidence to prepare for and act on environmental shocks as well as those impacts of climate change and variability which threaten human and environmental well-being. With a special focus on low- and middle-income countries, the Jameel Observatory works at the interface of climate, natural disasters, agricultural and food systems, and health. It emphasizes the need to incorporate local as well as scientific knowledge to prepare and act in anticipation of environmental shocks.

    Launched in 2020, MIT’s Climate Grand Challenges initiative is designed to mobilize the Institute’s research community around tackling the most difficult unsolved climate problems in emissions reduction, climate adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change. MIT selected 27 teams as finalists from a field of nearly 100 initial proposals. In 2022, five teams with the most promising concepts were announced as multi-year flagship projects. More

  • in

    Scientists uncover the amazing way sandgrouse hold water in their feathers

    Many birds’ feathers are remarkably efficient at shedding water — so much so that “like water off a duck’s back” is a common expression. Much more unusual are the belly feathers of the sandgrouse, especially Namaqua sandgrouse, which absorb and retain water so efficiently the male birds can fly more than 20 kilometers from a distant watering hole back to the nest and still retain enough water in their feathers for the chicks to drink and sustain themselves in the searing deserts of Namibia, Botswana, and South Africa.

    How do those feathers work? While scientists had inferred a rough picture, it took the latest tools of microscopy, and patient work with a collection of sandgrouse feathers, to unlock the unique structural details that enable the feathers to hold water. The findings appear today in the Journal of the Royal Society Interface, in a paper by Lorna Gibson, the Matoula S. Salapatas Professor of Materials Science and Engineering and a professor of mechanical engineering at MIT, and Professor Jochen Mueller of Johns Hopkins University.

    The unique water-carrying ability of sandgrouse feathers was first reported back in 1896, Gibson says, by E.G.B. Meade-Waldo, who was breeding the birds in captivity. “He saw them behaving like this, and nobody believed him! I mean, it just sounded so outlandish,” Gibson says.

    In 1967, Tom Cade and Gordon MacLean reported detailed observations of the birds at watering holes, in a study that proved the unique behavior was indeed real. The scientists found that male sandgrouse feathers could hold about 25 milliliters of water, or about a tenth of a cup, after the bird had spent about five minutes dipping in the water and fluffing its feathers.

    About half of that amount can evaporate during the male bird’s half-hour-long flight back to the nest, where the chicks, which cannot fly for about their first month, drink the remainder straight from the feathers.

    Cade and MacLean “had part of the story,” Gibson says, but the tools didn’t exist at the time to carry out the detailed imaging of the feather structures that the new study was able to do.

    Gibson and Mueller carried out their study using scanning electron microscopy, micro-computed tomography, and video imaging. They borrowed Namaqua sandgrouse belly feathers from Harvard University’s Museum of Comparative Zoology, which has a collection of specimens of about 80 percent of the world’s birds.

    Bird feathers in general have a central shaft, from which smaller barbs extend, and then smaller barbules extend out from those. Sandgrouse feathers are structured differently, however. In the inner zone of the feather, the barbules have a helically coiled structure close to their base and then a straight extension. In the outer zone of the feather, the barbules lack the helical coil and are simply straight. Both parts lack the grooves and hooks that hold the vane of contour feathers together in most other birds.
    Video of water spreading through the specialized sandgrouse feathers, under magnification, shows the uncoiling and spreading of the feather’s barbules as they become wet. Initially, most barbules in the outer zone of the feather form tubular features.Credit: Specimen #142928, Museum of Comparative Zoology, Harvard University © President and Fellows of Harvard College.

    When wetted, the coiled portions of the barbules unwind and rotate to be perpendicular to the vane, producing a dense forest of fibers that can hold water through capillary action. At the same time, the barbules in the outer zone curl inward, helping to hold the water in.

    The microscopy techniques used in the new study allowed the dimensions of the different parts of the feather to be measured. In the inner zone, the barb shafts are large and stiff enough to provide a rigid base about which the other parts of the feather deform, and the barbules are small and flexible enough that surface tension is sufficient to bend the straight extensions into tear-like structures that hold water. And in the outer zone, the barb shafts and barbules are smaller still, allowing them to curl around the inner zone, further retaining water.

    While previous work had suggested that surface tension produced the water retention characteristics, “what we did was make measurements of the dimensions and do some calculations to show that that’s what is actually happening,” Gibson says. Her group’s work demonstrated that the varying stiffnesses of the different feather parts plays a key role in their ability to hold water.

    The study was mostly driven by intellectual curiosity about this unique behavioral phenomenon, Gibson says. “We just wanted to see how it works. The whole story just seemed so interesting.” But she says it might lead to some useful applications. For example, in desert regions where water is scarce but fog and dew regularly occur, such as in Chile’s Atacama Desert, some adaptation of this feather structure might be incorporated into the systems of huge nets that are used to collect water. “You could imagine this could be a way to improve those systems,” she says. “A material with this kind of structure might be more effective at fog harvesting and holding the water.”

    “This fascinating and in-depth study reveals how the different parts of the sandgrouse’s belly feathers — including the microscopic barb shafts and barbules — work together to hold water,” says Mary Caswell Stoddard, an evolutionary biologist at Princeton University, who was not associated with this study. “By using a suite of advanced imaging techniques to describe the belly feathers and estimate their bending stiffnesses, Mueller and Gibson add rich new details to our understanding of the sandgrouse’s water-carrying feathers. … This study may inspire others to take a closer look at diverse feather microstructures across bird species — and to wonder whether these structures, as in sandgrouse, help support unusual or surprising functions.”

    The work was partly supported by the National Science Foundation and the Matoula S. Salapatas Professorship in Materials Science and Engineering at MIT. More

  • in

    New MIT internships expand research opportunities in Africa

    With new support from the Office of the Associate Provost for International Activities, MIT International Science and Technology Initiatives (MISTI) and the MIT-Africa program are expanding internship opportunities for MIT students at universities and leading academic research centers in Africa. This past summer, MISTI supported 10 MIT student interns at African universities, significantly more than in any previous year.

    “These internships are an opportunity to better merge the research ecosystem of MIT with academia-based research systems in Africa,” says Evan Lieberman, the Total Professor of Political Science and Contemporary Africa and faculty director for MISTI.

    For decades, MISTI has helped MIT students to learn and explore through international experiential learning opportunities and internships in industries like health care, education, agriculture, and energy. MISTI’s MIT-Africa Seed Fund supports collaborative research between MIT faculty and Africa-based researchers, and the new student research internship opportunities are part of a broader vision for deeper engagement between MIT and research institutions across the African continent.

    While Africa is home to 12.5 percent of the world’s population, it generates less than 1 percent of scientific research output in the form of academic journal publications, according to the African Academy of Sciences. Research internships are one way that MIT can build mutually beneficial partnerships across Africa’s research ecosystem, to advance knowledge and spawn innovation in fields important to MIT and its African counterparts, including health care, biotechnology, urban planning, sustainable energy, and education.

    Ari Jacobovits, managing director of MIT-Africa, notes that the new internships provide additional funding to the lab hosting the MIT intern, enabling them to hire a counterpart student research intern from the local university. This support can make the internships more financially feasible for host institutions and helps to grow the research pipeline.

    With the support of MIT, State University of Zanzibar (SUZA) lecturers Raya Ahmada and Abubakar Bakar were able to hire local students to work alongside MIT graduate students Mel Isidor and Rajan Hoyle. Together the students collaborated over a summer on a mapping project designed to plan and protect Zanzibar’s coastal economy.

    “It’s been really exciting to work with research peers in a setting where we can all learn alongside one another and develop this project together,” says Hoyle.

    Using low-cost drone technology, the students and their local counterparts worked to create detailed maps of Zanzibar to support community planning around resilience projects designed to combat coastal flooding and deforestation and assess climate-related impacts to seaweed farming activities. 

    “I really appreciated learning about how engagement happens in this particular context and how community members understand local environmental challenges and conditions based on research and lived experience,” says Isidor. “This is beneficial for us whether we’re working in an international context or in the United States.”

    For biology major Shaida Nishat, her internship at the University of Cape Town allowed her to work in a vital sphere of public health and provided her with the chance to work with a diverse, international team headed by Associate Professor Salome Maswine, head of the global surgery division and a widely-renowned expert in global surgery, a multidisciplinary field in the sphere of global health focused on improved and equitable surgical outcomes.

    “It broadened my perspective as to how an effort like global surgery ties so many nations together through a common goal that would benefit them all,” says Nishat, who plans to pursue a career in public health.

    For computer science sophomore Antonio L. Ortiz Bigio, the MISTI research internship in Africa was an incomparable experience, culturally and professionally. Bigio interned at the Robotics Autonomous Intelligence and Learning Laboratory at the University of Witwatersrand in Johannesburg, led by Professor Benjamin Rosman, where he developed software to enable a robot to play chess. The experience has inspired Bigio to continue to pursue robotics and machine learning.

    Participating faculty at the host institutions welcomed their MIT interns, and were impressed by their capabilities. Both Rosman and Maswime described their MIT interns as hard-working and valued team members, who had helped to advance their own work.  

    Building strong global partnerships, whether through faculty research, student internships, or other initiatives, takes time and cultivation, explains Jacobovits. Each successful collaboration helps to seed future exchanges and builds interest at MIT and peer institutions in creative partnerships. As MIT continues to deepen its connections to institutions and researchers across Africa, says Jacobovits, “students like Shaida, Rajan, Mel, and Antonio are really effective ambassadors in building those networks.” More

  • in

    Machinery of the state

    In Mai Hassan’s studies of Kenya, she documented the emergence of a sprawling administrative network officially billed as encouraging economic development, overseeing the population, and bolstering democracy. But Hassan’s field interviews and archival research revealed a more sinister purpose for the hundreds of administrative and security offices dotting the nation: “They were there to do the presidents’ bidding, which often involved coercing their own countrymen.”

    This research served as a catalyst for Hassan, who joined MIT as an associate professor of political science in July, to investigate what she calls the “politicized management of bureaucracy and the state.” She set out to “understand the motivations, capacities, and roles of people administering state programs and social functions,” she says. “I realized the state is not a faceless being, but instead comprised of bureaucrats carrying out functions on behalf of the state and the regime that runs it.”

    Today, Hassan’s portfolio encompasses not just the bureaucratic state but democratization efforts in Kenya and elsewhere in the East Africa region, including her native Sudan. Her research highlights the difficulties of democratization. “I’m finding that the conditions under which people come together for overthrowing an autocratic regime really matter, because those conditions may actually impede a nation from achieving democracy,” she says.

    A coordinated bureaucracy

    Hassan’s academic engagement with the state’s administrative machinery began during graduate school at Harvard University, where she earned her master’s and doctorate in government. While working with a community trash and sanitation program in some Kenyan Maasai communities, Hassan recalls “shepherding myself from office to office, meeting different bureaucrats to obtain the same approvals but for different jurisdictions.” The Kenyan state had recently set up hundreds of new local administrative units, motivated by what it claimed was the need for greater efficiency. But to Hassan’s eyes, “the administrative network was not well organized, seemed costly to maintain, and seemed to hinder — not bolster — development,” she says. What then, she wondered, was “the political logic behind such state restructuring?”

    Hassan began researching this bureaucratic transformation of Kenya, speaking with administrators in communities large and small who were charged with handling the business of the state. These studies yielded a wealth of findings for her dissertation, and for multiple journals.

    But upon finishing this tranche of research, Hassan realized that it was insufficient simply to study the structure of the state. “Understanding the role of new administrative structures for politics, development, and governance fundamentally requires that we understand who the government has put in charge of them,” she says. Among her insights:

    “The president’s office knows a lot of these administrators, and thinks about their strengths, limitations, and fit within a community,” says Hassan. Some administrators served the purposes of the central government by setting up water irrigation projects or building a new school. But in other villages, the state chose administrators who could act “much more coercively, ignoring development needs, throwing youth who supported the opposition into jail, and spending resources exclusively on policing.”

    Hassan’s work showed that in communities characterized by strong political opposition, “the local administration was always more coercive, regardless of an elected or autocratic president,” she says. Notably, the tenures of such officials proved shorter than those of their peers. “Once administrators get to know a community — going to church and the market with residents — it’s hard to coerce them,” explains Hassan.

    These short tenures come with costs, she notes: “Spending significant time in a station is useful for development, because you know exactly whom to hire if you want to build a school or get something done efficiently.” Politicizing these assignments undermines efforts at delivery of services and, more broadly, economic improvement nationwide. “Regimes that are more invested in retaining power must devote resources to establishing and maintaining control, resources that could otherwise be used for development and the welfare of citizens,” she says.

    Hassan wove together her research covering three presidents over a 50-year period, in the book, “Regime Threats and State Solutions: Bureaucratic Loyalty and Embeddedness in Kenya” (2020, Cambridge University Press), named a Foreign Affairs Best Book of 2020.

    Sudanese roots

    The role of the state in fulfilling the needs of its citizens has long fascinated Hassan. Her grandfather, who had served as Sudan’s ambassador to the USSR, talked to her about the advantages of a centralized government “that allocated resources to reduce inequality,” she says.

    Politics often dominated the conversation in gatherings of Hassan’s family and friends. Her parents immigrated to northern Virginia when she was very young, and many relatives joined them, part of a steady flow of Sudanese fleeing political turmoil and oppression.

    “A lot of people had expected more from the Sudanese state after independence and didn’t get it,” she says. “People had hopes for what the government could and should do.”

    Hassan’s Sudanese roots and ongoing connection to the Sudanese community have shaped her academic interests and goals. At the University of Virginia, she gravitated toward history and economics classes. But it was her time at the Ralph Bunche Summer institute that perhaps proved most pivotal in her journey. This five-week intensive program is offered by the American Political Science Association to introduce underrepresented undergraduate students to doctoral studies. “It was really compelling in this program to think rigorously about all the political ideas I’d heard as I was growing up, and find ways to challenge some assertions empirically,” she says.

    Regime change and civil society

    At Harvard, Hassan first set out to focus on Sudan for her doctoral program. “There wasn’t much scholarship on the country, and what there was lacked rigor,” she says. “That was something that needed to change.” But she decided to postpone this goal after realizing that she might be vulnerable as a student conducting field research there. She landed instead in Kenya, where she honed her interviewing and data collection skills.

    Today, empowered by her prior work, she has returned to Sudan. “I felt that the popular uprising in Sudan and ousting of the Islamist regime in 2019 should be documented and analyzed,” she says. “It was incredible that hundreds of thousands, if not millions, acted collectively to uproot a dictator, in the face of brutal violence from the state.”But “democracy is still uncertain there,” says Hassan. The broad coalition behind regime change “doesn’t know how to govern because different people and different sectors of society have different ideas about what democratic Sudan should look like,” she says. “Overthrowing an autocratic regime and having civil society come together to figure out what’s going to replace it require different things, and it’s unclear if a movement that accomplishes the first is well-suited to do the second.”

    Hassan believes that in order to create lasting democratization, “you need the hard work of building organizations, developing ways in which members learn to compromise among themselves, and make decisions and rules for how to move forward.”

    Hassan is enjoying the fall semester and teaching courses on autocracy and authoritarian regimes. She is excited as well about developing her work on African efforts at democratic mobilization in a political science department she describes as “policy-forward.”

    Over time, she hopes to connect with Institute scholars in the hard sciences to think about other challenges these nations are facing, such as climate change. “It’s really hot in Sudan, and it may be one of the first countries to become completely uninhabitable,” she says. “I’d like to explore strategies for growing crops differently or managing the exceedingly scarce resource of water, and figure out what kind of political discussions will be necessary to implement any changes. It is really critical to think about these problems in an interdisciplinary way.” More

  • in

    MIT student club Engineers Without Borders works with local village in Tanzania

    Four students from the MIT club Engineers Without Borders (EWB) spent part of their summer in Tanzania to begin assessment work for a health and sanitation project that will benefit the entire village, and an irrigated garden for the Mkutani Primary School.

    The club has been working with the Boston Professional Chapter of Engineers Without Borders (EWB-BPC) since 2019. The Boston chapter finds projects in underserved communities in the developing world and helped connect the MIT students with local government and school officials.

    Juniors Fiona Duong, female health and sanitation team lead, and Lai Wa Chu, irrigation team lead, spent two weeks over the summer in Mkutani conducting research for their projects. Chu was faced with finding more water supplies and a way to get water from the nearby river to the school to use in the gardens they were planting. Duong was charged with assessing the needs of the people who visit The Mkutani Dispensary, which serves as a local medical clinic. Juniors Hung Huynh, club president, and Vivian Cheng, student advisor, also made the trip to work on the projects.

    Health and sanitation project

    Duong looked into ways to help pregnant women with privacy issues as the facility they give birth in — The Mkutani Dispensary — is very small, with just two beds, and is in need of repairs and upgrades. Before leaving Cambridge, Duong led FaceTime meetings with government officials and facilities managers in the village. Once on the ground, she began collecting information and conducted focus groups with the local women and other constituents. She learned that one in three women were not giving birth in the dispensary due to privacy concerns and the lack of modern equipment needed for high-risk pregnancies.

    “The women said that the most pressing need there was water. The women were expected to bring their own water to their deliveries. The rain-catching system there was not enough to fulfill their needs and the river water wasn’t clean. When in labor, they relied on others to gather it and bring it to the dispensary by bike,” Duong says. “With broken windows, the dispensary did not allow for privacy or sanitary conditions.”

    Duong will also analyze the data she collected and share it with others before more MIT students head to Mkutani next summer.

    Farming, sustainability, and irrigation projectBefore heading to Mkutani, Chu conducted research regarding irrigation methods and water collection methods. She confirmed that the river water still contained E.coli and advised the teachers that it would need to be boiled or placed in the sun for a few hours before it could be used. Her technical background in fluid dynamics was helpful for the project.

    “We also found that there was a need for supplemental food for the school, as many children lived too far away to walk home for lunch. The headmaster reached out to us about building the garden, as the garden provides supplemental fruit and vegetables for many of the 600 students to eat. They needed water from the river that was quite far away from the school. We looked at ways to get the water to the garden,” Chu says.

    The group is considering conducting an ecological survey of the area to see if there is another source of water so they could drill another borehole. They will complete their analysis and then decide the best solution to implement.

    “Watching the whole team’s hard work pay off when the travel team got to Mkutani was so amazing,” says second-year student Maria Hernandez, club internal relations chair. “Now, we’re ready to get to work again so we can go back next year. I love being a part of Engineers Without Borders because it’s such a unique way to apply technical skills outside of the classroom and see the impact you make on the community. It’s a beautiful project that truly impacts so many people, and I can’t wait to go back to Mkutani next year.”

    Both Duong and Chu hope they’ll return to the school and the dispensary in summer 2023 to work on the implementation phase of their projects. “This project is one of the reasons I came to MIT. I wanted to work on a social impact project to help improve the world,” Chu says.

    “I hope to go back next summer and implement the project,” adds Duong. “If I do, we’ll go during the two most crucial weeks of the project — after the contractors have started the repair work on the dispensary, so we can see how things are going and then help with anything else related to the project.”

    Duong and Chu said students don’t have to be engineers to help with the EWB’s work — any MIT student interested in joining the club may do so. Both agree that fundraising is a priority, but there are numerous other roles students can help with.

    “MIT students shouldn’t be afraid to just dive right in. There’s a lot that needs to be done there, and even if you don’t have experience in a certain area, don’t let that be a barrier. It’s very rewarding work and it’s also great to get international work experience,” Duong says.

    Chu added, “The project may not seem flashy now, but the rewards are great. Students will get new technical skills and get to experience a new culture as well.” More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Helping cassava farmers by extending crop life

    The root vegetable cassava is a major food staple in dozens of countries across the world. Drought-resistant, nutritious, and tasty, it has also become a major source of income for small-scale, rural farmers in places like West Africa and Southeast Asia.

    But the utility of cassava has always been limited by its short postharvest shelf life of two to three days. That puts millions of farmers who rely on the crop in a difficult position. The farmers can’t plant more than they can sell quickly in local markets, and they’re often forced to sell below market prices because buyers know the harvest will spoil rapidly. As a result, cassava farmers are among the world’s poorest people.

    Now the startup CassVita is buying cassava directly from farmers and applying a patent-pending biotechnology to extend its shelf life to 18 months. The approach has the potential to transform economies in rural, impoverished regions where millions of families rely on the crop for income.

    CassVita tells farmers how much cassava the company will buy each month, and processes the cassava at a manufacturing facility in Cameroon. It currently sells the first version of its product as a powdered food to people in Cameroon and to West African immigrants in the U.S.

    But CassVita founder and CEO Pelkins Ajanoh ’18 says the future of the company will revolve around its next product: a cassava-based flour that can act as a direct substitute for wheat. The wheat substitute would dramatically broaden CassVita’s target market to include the fast-growing, trillion-dollar healthy food market.

    Ajanoh says CassVita is currently able to increase farmers’ incomes by about 400 percent through its purchases.

    “Our objective is to leverage proprietary technology to offer a healthier and better-tasting alternative to wheat while creating prosperity for local farmers,” Ajanoh says. “We’re hoping to tap into this huge market while empowering farmers, all by minimizing spoilage and incentivizing farmers to plant more.”

    Gaining confidence to help a community

    While growing up in Cameroon, Ajanoh’s parents always emphasized the importance of education for him and his three siblings. But Ajanoh lost his father when he was 13, and his mother moved to the U.S. a year later to help provide for the family. During that time, Ajanoh lived with his grandmother, a cassava farmer. For many years, Ajanoh watched his grandmother harvest cassava without making any lasting financial gains. He remembers feeling powerless as his grandmother struggled to pay for things like diabetes medication.

    Then Ajanoh earned the top marks on the national exams that Cameroonian students take before college. After high school, he joined his mother in the U.S. and came to MIT to study mechanical engineering. Once on campus, Ajanoh says he had lunch with new people all the time to learn from them.

    “I’d never had this community of intellectuals — and they were from all over the world — so I soaked up as much as I could,” Ajanoh says. “That sparked an interest in entrepreneurship, because MIT is super entrepreneurial. Everyone’s thinking of starting something cool.”

    Ajanoh also got a confidence boost during an internship in the summer after his junior year, when he created self-driving technology for General Motors that was eventually patented.

    “It made me realize I could do something really valuable for the world, and by the end of that internship I was thinking, ‘Now I want to solve a problem in my community,’” he says.

    Returning to the crop he knew well, Ajanoh received a series of grants from the MIT Sandbox Innovation Fund to experiment with ways to extend the shelf life of cassava. In the summer of 2018, the MIT-Africa program sponsored three MIT students to fly to Cameroon with him to participate in internships with the company.

    Today CassVita partners with development banks to help farmers get loans to buy the cassava sticks used for planting. Ajanoh says CassVita decided on a powdered food for its first product because it requires less marketing to sell to West Africans, who are familiar with the dish. Now the company is working on a cassava flour that it will market to all consumers looking for healthy alternatives to wheat that can be used in pastries and other baked goods.

    “Cassava makes sense as a global substitute to wheat because it’s gluten free, grain free, nut free, and it also helps with glucose regulation, to normalize blood sugar levels, to lower triglycerides, so the health benefits are exciting,” Ajanoh says. “But the farmers were still living in poverty, so if we could solve the shelf-life problem then we could empower these farmers to offer healthier wheat alternatives to the global market.”

    The project has taken on additional urgency now that the war in Ukraine is limiting that country’s wheat and grain exports, raising prices, and heightening food insecurity in regions around the globe.

    Showing the value of helping farmers

    Ajanoh says the majority of people farming cassava are women, and he says the challenges related to cassava’s shelf life have contributed to gender inequities in many communities. In fact, of the roughly 500 farmers CassVita works with in Cameroon, 95 percent are women.

    “That has always excited me because I was raised by women, so working on something that could empower women in their communities and give them authority is fulfilling,” Ajanoh says.

    Ajanoh has already heard from farmers who have been able to send their children to school for the first time because of improved financial situations. Now, as CassVita continues to scale, Ajanoh wants to stay focused on the technology that enables these new business models.

    “We’re evolving into a food technology company,” Ajanoh says. “We prefer to focus on leveraging technology to impact lives and improve outcomes in these communities. Right now, we’re going all the way to consumers because this is an opportunity the Nestles and the Unilevers of the world won’t pick up because the market doesn’t make sense to them yet. So, we have to build this company and show them the value.” More