More stories

  • in

    Study finds lands used for grazing can worsen or help climate change

    When it comes to global climate change, livestock grazing can be either a blessing or a curse, according to a new study, which offers clues on how to tell the difference.

    If managed properly, the study shows, grazing can actually increase the amount of carbon from the air that gets stored in the ground and sequestered for the long run. But if there is too much grazing, soil erosion can result, and the net effect is to cause more carbon losses, so that the land becomes a net carbon source, instead of a carbon sink. And the study found that the latter is far more common around the world today.

    The new work, published today in the journal Nature Climate Change, provides ways to determine the tipping point between the two, for grazing lands in a given climate zone and soil type. It also provides an estimate of the total amount of carbon that has been lost over past decades due to livestock grazing, and how much could be removed from the atmosphere if grazing optimization management implemented. The study was carried out by Cesar Terrer, an assistant professor of civil and environmental engineering at MIT; Shuai Ren, a PhD student at the Chinese Academy of Sciences whose thesis is co-supervised by Terrer; and four others.

    “This has been a matter of debate in the scientific literature for a long time,” Terrer says. “In general experiments, grazing decreases soil carbon stocks, but surprisingly, sometimes grazing increases soil carbon stocks, which is why it’s been puzzling.”

    What happens, he explains, is that “grazing could stimulate vegetation growth through easing resource constraints such as light and nutrients, thereby increasing root carbon inputs to soils, where carbon can stay there for centuries or millennia.”

    But that only works up to a certain point, the team found after a careful analysis of 1,473 soil carbon observations from different grazing studies from many locations around the world. “When you cross a threshold in grazing intensity, or the amount of animals grazing there, that is when you start to see sort of a tipping point — a strong decrease in the amount of carbon in the soil,” Terrer explains.

    That loss is thought to be primarily from increased soil erosion on the denuded land. And with that erosion, Terrer says, “basically you lose a lot of the carbon that you have been locking in for centuries.”

    The various studies the team compiled, although they differed somewhat, essentially used similar methodology, which is to fence off a portion of land so that livestock can’t access it, and then after some time take soil samples from within the enclosure area, and from comparable nearby areas that have been grazed, and compare the content of carbon compounds.

    “Along with the data on soil carbon for the control and grazed plots,” he says, “we also collected a bunch of other information, such as the mean annual temperature of the site, mean annual precipitation, plant biomass, and properties of the soil, like pH and nitrogen content. And then, of course, we estimate the grazing intensity — aboveground biomass consumed, because that turns out to be the key parameter.”  

    With artificial intelligence models, the authors quantified the importance of each of these parameters, those drivers of intensity — temperature, precipitation, soil properties — in modulating the sign (positive or negative) and magnitude of the impact of grazing on soil carbon stocks. “Interestingly, we found soil carbon stocks increase and then decrease with grazing intensity, rather than the expected linear response,” says Ren.

    Having developed the model through AI methods and validated it, including by comparing its predictions with those based on underlying physical principles, they can then apply the model to estimating both past and future effects. “In this case,” Terrer says, “we use the model to quantify the historical loses in soil carbon stocks from grazing. And we found that 46 petagrams [billion metric tons] of soil carbon, down to a depth of one meter, have been lost in the last few decades due to grazing.”

    By way of comparison, the total amount of greenhouse gas emissions per year from all fossil fuels is about 10 petagrams, so the loss from grazing equals more than four years’ worth of all the world’s fossil emissions combined.

    What they found was “an overall decline in soil carbon stocks, but with a lot of variability.” Terrer says. The analysis showed that the interplay between grazing intensity and environmental conditions such as temperature could explain the variability, with higher grazing intensity and hotter climates resulting in greater carbon loss. “This means that policy-makers should take into account local abiotic and biotic factors to manage rangelands efficiently,” Ren notes. “By ignoring such complex interactions, we found that using IPCC [Intergovernmental Panel on Climate Change] guidelines would underestimate grazing-induced soil carbon loss by a factor of three globally.”

    Using an approach that incorporates local environmental conditions, the team produced global, high-resolution maps of optimal grazing intensity and the threshold of intensity at which carbon starts to decrease very rapidly. These maps are expected to serve as important benchmarks for evaluating existing grazing practices and provide guidance to local farmers on how to effectively manage their grazing lands.

    Then, using that map, the team estimated how much carbon could be captured if all grazing lands were limited to their optimum grazing intensity. Currently, the authors found, about 20 percent of all pasturelands have crossed the thresholds, leading to severe carbon losses. However, they found that under the optimal levels, global grazing lands would sequester 63 petagrams of carbon. “It is amazing,” Ren says. “This value is roughly equivalent to a 30-year carbon accumulation from global natural forest regrowth.”

    That would be no simple task, of course. To achieve optimal levels, the team found that approximately 75 percent of all grazing areas need to reduce grazing intensity. Overall, if the world seriously reduces the amount of grazing, “you have to reduce the amount of meat that’s available for people,” Terrer says.

    “Another option is to move cattle around,” he says, “from areas that are more severely affected by grazing intensity, to areas that are less affected. Those rotations have been suggested as an opportunity to avoid the more drastic declines in carbon stocks without necessarily reducing the availability of meat.”

    This study didn’t delve into these social and economic implications, Terrer says. “Our role is to just point out what would be the opportunity here. It shows that shifts in diets can be a powerful way to mitigate climate change.”

    “This is a rigorous and careful analysis that provides our best look to date at soil carbon changes due to livestock grazing practiced worldwide,” say Ben Bond-Lamberty, a terrestrial ecosystem research scientist at Pacific Northwest National Laboratory, who was not associated with this work. “The authors’ analysis gives us a unique estimate of soil carbon losses due to grazing and, intriguingly, where and how the process might be reversed.”

    He adds: “One intriguing aspect to this work is the discrepancies between its results and the guidelines currently used by the IPCC — guidelines that affect countries’ commitments, carbon-market pricing, and policies.” However, he says, “As the authors note, the amount of carbon historically grazed soils might be able to take up is small relative to ongoing human emissions. But every little bit helps!”

    “Improved management of working lands can be a powerful tool to combat climate change,” says Jonathan Sanderman, carbon program director of the Woodwell Climate Research Center in Falmouth, Massachusetts, who was not associated with this work. He adds, “This work demonstrates that while, historically, grazing has been a large contributor to climate change, there is significant potential to decrease the climate impact of livestock by optimizing grazing intensity to rebuild lost soil carbon.”

    Terrer states that for now, “we have started a new study, to evaluate the consequences of shifts in diets for carbon stocks. I think that’s the million-dollar question: How much carbon could you sequester, compared to business as usual, if diets shift to more vegan or vegetarian?” The answers will not be simple, because a shift to more vegetable-based diets would require more cropland, which can also have different environmental impacts. Pastures take more land than crops, but produce different kinds of emissions. “What’s the overall impact for climate change? That is the question we’re interested in,” he says.

    The research team included Juan Li, Yingfao Cao, Sheshan Yang, and Dan Liu, all with the  Chinese Academy of Sciences. The work was supported by the Second Tibetan Plateau Scientific Expedition and Research Program, and the Science and Technology Major Project of Tibetan Autonomous Region of China. More

  • in

    Letting the Earth answer back: Designing better planetary conversations

    For Chen Chu MArch ’21, the invitation to join the 2023-24 cohort of Morningside Academy for Design Design Fellows has been an unparalleled opportunity to investigate the potential of design as an alternative method of problem-solving.

    After earning a master’s degree in architecture at MIT and gaining professional experience as a researcher at an environmental nongovernmental organization, Chu decided to pursue a PhD in the Department of Urban Studies and Planning. “I discovered that I needed to engage in a deeper way with the most difficult ethical challenges of our time, especially those arising from the fact of climate change,” he explains. “For me, MIT has always represented this wonderful place where people are inherently intellectually curious — it’s a very rewarding community to be part of.”

    Chu’s PhD research, guided by his doctoral advisor Delia Wendel, assistant professor of urban studies and international development, focuses on how traditional practices of floodplain agriculture can inform local and global strategies for sustainable food production and distribution in response to climate change. 

    Typically located alongside a river or stream, floodplains arise from seasonal flooding patterns that distribute nutrient-rich silt and create connectivity between species. This results in exceptionally high levels of biodiversity and microbial richness, generating the ideal conditions for agriculture. It’s no accident that the first human civilizations were founded on floodplains, including Mesopotamia (named for its location poised between two rivers, the Euphrates and Tigris), the Indus River Civilization, and the cultures of Ancient Egypt based around the Nile. Riverine transportation networks and predictable flooding rhythms provide a framework for trade and cultivation; nonetheless, floodplain communities must learn to live with risk, subject to the sudden disruptions of high waters, drought, and ecological disequilibrium. 

    For Chu, the “unstable and ungovernable” status of floodplains makes them fertile ground for thinking about. “I’m drawn to these so-called ‘wet landscapes’ — edge conditions that act as transitional spaces between land and water, between humans and nature, between city and river,” he reflects. “The development of extensively irrigated agricultural sites is typically a collective effort, which raises intriguing questions about how communities establish social organizations that simultaneously negotiate top-down state control and adapt to the uncertainty of nature.”

    Chu is in the process of honing the focus of his dissertation and refining his data collection methods, which will include archival research and fieldwork, as well as interviews with floodplain inhabitants to gain an understanding of sociopolitical nuances. Meanwhile, his role as a design fellow gives him the space to address the big questions that fire his imagination. How can we live well on shared land? How can we take responsibility for the lives of future generations? What types of political structures are required to get everyone on board? 

    These are just a few of the questions that Chu recently put to his cohort in a presentation. During the weekly seminars for the fellowship, he has the chance to converse with peers and mentors of multiple disciplines — from researchers rethinking the pedagogy of design to entrepreneurs applying design thinking to new business models to architects and engineers developing new habitats to heal our relationship with the natural world. 

    “I’ll admit — I’m wary of the human instinct to problem-solve,” says Chu. “When it comes to the material conditions and lived experience of people and planet, there’s a limit to our economic and political reasoning, and to conventional architectural practice. That said, I do believe that the mindset of a designer can open up new ways of thinking. At its core, design is an interdisciplinary practice based on the understanding that a problem can’t be solved from a narrow, singular perspective.” 

    The stimulating structure of a MAD Fellowship — free from immediate obligations to publish or produce, fellows learn from one another and engage with visiting speakers via regular seminars and events — has prompted Chu to consider what truly makes for generative conversation in the contexts of academia and the private and public sectors. In his opinion, discussions around climate change often fail to take account of one important voice; an absence he describes as “that silent being, the Earth.”

    “You can’t ask the Earth, ‘What does justice mean to you?’ Nature will not respond,” he reflects. To bridge the gap, Chu believes it’s important to combine the study of specific political and social conditions with broader existential questions raised by the environmental humanities. His own research draws upon the perspectives of thinkers including Dipesh Chakrabarty, Donna Haraway, Peter Singer,  Anna Tsing, and Michael Watts, among others. He cites James C. Scott’s lecture “In Praise of Floods” as one of his most important influences.

    In addition to his instinctive appreciation for theory, Chu’s outlook is grounded by an attention to innovation at the local level. He is currently establishing the parameters of his research, examining case studies of agricultural systems and flood mitigation strategies that have been sustained for centuries. 

    “One example is the polder system that is practiced in the Netherlands, China, Bangladesh, and many parts of the world: small, low-lying tracts of land submerged in water and surrounded by dykes and canals,” he explains. “You’ll find a different but comparable strategy in the colder regions of Japan. Crops are protected from the winter winds by constructing a spatial unit with the house at the center; trees behind the house serve as windbreakers and paddy fields for rice are located in front of the house, providing an integrated system of food and livelihood security.”

    Chu observes that there is a tendency for international policymakers to overlook local solutions in favor of grander visions and ambitious climate pledges — but he is equally keen not to romanticize vernacular practices. “Realistically, it’s always a two-way interaction. Unless you already have a workable local system in place, it’s difficult to implement a solution without top-down support. On the other hand, the large-scale technocratic dreams are empty if ignorant of local traditions and histories.” 

    By navigating between the global and the local, the theoretical and the practical, the visionary and the cautionary, Chu has hope in the possibility of gradually finding a way toward long-term solutions that adapt to specific conditions over time. It’s a model of ambition and criticality that Chu sees played out during dialogue at MAD and within his department; at root, he’s aware that the outcome of these conversations depends on the ethical context that shapes them.

    “I’ve been fortunate to have many mentors who have taught me the power of humility; a respect for the finitude, fragility,  and uncertainty of life,” he recalls. “It’s a mindset that’s barely apparent in today’s push for economic growth.” The flip-side of hubristic growth is an assumption that technological ingenuity will be enough to solve the climate crisis, but Chu’s optimism arises from a different source: “When I feel overwhelmed by the weight of the problems we’re facing, I just need to look around me,” he says. “Here on campus — at MAD, in my home department, and increasingly among the new generations of students — there’s a powerful ethos of political sensitivity, ethical compassion, and an attention to clear and critical judgment. That always gives me hope for the planet.” More

  • in

    Reducing pesticide use while increasing effectiveness

    Farming can be a low-margin, high-risk business, subject to weather and climate patterns, insect population cycles, and other unpredictable factors. Farmers need to be savvy managers of the many resources they deal, and chemical fertilizers and pesticides are among their major recurring expenses.

    Despite the importance of these chemicals, a lack of technology that monitors and optimizes sprays has forced farmers to rely on personal experience and rules of thumb to decide how to apply these chemicals. As a result, these chemicals tend to be over-sprayed, leading to their runoff into waterways and buildup up in the soil.

    That could change, thanks to a new approach of feedback-optimized spraying, invented by AgZen, an MIT spinout founded in 2020 by Professor Kripa Varanasi and Vishnu Jayaprakash SM ’19, PhD ’22.

    Play video

    AgZen has developed a system for farming that can monitor exactly how much of the sprayed chemicals adheres to plants, in real time, as the sprayer drives through a field. Built-in software running on a tablet shows the operator exactly how much of each leaf has been covered by the spray.

    Over the past decade, AgZen’s founders have developed products and technologies to control the interactions of droplets and sprays with plant surfaces. The Boston-based venture-backed company launched a new commercial product in 2024 and is currently piloting another related product. Field tests of both have shown the products can help farmers spray more efficiently and effectively, using fewer chemicals overall.

    “Worldwide, farms spend approximately $60 billion a year on pesticides. Our objective is to reduce the number of pesticides sprayed and lighten the financial burden on farms without sacrificing effective pest management,” Varanasi says.

    Getting droplets to stick

    While the world pesticide market is growing rapidly, a lot of the pesticides sprayed don’t reach their target. A significant portion bounces off the plant surfaces, lands on the ground, and becomes part of the runoff that flows to streams and rivers, often causing serious pollution. Some of these pesticides can be carried away by wind over very long distances.

    “Drift, runoff, and poor application efficiency are well-known, longstanding problems in agriculture, but we can fix this by controlling and monitoring how sprayed droplets interact with leaves,” Varanasi says.

    With support from MIT Tata Center and the Abdul Latif Jameel Water and Food Systems Lab, Varanasi and his team analyzed how droplets strike plant surfaces, and explored ways to increase application efficiency. This research led them to develop a novel system of nozzles that cloak droplets with compounds that enhance the retention of droplets on the leaves, a product they call EnhanceCoverage.

    Field studies across regions — from Massachusetts to California to Italy and France —showed that this droplet-optimization system could allow farmers to cut the amount of chemicals needed by more than half because more of the sprayed substances would stick to the leaves.

    Measuring coverage

    However, in trying to bring this technology to market, the researchers faced a sticky problem: Nobody knew how well pesticide sprays were adhering to the plants in the first place, so how could AgZen say that the coverage was better with its new EnhanceCoverage system?

    “I had grown up spraying with a backpack on a small farm in India, so I knew this was an issue,” Jayaprakash says. “When we spoke to growers, they told me how complicated spraying is when you’re on a large machine. Whenever you spray, there are so many things that can influence how effective your spray is. How fast do you drive the sprayer? What flow rate are you using for the chemicals? What chemical are you using? What’s the age of the plants, what’s the nozzle you’re using, what is the weather at the time? All these things influence agrochemical efficiency.”

    Agricultural spraying essentially comes down to dissolving a chemical in water and then spraying droplets onto the plants. “But the interaction between a droplet and the leaf is complex,” Varanasi says. “We were coming in with ways to optimize that, but what the growers told us is, hey, we’ve never even really looked at that in the first place.”

    Although farmers have been spraying agricultural chemicals on a large scale for about 80 years, they’ve “been forced to rely on general rules of thumb and pick all these interlinked parameters, based on what’s worked for them in the past. You pick a set of these parameters, you go spray, and you’re basically praying for outcomes in terms of how effective your pest control is,” Varanasi says.

    Before AgZen could sell farmers on the new system to improve droplet coverage, the company had to invent a way to measure precisely how much spray was adhering to plants in real-time.

    Comparing before and after

    The system they came up with, which they tested extensively on farms across the country last year, involves a unit that can be bolted onto the spraying arm of virtually any sprayer. It carries two sensor stacks, one just ahead of the sprayer nozzles and one behind. Then, built-in software running on a tablet shows the operator exactly how much of each leaf has been covered by the spray. It also computes how much those droplets will spread out or evaporate, leading to a precise estimate of the final coverage.

    “There’s a lot of physics that governs how droplets spread and evaporate, and this has been incorporated into software that a farmer can use,” Varanasi says. “We bring a lot of our expertise into understanding droplets on leaves. All these factors, like how temperature and humidity influence coverage, have always been nebulous in the spraying world. But now you have something that can be exact in determining how well your sprays are doing.”

    “We’re not only measuring coverage, but then we recommend how to act,” says Jayaprakash, who is AgZen’s CEO. “With the information we collect in real-time and by using AI, RealCoverage tells operators how to optimize everything on their sprayer, from which nozzle to use, to how fast to drive, to how many gallons of spray is best for a particular chemical mix on a particular acre of a crop.”

    The tool was developed to prove how much AgZen’s EnhanceCoverage nozzle system (which will be launched in 2025) improves coverage. But it turns out that monitoring and optimizing droplet coverage on leaves in real-time with this system can itself yield major improvements.

    “We worked with large commercial farms last year in specialty and row crops,” Jayaprakash says. “When we saved our pilot customers up to 50 percent of their chemical cost at a large scale, they were very surprised.” He says the tool has reduced chemical costs and volume in fallow field burndowns, weed control in soybeans, defoliation in cotton, and fungicide and insecticide sprays in vegetables and fruits. Along with data from commercial farms, field trials conducted by three leading agricultural universities have also validated these results.

    “Across the board, we were able to save between 30 and 50 percent on chemical costs and increase crop yields by enabling better pest control,” Jayaprakash says. “By focusing on the droplet-leaf interface, our product can help any foliage spray throughout the year, whereas most technological advancements in this space recently have been focused on reducing herbicide use alone.” The company now intends to lease the system across thousands of acres this year.

    And these efficiency gains can lead to significant returns at scale, he emphasizes: In the U.S., farmers currently spend $16 billion a year on chemicals, to protect about $200 billion of crop yields.

    The company launched its first product, the coverage optimization system called RealCoverage, this year, reaching a wide variety of farms with different crops and in different climates. “We’re going from proof-of-concept with pilots in large farms to a truly massive scale on a commercial basis with our lease-to-own program,” Jayaprakash says.

    “We’ve also been tapped by the USDA to help them evaluate practices to minimize pesticides in watersheds,” Varanasi says, noting that RealCoverage can also be useful for regulators, chemical companies, and agricultural equipment manufacturers.

    Once AgZen has proven the effectiveness of using coverage as a decision metric, and after the RealCoverage optimization system is widely in practice, the company will next roll out its second product, EnhanceCoverage, designed to maximize droplet adhesion. Because that system will require replacing all the nozzles on a sprayer, the researchers are doing pilots this year but will wait for a full rollout in 2025, after farmers have gained experience and confidence with their initial product.

    “There is so much wastage,” Varanasi says. “Yet farmers must spray to protect crops, and there is a lot of environmental impact from this. So, after all this work over the years, learning about how droplets stick to surfaces and so on, now the culmination of it in all these products for me is amazing, to see all this come alive, to see that we’ll finally be able to solve the problem we set out to solve and help farmers.” More

  • in

    MIT researchers remotely map crops, field by field

    Crop maps help scientists and policymakers track global food supplies and estimate how they might shift with climate change and growing populations. But getting accurate maps of the types of crops that are grown from farm to farm often requires on-the-ground surveys that only a handful of countries have the resources to maintain.

    Now, MIT engineers have developed a method to quickly and accurately label and map crop types without requiring in-person assessments of every single farm. The team’s method uses a combination of Google Street View images, machine learning, and satellite data to automatically determine the crops grown throughout a region, from one fraction of an acre to the next. 

    The researchers used the technique to automatically generate the first nationwide crop map of Thailand — a smallholder country where small, independent farms make up the predominant form of agriculture. The team created a border-to-border map of Thailand’s four major crops — rice, cassava, sugarcane, and maize — and determined which of the four types was grown, at every 10 meters, and without gaps, across the entire country. The resulting map achieved an accuracy of 93 percent, which the researchers say is comparable to on-the-ground mapping efforts in high-income, big-farm countries.

    The team is applying their mapping technique to other countries such as India, where small farms sustain most of the population but the type of crops grown from farm to farm has historically been poorly recorded.

    “It’s a longstanding gap in knowledge about what is grown around the world,” says Sherrie Wang, the d’Arbeloff Career Development Assistant Professor in MIT’s Department of Mechanical Engineering, and the Institute for Data, Systems, and Society (IDSS). “The final goal is to understand agricultural outcomes like yield, and how to farm more sustainably. One of the key preliminary steps is to map what is even being grown — the more granularly you can map, the more questions you can answer.”

    Wang, along with MIT graduate student Jordi Laguarta Soler and Thomas Friedel of the agtech company PEAT GmbH, will present a paper detailing their mapping method later this month at the AAAI Conference on Artificial Intelligence.

    Ground truth

    Smallholder farms are often run by a single family or farmer, who subsist on the crops and livestock that they raise. It’s estimated that smallholder farms support two-thirds of the world’s rural population and produce 80 percent of the world’s food. Keeping tabs on what is grown and where is essential to tracking and forecasting food supplies around the world. But the majority of these small farms are in low to middle-income countries, where few resources are devoted to keeping track of individual farms’ crop types and yields.

    Crop mapping efforts are mainly carried out in high-income regions such as the United States and Europe, where government agricultural agencies oversee crop surveys and send assessors to farms to label crops from field to field. These “ground truth” labels are then fed into machine-learning models that make connections between the ground labels of actual crops and satellite signals of the same fields. They then label and map wider swaths of farmland that assessors don’t cover but that satellites automatically do.

    “What’s lacking in low- and middle-income countries is this ground label that we can associate with satellite signals,” Laguarta Soler says. “Getting these ground truths to train a model in the first place has been limited in most of the world.”

    The team realized that, while many developing countries do not have the resources to maintain crop surveys, they could potentially use another source of ground data: roadside imagery, captured by services such as Google Street View and Mapillary, which send cars throughout a region to take continuous 360-degree images with dashcams and rooftop cameras.

    In recent years, such services have been able to access low- and middle-income countries. While the goal of these services is not specifically to capture images of crops, the MIT team saw that they could search the roadside images to identify crops.

    Cropped image

    In their new study, the researchers worked with Google Street View (GSV) images taken throughout Thailand — a country that the service has recently imaged fairly thoroughly, and which consists predominantly of smallholder farms.

    Starting with over 200,000 GSV images randomly sampled across Thailand, the team filtered out images that depicted buildings, trees, and general vegetation. About 81,000 images were crop-related. They set aside 2,000 of these, which they sent to an agronomist, who determined and labeled each crop type by eye. They then trained a convolutional neural network to automatically generate crop labels for the other 79,000 images, using various training methods, including iNaturalist — a web-based crowdsourced  biodiversity database, and GPT-4V, a “multimodal large language model” that enables a user to input an image and ask the model to identify what the image is depicting. For each of the 81,000 images, the model generated a label of one of four crops that the image was likely depicting — rice, maize, sugarcane, or cassava.

    The researchers then paired each labeled image with the corresponding satellite data taken of the same location throughout a single growing season. These satellite data include measurements across multiple wavelengths, such as a location’s greenness and its reflectivity (which can be a sign of water). 

    “Each type of crop has a certain signature across these different bands, which changes throughout a growing season,” Laguarta Soler notes.

    The team trained a second model to make associations between a location’s satellite data and its corresponding crop label. They then used this model to process satellite data taken of the rest of the country, where crop labels were not generated or available. From the associations that the model learned, it then assigned crop labels across Thailand, generating a country-wide map of crop types, at a resolution of 10 square meters.

    This first-of-its-kind crop map included locations corresponding to the 2,000 GSV images that the researchers originally set aside, that were labeled by arborists. These human-labeled images were used to validate the map’s labels, and when the team looked to see whether the map’s labels matched the expert, “gold standard” labels, it did so 93 percent of the time.

    “In the U.S., we’re also looking at over 90 percent accuracy, whereas with previous work in India, we’ve only seen 75 percent because ground labels are limited,” Wang says. “Now we can create these labels in a cheap and automated way.”

    The researchers are moving to map crops across India, where roadside images via Google Street View and other services have recently become available.

    “There are over 150 million smallholder farmers in India,” Wang says. “India is covered in agriculture, almost wall-to-wall farms, but very small farms, and historically it’s been very difficult to create maps of India because there are very sparse ground labels.”

    The team is working to generate crop maps in India, which could be used to inform policies having to do with assessing and bolstering yields, as global temperatures and populations rise.

    “What would be interesting would be to create these maps over time,” Wang says. “Then you could start to see trends, and we can try to relate those things to anything like changes in climate and policies.” More

  • in

    Illustrating India’s complex environmental crises

    Abhijit Banerjee, the Ford Foundation International Professor of Economics at MIT, and Sarnath Banerjee (no relation), an MIT Center for Art, Science, and Technology (CAST) visiting artist share a similar background, but have very different ways of thinking. Both were raised for a time in Kolkata before leaving India to pursue divergent careers, Abhijit as an economist who went on to win the 2019 Nobel Memorial Prize in Economic Sciences (an award he shares with MIT Professor Esther Duflo and Harvard University Professor Michael Kremer), and Sarnath as a visual artist and graphic novelist. 

    The two collaborated on a pair of short films, “The Land of Good Intentions” and “The Eternal Swamp,” that blend their expertise in a unique and captivating form. Each film addresses a particular environmental crisis facing present-day India by tracing its origins back through the centuries. The films are presented in a kind of lecture style, with Abhijit appearing as the narrator, unraveling historical details, as graphics by Sarnath visualize the story with an often wry and easy wit. The results apply logic and narrative coherence to problems with complex roots in the forces of nature, economics, and local culture. 

    “The Land of Good Intentions” explores the conditions and policies that led to mass protests by farmers, in Punjab and elsewhere, following the passage of farming legislation in September 2020. The film begins by providing historical context from multiple angles, including the significance of rice to regional culture, its growing conditions (which require a lot of water), the region’s climate (which produces very little), and previous government subsidies that led to its overproduction. The 2020 Farm Bills were intended to address rice overproduction and its consequences, including the depletion of Punjab’s groundwater supply, pollution from the burning of rice stalks, and a surplus going to waste. But farmers considered that they were being asked to shoulder the costs of a problem the government created. 

    “The arguments in the film don’t necessarily align with popular liberal arguments, but it gives subtler shape and layers to them,” Sarnath says. “That dialectical way of thinking is important to the liberal movement, which is driven by passion and a sense of justice. Abhijit is driven by factual analysis, which sometimes makes the argument more complex.”

    Their second film, “The Eternal Swamp,” addresses the crisis of flooding in Kolkata and its causes in the geographical and economic development of the city from the start. Because Kolkata was built on very wet land, and real estate has long been one of the only viable industries in the city, it has been developed without regard to proper drainage in a climate that produces more rainfall than it can handle. There is a pervading sense that Kolkata will eventually be entirely below water.

    “It was a good collaboration from the beginning,” Sarnath says of working with Abhijit on the CAST Visiting Artist project, a process which began just before Abhijit was awarded the Nobel Prize in 2019 and continued through the pandemic. “Both of us work on instinct, but the way he shapes an argument is very different from me,” Sarnath says. “My work does not follow a linear approach to telling a story; it’s fragmentary, driven by mood and emotion more than narrative, like composing a piece of music.”

    Since they first met at a literary conference years ago, Abhijit and Sarnath have been close friends and intellectual sparring partners. Though Sarnath is based in Berlin and Abhijit in Boston, the two often cross paths in different locales and have long, ambling discussions that traverse a wide array of topics. “We spend a lot of time walking together wherever we find ourselves, whether it’s down the Longfellow Bridge in Boston or through Delhi or Kolkata,” Sarnath says. The idea for this project was born out of such conversations, in response to pressing events in their home country. 

    Abhijit wrote a proposal to MIT CAST, and the questions they received through the process helped them further shape the project. “It’s important, when you have the luxury, just to spend time together. Thanks to MIT, we managed to do that across continents,” Sarnath says of their creative process. “It’s more than just telling a story; Abhijit unpacked what was in his head, and I drew and wrote a bit as well,” Sarnath says. And they worked with the editor and animator Niusha Ramzani, whom Sarnath says lent an Iranian aesthetic to the film’s animations. 

    As for the format of the films, they wanted to capture the sense of a serene Bengali afternoon, with Abhijit seated in his home in Kolkata speaking in a relaxed tone. “We wanted it to be a bit like a Royal Society lecture,” Sarnath says, somewhat like a TED Talk but more personable and intimate. The aim was to make their complicated subjects more easily comprehensible, through the language of Abhijit’s narration and with the help of visual metaphors. Still, they did not want to sacrifice complexity.

    “Economists are fabulists,” says Abhijit Banerjee. “We tell stories, simple stories, but that tends to get obscured in the telling, often because we like to be very careful about not overstating our case. Irony and the kind of playful humor that Sarnath brings to narration seemed to offer a different way to avoid being too emphatic, while allowing the story to be told in a way that it reaches a much larger audience. What is brilliant about Sarnath’s work is the play between reliable and the unreliable — the readers are happy to be misdirected because they know that it will ultimately lead them where they want to be. I was hoping we could bring a little of that into economics.” 

    “You have to emancipate yourself from any one definitive answer,” Sarnath Banerjee says, describing Abhijit’s expansive way of thinking, through which he follows multiple thought processes to their logical conclusions. The result allows for ambiguity and contradiction, though the pathways of thinking are clear. The films illustrate the situations facing farmers in Punjab and the waterlogged streets of Kolkata by tracing their roots and examining the history of cause and effect. The results provide clarity, but no simple answers.

    The process was an enriching one for both of them, the kind of advancement in understanding that can only come in dialogue. “With each collaboration, you learn, and learning to me is an artistic form,” Sarnath says. “We are always learning.” More

  • in

    K. Lisa Yang Global Engineering and Research Center will prioritize innovations for resource-constrained communities

    Billions of people worldwide face threats to their livelihood, health, and well-being due to poverty. These problems persist because solutions offered in developed countries often do not meet the requirements — related to factors like price, performance, usability, robustness, and culture — of poor or developing countries. Academic labs frequently try to tackle these challenges, but often to no avail because they lack real-world, on-the-ground knowledge from key stakeholders, and because they do not have an efficient, reliable means of converting breakthroughs to real-world impact.

    The new K. Lisa Yang Global Engineering and Research (GEAR) Center at MIT, founded with a $28 million gift from philanthropist and investor Lisa Yang, aims to rethink how products and technologies for resource-constrained communities are conceived, designed, and commercialized. A collaboration between MIT’s School of Engineering and School of Science, the Yang GEAR Center will bring together a multidisciplinary team of MIT researchers to assess today’s most pressing global challenges in three critical areas: global health, climate change mitigation and adaptation, and the water-energy-food nexus.

    “As she has shown over and over through her philanthropy, Lisa Yang shares MIT’s passion for connecting fundamental research and real-world data to create positive impact,” says MIT president Sally Kornbluth. “I’m grateful for her powerful vision and incredible generosity in founding the K. Lisa Yang GEAR Center. I can’t imagine a better use of MIT’s talents than working to improve the lives and health of people around the world.”

    Yang’s gift expands her exceptional philanthropic support of human health and basic science research at MIT over the past six years. Yang GEAR Center will join MIT’s Yang Tan Collective, an assemblage of six major research centers focused on accelerating collaboration in basic science, research, and engineering to realize translational strategies that improve human health and well-being at a global scale.

    “Billions of people face daily life-or-death challenges that could be improved with elegant technologies,” says Yang. “And yet I’ve learned how many products and tools created by top engineers don’t make it out of the lab. They may look like clever ideas during the prototype phase, but they are entirely ill-suited to the communities they were designed for. I am very excited about the potential of a deliberate and thoughtful engineering effort that will prioritize the design of technologies for use in impoverished communities.”

    Cost, material availability, cultural suitability, and other market mismatches hinder many major innovations in global health, food, and water from being translated to use in resource-constrained communities. Yang GEAR Center will support a major research and design program with its mission to strategically identify compelling challenges and associated scientific knowledge gaps in resource-constrained communities then address them through academic innovation to create and translate transformative technologies.

    The center will be led by Amos Winter, associate professor of mechanical engineering, whose lab focuses on creating technologies that marry innovative, low-cost design with an in-depth understanding of the unique socioeconomic constraints of emerging markets.

    “Academia has a key role to play in solving the historically unsolvable challenges in resource-constrained communities,” says Winter. “However, academic research is often disconnected from the real-world requirements that must be satisfied to make meaningful change. Yang GEAR Center will be a catalyst for innovation to impact by helping colleagues identify compelling problems and focus their talents on realizing real-world solutions, and by providing mechanisms for commercial dissemination. I am extremely grateful to find in Lisa a partner who shares a vision for how academic research can play a more efficient and targeted role in addressing the needs of the world’s most disadvantaged populations.”

    The backbone of the Yang GEAR Center will be a team of seasoned research scientists and engineers. These individuals will scout real-world problems and distill the relevant research questions then help assemble collaborative teams. As projects develop, center staff will mentor students, build and conduct field pilots, and foster relationships with stakeholders around the world. They will be strategically positioned to translate technology at the end of projects through licensing and startups. Center staff and collaborators will focus on creating products and services for climate-driven migrants, such as solar-powered energy and water networks; technologies for reducing atmospheric carbon and promoting the hydrogen economy; brackish water desalination and irrigation solutions; and high-performance, global health diagnostics and devices.

    For instance, a Yang GEAR Center team focused on creating water-saving and solar-powered irrigation solutions for farmers in the Middle East and North Africa will continue its work in the region. They will conduct exploratory research; build a team of stakeholders, including farmers, agricultural outreach organizations, irrigation hardware manufacturers, retailers, water and agriculture scientists, and local government officials; design, rigorously test, and iterate prototypes both in the lab and in the field; and conduct large-scale field trials to garner user feedback and pave the way to product commercialization.

    “Grounded in foundational scientific research and blended with excellence in the humanities, MIT provides a framework that integrates people, economics, research, and innovation. By incorporating multiple perspectives — and being attentive to the needs and cultures of the people who will ultimately rely on research outcomes — MIT can have the greatest impact in areas of health, climate science, and resource security,” says Nergis Mavalvala, dean of the School of Science and the Curtis and Kathleen Marble Professor of Astrophysics.

    An overarching aim for the center will be to educate graduates who are global engineers, designers, and researchers positioned for a career of addressing compelling, high-impact challenges. The center includes four endowed Hock E. Tan GEAR Center Fellowships that will support graduate students and/or postdoctoral fellows eager to enter the field of global engineering. The fellowships are named for MIT alumnus and Broadcom CEO Hock E. Tan ’75 SM ’75.

    “I am thrilled that the Yang GEAR Center is taking a leading role in training problem-solvers who will rethink how products and inventions can help communities facing the most pressing challenges of our time,” adds Anantha Chandrakasan, dean of the School of Engineering and the Vannevar Bush Professor of Electrical Engineering and Computer Science. “These talented young students,  postdocs, and staff have the potential to reach across disciplines — and across the globe — to truly transform the impact engineering can have in the future.” More

  • in

    Building a better indoor herb garden

    Randall Briggs ’09, SM ’18 didn’t set out to build indoor gardens when he arrived at MIT. The winner of the 2010 2.007 robot competition class, he was excited to work on designing fighter planes one day.

    But in 2016, halfway through his studies for his master’s degree in mechanical engineering, Briggs’s father passed away unexpectedly. “It was a big blow to me. My motivation took a big hit, so it was hard for me to keep working on my research,” Briggs shares.

    Briggs ordered a home hydroponic garden in the hopes that growing herbs inside his apartment could bring him some positivity. “There is something healing about seeing something organic and beautiful grow and develop,” Briggs says.

    When the garden arrived, Briggs found that many aspects of the design fell short. The plants weren’t getting enough light because the LEDs were dispersing light throughout the room and not focusing it on the plants. “It’s just not very pleasing aesthetically when it’s, like, a fluorescent color of light, and it just fills your room,” Briggs says.

    He set forth to create a better indoor garden. Briggs turned his spare bedroom into a hydroponics lab, testing herbs growing under various lighting conditions and with different nutrient solutions. He read every book and article he could find on the subject. “The same seed pods that I had used in that cheap garden, when I moved them over to my garden, they grew way faster and way healthier and more fragrant and full of flavor,” he says.

    Working on this project became a daily source of joy for Briggs. “Every day when you come home, you want to see if it’s growing a little bit more or to see how they’re doing. I think that made me happy, too.”

    Briggs saw the potential for his garden to improve the well-being of others. “I thought if people had fresh herbs at home, they might be more inspired to cook for themselves instead of always just eating out, as it’s normally a lot healthier to cook your own food at home.”

    After much research and experimentation, GardenByte was born in 2017: a tabletop indoor herb garden that is nearly 3 feet wide with almost 2 feet of height for the plants to grow, which is quite a bit larger than most models on the market. With Briggs’s hydroponics technology, the plants grow three times faster than they would grow outdoors. His garden allows anyone to grow fresh herbs in a wide range of settings. And since plants have a longer shelf life than cut herbs, they also cut down on food waste.

    Briggs was determined to make something that grows plants well and is attractive in a variety of settings. The outer case is handcrafted from solid hardwood from a local Massachusetts lumber yard, ensuring both durability and a visually pleasing aesthetic that seamlessly integrates into any kitchen or restaurant setting. The light bar, crafted from a single piece of crystal-clear acrylic, maintains an unobtrusive and ethereal appearance. This choice complements the overall design while allowing the LED lights to emit a powerful simulation of full sunshine. To ensure a smooth transition from daytime growth to evening, four different types of LEDs were incorporated. Polymer lenses focus the light directly onto the plants, preventing any wastage or unnecessary light spillage in the room. A light and color sensor on top detect the lighting conditions in the room and automatically adjust the lighting in the garden to match, enhancing plant growth. The grid tray is designed to accommodate up to 39 plants at once, offering ample space for an array of herbs. To simplify plant care, the garden is connected to a mobile app that will allow you to care for your plants while you’re away.

    The herb garden contains computer numerical control (CNC) machined-aluminum parts, in contrast with the flimsier plastic most products use. The heat flow capacity of aluminum disperses the heat from all the LEDs and the aluminum grid tray helps keep it compact and thin but rigid, so users can lift the plants up without it bending.

    Briggs received his foundation in machining as an undergrad at the MIT Edgerton Center, where he was on the MIT Motorsports team and MIT Electric Vehicle Team. He learned how to use the CNC machines in the student machine shop at the Area 51 garage under the tutelage of Instructor Pat McAtamney and Briggs’s teammates.

    Building an electric motorcycle on the Electric Vehicle Team for the Isle of Man TT Race in 2011 helped prepare Briggs for creating a robust product for production. The race took place on city streets, raising the potential for deadly crashes. “When we were building that motorcycle, the head of our team, Lennon Rodgers, kept reiterating to us, ‘you got to think aircraft quality, like aircraft quality. This is actually a life-or-death project.’ Seeing the way that he led, and the way that he really set the bar for quality and for execution and kind of kept things moving, was really helpful for me.”

    “My hope in the future is to make a more mass-market version that’s a little bit cheaper and more available to everybody,” Briggs shares.

    The feedback from his first customers has all been positive. After delivering the product to a chef in Boston, Briggs says, “He told me that the whole first evening he was sitting at home with his boyfriend and he just kept staring at it, and he’s like, ‘it is so beautiful. It is so beautiful.’”

    “I feel like something that my dad taught me was that sometimes to do hard things, it does take hard work, and that it’s not always going to be exciting, necessarily,” Briggs shares. “It’s good to be inspired, it’s good to be passionate, but it’s not always going to get you through. And sometimes it’s just hard work that you got to press through the tough parts.” More

  • in

    Accelerated climate action needed to sharply reduce current risks to life and life-support systems

    Hottest day on record. Hottest month on record. Extreme marine heatwaves. Record-low Antarctic sea-ice.

    While El Niño is a short-term factor in this year’s record-breaking heat, human-caused climate change is the long-term driver. And as global warming edges closer to 1.5 degrees Celsius — the aspirational upper limit set in the Paris Agreement in 2015 — ushering in more intense and frequent heatwaves, floods, wildfires, and other climate extremes much sooner than many expected, current greenhouse gas emissions-reduction policies are far too weak to keep the planet from exceeding that threshold. In fact, on roughly one-third of days in 2023, the average global temperature was at least 1.5 C higher than pre-industrial levels. Faster and bolder action will be needed — from the in-progress United Nations Climate Change Conference (COP28) and beyond — to stabilize the climate and minimize risks to human (and nonhuman) lives and the life-support systems (e.g., food, water, shelter, and more) upon which they depend.

    Quantifying the risks posed by simply maintaining existing climate policies — and the benefits (i.e., avoided damages and costs) of accelerated climate action aligned with the 1.5 C goal — is the central task of the 2023 Global Change Outlook, recently released by the MIT Joint Program on the Science and Policy of Global Change.

    Based on a rigorous, integrated analysis of population and economic growth, technological change, Paris Agreement emissions-reduction pledges (Nationally Determined Contributions, or NDCs), geopolitical tensions, and other factors, the report presents the MIT Joint Program’s latest projections for the future of the earth’s energy, food, water, and climate systems, as well as prospects for achieving the Paris Agreement’s short- and long-term climate goals.

    The 2023 Global Change Outlook performs its risk-benefit analysis by focusing on two scenarios. The first, Current Trends, assumes that Paris Agreement NDCs are implemented through the year 2030, and maintained thereafter. While this scenario represents an unprecedented global commitment to limit greenhouse gas emissions, it neither stabilizes climate nor limits climate change. The second scenario, Accelerated Actions, extends from the Paris Agreement’s initial NDCs and aligns with its long-term goals. This scenario aims to limit and stabilize human-induced global climate warming to 1.5 C by the end of this century with at least a 50 percent probability. Uncertainty is quantified using 400-member ensembles of projections for each scenario.

    This year’s report also includes a visualization tool that enables a higher-resolution exploration of both scenarios.

    Energy

    Between 2020 and 2050, population and economic growth are projected to drive continued increases in energy needs and electrification. Successful achievement of current Paris Agreement pledges will reinforce a shift away from fossil fuels, but additional actions will be required to accelerate the energy transition needed to cap global warming at 1.5 C by 2100.

    During this 30-year period under the Current Trends scenario, the share of fossil fuels in the global energy mix drops from 80 percent to 70 percent. Variable renewable energy (wind and solar) is the fastest growing energy source with more than an 8.6-fold increase. In the Accelerated Actions scenario, the share of low-carbon energy sources grows from 20 percent to slightly more than 60 percent, a much faster growth rate than in the Current Trends scenario; wind and solar energy undergo more than a 13.3-fold increase.

    While the electric power sector is expected to successfully scale up (with electricity production increasing by 73 percent under Current Trends, and 87 percent under Accelerated Actions) to accommodate increased demand (particularly for variable renewables), other sectors face stiffer challenges in their efforts to decarbonize.

    “Due to a sizeable need for hydrocarbons in the form of liquid and gaseous fuels for sectors such as heavy-duty long-distance transport, high-temperature industrial heat, agriculture, and chemical production, hydrogen-based fuels and renewable natural gas remain attractive options, but the challenges related to their scaling opportunities and costs must be resolved,” says MIT Joint Program Deputy Director Sergey Paltsev, a lead author of the 2023 Global Change Outlook.

    Water, food, and land

    With a global population projected to reach 9.9 billion by 2050, the Current Trends scenario indicates that more than half of the world’s population will experience pressures to its water supply, and that three of every 10 people will live in water basins where compounding societal and environmental pressures on water resources will be experienced. Population projections under combined water stress in all scenarios reveal that the Accelerated Actions scenario can reduce approximately 40 million of the additional 570 million people living in water-stressed basins at mid-century.

    Under the Current Trends scenario, agriculture and food production will keep growing. This will increase pressure for land-use change, water use, and use of energy-intensive inputs, which will also lead to higher greenhouse gas emissions. Under the Accelerated Actions scenario, less agricultural and food output is observed by 2050 compared to the Current Trends scenario, since this scenario affects economic growth and increases production costs. Livestock production is more greenhouse gas emissions-intensive than crop and food production, which, under carbon-pricing policies, drives demand downward and increases costs and prices. Such impacts are transmitted to the food sector and imply lower consumption of livestock-based products.

    Land-use changes in the Accelerated Actions scenario are similar to those in the Current Trends scenario by 2050, except for land dedicated to bioenergy production. At the world level, the Accelerated Actions scenario requires cropland area to increase by 1 percent and pastureland to decrease by 4.2 percent, but land use for bioenergy must increase by 44 percent.

    Climate trends

    Under the Current Trends scenario, the world is likely (more than 50 percent probability) to exceed 2 C global climate warming by 2060, 2.8 C by 2100, and 3.8 C by 2150. Our latest climate-model information indicates that maximum temperatures will likely outpace mean temperature trends over much of North and South America, Europe, northern and southeast Asia, and southern parts of Africa and Australasia. So as human-forced climate warming intensifies, these regions are expected to experience more pronounced record-breaking extreme heat events.

    Under the Accelerated Actions scenario, global temperature will continue to rise through the next two decades. But by 2050, global temperature will stabilize, and then slightly decline through the latter half of the century.

    “By 2100, the Accelerated Actions scenario indicates that the world can be virtually assured of remaining below 2 C of global warming,” says MIT Joint Program Deputy Director C. Adam Schlosser, a lead author of the report. “Nevertheless, additional policy mechanisms must be designed with more comprehensive targets that also support a cleaner environment, sustainable resources, as well as improved and equitable human health.”

    The Accelerated Actions scenario not only stabilizes global precipitation increase (by 2060), but substantially reduces the magnitude and potential range of increases to almost one-third of Current Trends global precipitation changes. Any global increase in precipitation heightens flood risk worldwide, so policies aligned with the Accelerated Actions scenario would considerably reduce that risk.

    Prospects for meeting Paris Agreement climate goals

    Numerous countries and regions are progressing in fulfilling their Paris Agreement pledges. Many have declared more ambitious greenhouse gas emissions-mitigation goals, while financing to assist the least-developed countries in sustainable development is not forthcoming at the levels needed. In this year’s Global Stocktake Synthesis Report, the U.N. Framework Convention on Climate Change evaluated emissions reductions communicated by the parties of the Paris Agreement and concluded that global emissions are not on track to fulfill the most ambitious long-term global temperature goals of the Paris Agreement (to keep warming well below 2 C — and, ideally, 1.5 C — above pre-industrial levels), and there is a rapidly narrowing window to raise ambition and implement existing commitments in order to achieve those targets. The Current Trends scenario arrives at the same conclusion.

    The 2023 Global Change Outlook finds that both global temperature targets remain achievable, but require much deeper near-term emissions reductions than those embodied in current NDCs.

    Reducing climate risk

    This report explores two well-known sets of risks posed by climate change. Research highlighted indicates that elevated climate-related physical risks will continue to evolve by mid-century, along with heightened transition risks that arise from shifts in the political, technological, social, and economic landscapes that are likely to occur during the transition to a low-carbon economy.

    “Our Outlook shows that without aggressive actions the world will surpass critical greenhouse gas concentration thresholds and climate targets in the coming decades,” says MIT Joint Program Director Ronald Prinn. “While the costs of inaction are getting higher, the costs of action are more manageable.” More