More stories

  • in

    Creating connection with science communication

    Before completing her undergraduate studies, Sophie Hartley, a student in MIT’s Graduate Program in Science Writing, had an epiphany that was years in the making.“The classes I took in my last undergraduate semester changed my career goals, but it started with my grandfather,” she says when asked about what led her to science writing. She’d been studying comparative human development at the University of Chicago, which Hartley describes as “a combination of psychology and anthropology,” when she took courses in environmental writing and digital science communications.“What if my life could be about learning more of life’s intricacies?” she thought.Hartley’s grandfather introduced her to photography when she was younger, which helped her develop an appreciation for the natural world. Each summer, they would explore tide pools, overgrown forests, and his sprawling backyard. He gave her a camera and encouraged her to take pictures of anything interesting.“Photography was a door into science journalism,” she notes. “It lets you capture the raw beauty of a moment and return to it later.”Lasting impact through storytellingHartley spent time in Wisconsin and Vermont while growing up. That’s when she noticed a divide between rural communities and urban spaces. She wants to tell stories about communities that are less likely to be covered, and “connect them to people in cities who might not otherwise understand what’s happening and why.”People have important roles to play in arresting climate change impacts, improving land management practices and policies, and taking better care of our natural resources, according to Hartley. Challenges related to conservation, land management, and farming affect us all, which is why she believes effective science writing is so important.“We’re way more connected than we believe or understand,” Hartley says. “Climate change is creating problems throughout the entire agricultural supply chain.”For her news writing course, Hartley wrote a story about how flooding in Vermont led to hay shortages, which impacted comestibles as diverse as goat cheese and beef. “When the hay can’t dry, it’s ruined,” she says. “That means cows and goats aren’t eating, which means they can’t produce our beef, milk, and cheese.”Ultimately, Hartley believes her work can build compassion for others while also educating people about how everything we do affects nature and one another.“The connective tissues between humans persist,” she said. “People who live in cities aren’t exempt from rural concerns.”Creating connections with science writingDuring her year-long study in the MIT Graduate Program in Science Writing, Hartley is also busy producing reporting for major news outlets.Earlier this year, Hartley authored a piece for Ars Technica that explored ongoing efforts to develop technology aimed at preventing car collisions with kangaroos. As Hartley reported, given the unique and unpredictable behavior of kangaroos, vehicle animal detection systems have proven ineffective. That’s forced Australian communities to develop alternative solutions, such as virtual fencing, to keep kangaroos away from the roads.In June, Hartley co-produced a story for GBH News with Hannah Richter, a fellow student in the science writing program. They reported on how and why officials at a new Peabody power plant are backtracking on an earlier pledge to run the facility on clean fuels.The story was a collaboration between GBH News and the investigative journalism class in the science writing program. Hartley recalls wonderful experience working with Richter. “We were able to lean on each other’s strengths and learn from each other,” she says. “The piece took a long time to report and write, and it was helpful to have a friend and colleague to continuously motivate me when we would pick it back up after a while.”Co-reporting can also help evenly divide what can sometimes become a massive workload, particularly with deeply, well-researched pieces like the Peabody story. “When there is so much research to do, it’s helpful to have another person to divvy up the work,” she continued. “It felt like everything was stronger and better, from the writing to the fact-checking, because we had two eyes on it during the reporting process.”Hartley’s favorite piece in 2024 focused on beech leaf disease, a deadly pathogen devastating North American forests. Her story, which was later published in The Boston Globe Magazine, followed a team of four researchers racing to discover how the disease works. Beech leaf disease kills swiftly and en masse, leaving space for invasive species to thrive on forest floors. Her interest in land management and natural resources shines through in much of her work.Local news organizations are an endangered species as newsrooms across America shed staff and increasingly rely on aggregated news accounts from larger organizations. What can be lost, however, are opportunities to tell small-scale stories with potentially large-scale impacts. “Small and rural accountability stories are being told less and less,” Hartley notes. “I think it’s important that communities are aware of what is happening around them, especially if it impacts them.” More

  • in

    D-Lab off-grid brooder saves chicks and money using locally manufactured thermal batteries

    MIT D-Lab students and instructors are improving the efficacy and economics of a brooder technology for newborn chicks that utilizes a practical, local resource: beeswax.Developed through participatory design with agricultural partners in Cameroon, their Off-Grid Brooder is a solution aimed at improving the profitability of the African nation’s small- and medium-scale poultry farms. Since it is common for smallholders in places with poor electricity supply to tend open fires overnight to keep chicks warm, the invention might also let farmers catch up on their sleep.“The target is eight hours. If farmers can sustain the warmth for eight hours, then they get to sleep,” says D-Lab instructor and former student Ahmad (Zak) Zakka SM ’23, who traveled to Cameroon in May to work on implementing brooder improvements tested at the D-Lab, along with D-Lab students, collaborators from African Solar Generation (ASG), and the African Diaspora Council of Switzerland – Branch Cameroon (CDAS–BC).Poultry farming is heavily concentrated in lower- and middle-income countries, where it is an important component of rural economies and provides an inexpensive source of protein for residents. Raising chickens is fraught with economic risk, however, largely because it is hard for small-scale farmers to keep newborn chicks warm enough to survive (33 to 35 degrees Celsius, or 91 to 95 degrees Fahrenheit, depending on age). After the cost of feed, firewood used to heat the chick space is the biggest input for rural poultry farmers.According to D-Lab researchers, an average smallholder in Cameroon using traditional brooding methods spends $17 per month on firewood, achieves a 10 percent profit margin, and experiences chick mortality that can be as high as a total loss due to overheating or insufficient heat. The Off-Grid Brooder is designed to replace open fires with inexpensive, renewable, and locally available beeswax — a phase-change material used to make thermal batteries.ASG initially developed a brooder technology, the SolarBox, that used photovoltaic panels and electric batteries to power incandescent bulbs. While this provided effective heating, it was prohibitively expensive and difficult to maintain. In 2020, students from the D-Lab Energy class took on the challenge of reducing the cost and complexity of the SolarBox heating system to make it more accessible to small farmers in Cameroon. Through participatory design — a collaborative approach that involves all stakeholders in early stages of the design process — the team discovered a unique solution. Beeswax stored in a used glass container (such as a mayonnaise jar) is melted using a double boiler over a fire and then installed inside insulated brooder boxes alongside the chicks. As the beeswax cools and solidifies, it releases heat for several hours, keeping the brooder within the temperature range that chicks need to grow and develop. Farmers can then recharge the cooled wax batteries and repeat the process again and again. “The big challenge was how to get heat,” says D-Lab Research Scientist Daniel Sweeney, who, with Zakka, co-teaches two D-Lab classes, 2.651/EC.711 (Introduction to Energy in Global Development), and 2.652/EC.712 (Applications of Energy in Global Development). “Decoupling the heat supplied by biomass (wood) from the heat the chicks need at night in the brooder, that’s the core of the innovation here.”D-Lab instructors, researchers, and students have tested and tuned the system with partners in Cameroon. A research box constructed during a D-Lab trip to Cameroon in January 2023 worked well, but was “very expensive to build,” Zakka says. “The research box was a proof of concept in the field. The next step was to figure out how to make it affordable,” he continues.A new brooder box, made entirely of locally sourced recycled materials at 5 percent of the cost of the research prototype, was developed during D-Lab’s January 2024 trip to Cameroon. Designed and produced in collaboration with CDAS-BC, the new brooder is much more affordable, but its functionality still needs fine-tuning. From late-May through mid-June, the D-Lab team, led by Zakka, worked with Cameroonian collaborators to improve the system again. This time, they assessed the efficacy of using straw, a readily available and low-cost material, arranged in panels to insulate the brooder box.The MIT team was hosted by CDAS-BC, including its president and founder Carole Erlemann Mengue and secretary and treasurer Kathrin Witschi, who operate an organic poultry farm in Afambassi, Cameroon. “The students will experiment with the box and try to improve the insulation of the box without neglecting that the chicks will need ventilation,” they say.In addition, the CDAS-BC partners say that they hoped to explore increasing the number of chicks that the box can keep warm. “If the system could heat 500 to 1,000 chicks at a time,” they note, “it would help farmers save firewood, to sleep through the night, and to minimize the risk of fire in the building and the risk of stepping on chicks while replacing firewood.” Earlier this spring, Erlemann Mengue and Witschi tested the low-cost Off-Grid Brooder Box, which can hold 30 to 40 chicks in its current design.“They were very interested in partnering with us to evaluate the technology. They are running the tests and doing a lot of technical measurement to track the temperature inside the brooder over time,” says Sweeney, adding that the CDAS-BC partners are amassing datasets that they send to the MIT D-Lab team. Sweeney and Zakka, along with PhD candidate Aly Kombargi, who worked on the research box in Cameroon last year, hope to not only improve the functionality of the Off-Grid Poultry Brooder but also broaden its use beyond Cameroon.“The goal of our trip was to have a working prototype, and the goal since then has been to scale this up,” Kombargi says. “It’s absolutely scalable.”Concurring that “the technology should work across developing countries in small-scale poultry sectors,” Zakka says this spring’s D-Lab trip included workshops for area poultry farmers to teach them about benefits of the Off-Grid Brooder and how to make their own. “I’m excited to see if we can get people excited about pushing this as a business … to see if they would build and sell it to other people in the community,” Zakka says.Adds Sweeney, “This isn’t rocket science. If we have some guidance and some open-source information we could share, I’m pretty sure (farmers) could put them together on their own.”Already, he says, partners identified through MIT’s networks in Zambia and Uganda are building their own brooders based on the D-Lab design.MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), which supports research, innovation, and cross-disciplinary collaborations involving water and food systems, awarded the Off-Grid Brooder project a $25,000 research and development grant in 2022. The program is “pleased that the project’s approach was grounded in engagement with MIT students and community collaborators,” says Executive Director Renee Robins. “The participatory design process helped produce innovative prototypes that are already making positive impacts for smallholder poultry farmers.”That process and the very real impact on communities in Cameroon is what draws students to the project and keeps them committed.Sweeney says a recent D-Lab design review for the chick brooder highlighted that the project continued to attract the attention and curiosity of students who participated in earlier stages and still want to be involved.“There’s something about this project. There’s this whole tribe of students that are still active on the broader project,” he says. “There’s something about it.” More

  • in

    Balancing economic development with natural resources protection

    It’s one of the paradoxes of economic development: Many countries currently offer large subsidies to their industrial fishing fleets, even though the harms of overfishing are well-known. Governments might be willing to end this practice, if they saw that its costs outweighed its benefits. But each country, acting individually, faces an incentive to keep subsidies in place.This trap evokes the classic “tragedy of the commons” that economists have studied for generations. But despite the familiarity of the problem in theory, they don’t yet have a lot of hard evidence to offer policymakers about solutions, especially on a global scale. PhD student Aaron Berman is working on a set of projects that may change that.“Our goal is to get some empirical traction on the problem,” he says.Berman and his collaborators are combining a variety of datasets — not only economic data but also projections from ecological models — to identify how these subsidies are impacting fish stocks. They also hope to determine whether countries might benefit instead from sustainability measures to help rebuild fisheries, say through new trade arrangements or other international policy agreements.As a fourth-year doctoral candidate in MIT’s Department of Economics, Berman has a variety of other research projects underway as well, all connected by the central question of how to balance economic development with the pressure it puts on the environment and natural resources. While his study of fishing subsidies is global in scope, other projects are distinctly local: He is studying air pollution generated by road infrastructure in Pakistan, groundwater irrigation in Texas, the scallop fishing industry in New England, and industrial carbon-reduction measures in Turkey. For all of these projects, Berman and his collaborators are bringing data and models from many fields of science to bear on economic questions, from seafloor images taken by NOAA to atmospheric models of pollution dispersion.“One thing I find really exciting and joyful about the work I’m doing in environmental economics is that all of these projects involve some kind of crossover into the natural sciences,” he says.Several of Berman’s projects are so ambitious that he hopes to continue working on them even after completing his PhD. He acknowledges that keeping so many irons in the fire is a lot of work, but says he finds motivation in the knowledge that his research could shape policy and benefit society in a concrete way.“Something that MIT has really instilled in me is the value of going into the field and learning about how the research you’re doing connects to real-world issues,” he says. “You want your findings as a researcher to ultimately be useful to someone.”Testing the watersThe son of two public school teachers, Berman grew up in Maryland and then attended Yale University, where he majored in global affairs as an undergraduate, then stayed to get his master’s in public health, concentrating on global health in both programs.A pivotal moment came while taking an undergraduate class in development economics. “That class helped me realize the same questions I cared a lot about from a public health standpoint were also being studied by economists using very rigorous methods,” Berman says. “Economics has a lot to say about very pressing societal issues.”After reading the work of MIT economists and Nobel laureates Esther Duflo and Abhijit Banerjee in that same class, he decided to pivot and “test the waters of economics a little bit more seriously.” The professor teaching that class also played an important role, by encouraging Berman to pursue a predoctoral research position as a first step toward a graduate degree in economics.Following that advice, Berman landed at the Harvard Kennedy School’s Evidence for Policy Design, a research initiative seeking to foster economic development by improving the policy design process. His time with this organization included five months in Jakarta, Indonesia, where he collaborated with professors Rema Hanna and Ben Olken — of Harvard and MIT, respectively — on a portfolio of projects focused on analyzing social protection and poverty alleviation.The work, which included working closely with government partners, “required me to think creatively about how to talk about economics research to several different types of audiences,” he says. “This also gave me experience thinking about the intersection between what is academically interesting and what is a policy priority.”The experience also gave him the skills and confidence to apply to the economics PhD program at MIT.(Re)discovering teachingAs an economist, Berman is now channeling his interests in global affairs to exploring the relationship between economic development and protecting the natural environment. (He’s aided by an affinity for languages — he speaks five, with varying degrees of proficiency, in addition to English: Mandarin, Cantonese, Spanish, Portuguese, and Indonesian.) His interest in natural resource governance was piqued while co-authoring a paper on the economic drivers of climate-altering tropical deforestation.The review article, written alongside Olken and two professors from the London School of Economics, explored questions such as “What does the current state of the evidence tell us about what causes deforestation in the tropics, and what further evidence is needed?” and “What are the economic barriers to implementing policies to prevent deforestation?” — the kinds of questions he seeks to answer broadly in his ongoing dissertation work.“I gained an appreciation for the importance and complexity of natural resource governance, both in developing and developed countries,” he says. “It really was a launching point for a lot of the things that I’m doing now.”These days, when not doing research, Berman can be found playing on MIT’s club tennis team or working as a teaching assistant, which he particularly enjoys. He’s ever mindful of the Yale professor whose encouragement shaped his own path, and he hopes that he can pay that forward in his own teaching roles.“The fact that he saw I had the ability to make this transition and encouraged me to take a leap of faith is really meaningful to me. I would like to be able to do that for others,” Berman says.His interest in teaching also connects him further with his family: His father is a middle school science teacher and mother is a paraeducator for students with special needs. He says they’ve encouraged him throughout his academic journey, even though they initially didn’t know much about what a PhD in economics entailed. Berman jokes that the most common question people ask economists is what stocks they should invest in, and his family was no exception.“But they’ve always been very excited to hear about the kinds of things I’m working on and very supportive,” he says. “It’s been a really amazing learning experience thus far,” Berman says about his doctoral program. “One of the coolest parts of economics research is to have a sense that you’re tangibly doing something that’s going to have an impact in the world.” More

  • in

    Q&A: The power of tiny gardens and their role in addressing climate change

    To address the climate crisis, one must understand environmental history. MIT Professor Kate Brown’s research has typically focused on environmental catastrophes. More recently, Brown has been exploring a more hopeful topic: tiny gardens.Brown is the Thomas M. Siebel Distinguished Professor in History of Science in the MIT Program in Science, Technology, and Society. In this Q&A, Brown discusses her research, and how she believes her current project could help put power into the hands of everyday people.This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.Q: You have created an unusual niche for yourself as an historian of environmental catastrophes. What drew you to such a dismal beat?A: Historians often study New York, Warsaw, Moscow, Berlin, but if you go to these little towns that nobody’s ever heard of, that’s where you see the destruction in the wake of progress. This is likely because I grew up in a manufacturing town in the Midwestern Rust Belt, watching stores go bankrupt and houses sit empty. I became very interested in the people who were the last to turn off the lights.Q: Did this interest in places devastated by technological and economic change eventually lead to your investigation of Chernobyl?A: I first studied the health and environmental consequences of radioactive waste on communities near nuclear weapons facilities in the U.S. and Russia, and then decided to focus on the health and environmental impacts of fallout from the Chernobyl nuclear energy plant disaster. After gaining access to the KGB records in Kiev, I realized that there was a Klondike of records describing what Soviet officials at the time called a “public health disaster.” People on the ground recognized the saturation of radioactivity into environments and food supplies not with any with sensitive devices, but by noticing the changes in ecologies and on human bodies. I documented how Moscow leaders historically and decades later engaged in a coverup, and that even international bodies charged with examining nuclear issues were reluctant to acknowledge this ongoing public health disaster due to liabilities in their own countries from the production and testing of nuclear weapons during the Cold War.Q: Why did you turn from detailed studies of what you call “modernist wastelands” to the subject of climate change?A: Journalists and scholars have worked hard in the last two decades to get people to understand the scope and the scale and the verisimilitude of climate change. And that’s great, but some of these catastrophic stories we tell don’t make people feel very safe or secure. They have a paralyzing effect on us. Climate change is one of many problems that are too big for any one person to tackle, or any one entity, whether it’s a huge nation like the United States or an international body like the U.N.So I thought I would start to work on something that is very small scale that puts action in the hands of just regular people to try to tell a more hopeful story. I am finishing a new book about working-class people who got pushed off their farms in the 19th century, and ended up in mega cities like London, Berlin, Amsterdam, and Washington D.C., find land on the periphery of the cities. They start digging, growing their own food, cooperating together. They basically recreated forms of the commons in cities. And in so doing, they generate the most productive agriculture in recorded history.Q: What are some highlights of this extraordinary city-based food generation?A: In Paris circa 1900, 5,000 urban farmers grew fruits and vegetables and fresh produce for 2 million Parisians with a surplus left over to sell to London. They would plant three to six crops a year on one tract of land using horse manure to heat up soils from below to push the season and grow spring crops in winter and summer crops in spring.An agricultural economist looked at the inputs and the outputs from these Parisian farms. He found there was no comparison to the Green Revolution fields of the 1970s. These urban gardeners were producing far more per acre, with no petroleum-based fertilizers.Q: What is the connection between little gardens like these and the global climate crisis, where individuals can feel at loss facing the scale of the problems?A: You can think of a tiny city garden like a coral reef, where one little worm comes and builds its cave. And then another one attaches itself to the first, and so on. Pretty soon you have a great coral reef with a platform to support hundreds of different species — a rich biodiversity. Tiny gardens work that way in cities, which is one reason cities are now surprising hotspots of biodiversity.Transforming urban green space into tiny gardens doesn’t take an act of God, the U.N., or the U.S. Congress to make a change. You could just go to your municipality and say, “Listen, right now we have a zoning code that says every time there’s a new condo, you have to have one or two parking spaces, but we’d rather see one or two garden spaces.”And if you don’t want a garden, you’ll have a neighbor who does. So people are outside and they have their hands in the soil and then they start to exchange produce with one another. As they share carrots and zucchini, they exchange soil and human microbes as well. We know that when people share microbiomes, they get along better, have more in common. It comes as no surprise that humans have organized societies around shaking hands, kissing on the cheek, producing food together and sharing meals. That’s what I think we’ve lost in our remote worlds.Q: So can we address or mitigate the impacts of climate change on a community-by-community basis?A: I believe that’s probably the best way to do it. When we think of energy we often imagine deposits of oil or gas, but, as our grad student Turner Adornetto points out, every environment has energy running through it. Every environment has its own best solution. If it’s a community that lives along a river, tap into hydropower; or if it’s a community that has tons of organic waste, maybe you want to use microbial power; and if it’s a community that has lots of sun then use different kinds of solar power. The legacy of midcentury modernism is that engineers came up with one-size-fits-all solutions to plug in anywhere in the world, regardless of local culture, traditions, or environment. That is one of the problems that has gotten us into this fix in the first place.Politically, it’s a good idea to avoid making people feel they’re being pushed around by one set of codes, one set of laws in terms of coming up with solutions that work. There are ways of deriving energy and nutrients that enrich the environment, ways that don’t drain and deplete. You see that so clearly with a plant, which just does nothing but grow and contribute and give, whether it’s in life or in death. It’s just constantly improving its environment.Q: How do you unleash creativity and propagate widespread local responses to climate change?A: One of the important things we are trying to accomplish in the humanities is communicating in the most down-to-earth ways possible to our students and the public so that anybody — from a fourth grader to a retired person — can get engaged.There’s “TECHNOLOGY” in uppercase letters, the kind that is invented and patented in places like MIT. And then there’s technology in lowercase letters, where people are working with things readily at hand. That is the kind of creativity we don’t often pay enough attention to.Keep in mind that at the end of the 19th century, scientists were sure that the earth was cooling and the earth would all under ice by 2020. In the 1950s, many people feared nuclear warfare. In the 1960s the threat was the “population bomb.” Every generation seems to have its apocalyptic sense of doom. It is helpful to take climate change and the Anthropocene and put them in perspective. These are problems we can solve. More

  • in

    Bringing an investigator’s eye to complex social challenges

    Anna Russo likes puzzles. They require patience, organization, and a view of the big picture. She brings an investigator’s eye to big institutional and societal challenges whose solutions can have wide-ranging, long-term impacts.

    Russo’s path to MIT began with questions. She didn’t have the whole picture yet. “I had no idea what I wanted to do with my life,” says Russo, who is completing her PhD in economics in 2024. “I was good at math and science and thought I wanted to be a doctor.”

    While completing her undergraduate studies at Yale University, where she double majored in economics and applied math, Russo discovered a passion for problem-solving, where she could apply an analytical lens to answering the kinds of thorny questions whose solutions could improve policy. “Empirical research is fun and exciting,” Russo says.

    After Yale, Russo considered what to do next. She worked as a full-time research assistant with MIT economist Amy Finkelstein. Russo’s work with Finkelstein led her toward identifying, studying, and developing answers to complex questions. 

    “My research combines ideas from two fields of economic inquiry — public finance and industrial organization — and applies them to questions about the design of environmental and health care policy,” Russo says. “I like the way economists think analytically about social problems.”

    Narrowing her focus

    Studying with and being advised by renowned economists as both an undergraduate and a doctoral student helped Russo narrow her research focus, fitting more pieces into the puzzle. “What drew me to MIT was its investment in its graduate students,” Russo says.

    Economic research meant digging into policy questions, identifying market failures, and proposing solutions. Doctoral study allowed Russo to assemble data to rigorously follow each line of inquiry.

    “Doctoral study means you get to write about something you’re really interested in,” Russo notes. This led her to study policy responses to climate change adaptation and mitigation. 

    “In my first year, I worked on a project exploring the notion that floodplain regulation design doesn’t do a good job of incentivizing the right level of development in flood-prone areas,” she says. “How can economists help governments convince people to act in society’s best interest?”

    It’s important to understand institutional details, Russo adds, which can help investigators identify and implement solutions. 

    “Feedback, advice, and support from faculty were crucial as I grew as a researcher at MIT,” she says. Beyond her two main MIT advisors, Finkelstein and economist Nikhil Agarwal — educators she describes as “phenomenal, dedicated advisors and mentors” — Russo interacted regularly with faculty across the department. 

    Russo later discovered another challenge she hoped to solve: inefficiencies in conservation and carbon offset programs. She set her sights on the United States Department of Agriculture’s Conservation Reserve Program because she believes it and programs like it can be improved. 

    The CRP is a land conservation plan administered by USDA’s Farm Service Agency. In exchange for a yearly rental payment, farmers enrolled in the program agree to remove environmentally sensitive land from agricultural production and plant species that will improve environmental health and quality.

    “I think we can tweak the program’s design to improve cost-effectiveness,” Russo says. “There’s a trove of data available.” The data include information like auction participants’ bids in response to well-specified auction rules, which Russo links to satellite data measuring land use outcomes. Understanding how landowners bid in CRP auctions can help identify and improve the program’s function. 

    “We may be able to improve targeting and achieve more cost-effective conservation by adjusting the CRP’s scoring system,” Russo argues. Opportunities may exist to scale the incremental changes under study for other conservation programs and carbon offset markets more generally.  

    Economics, Russo believes, can help us conceptualize problems and recommend effective alternative solutions.

    The next puzzle

    Russo wants to find her next challenge while continuing her research. She plans to continue her work as a junior fellow at the Harvard Society of Fellows, after which she’ll join the Harvard Department of Economics as an assistant professor. Russo also plans to continue helping other budding economists since she believes in the importance of supporting other students.   

    Russo’s advisors are some of her biggest supporters. 

    Finklestein emphasizes Russo’s curiosity, enthusiasm, and energy as key drivers in her success. “Her genuine curiosity and interest in getting to the bottom of a problem with the data — with an econometric analysis, with a modeling issue — is the best antidote for [the stress that can be associated with research],” Finklestein says. “It’s a key ingredient in her ability to produce important and credible work.”

    “She’s also incredibly generous with her time and advice,” Finklestein continues, “whether it’s helping an undergraduate research assistant with her senior thesis, or helping an advisor such as myself navigate a data access process she’s previously been through.”

    “Instead of an advisor-advisee relationship, working with her on a thesis felt more like a collaboration between equals,” Agarwal adds. “[She] has the maturity and smarts to produce pathbreaking research.

    “Doctoral study is an opportunity for students to find their paths collaboratively,” Russo says. “If I can help someone else solve a small piece of their puzzle, that’s a huge positive. Research is a series of many, many small steps forward.” 

    Identifying important causes for further investigation and study will always be important to Russo. “I also want to dig into some other market that’s not working well and figure out how to make it better,” she says. “Right now I’m really excited about understanding California wildfire mitigation.” 

    Puzzles are made to be solved, after all. More

  • in

    Featured video: Moooving the needle on methane

    Methane traps much more heat per pound than carbon dioxide, making it a powerful contributor to climate change. “In fact, methane emission removal is the fastest way that we can ensure immediate results for reduced global warming,” says Audrey Parker, a graduate student in the Department of Civil and Environmental Engineering.

    Parker and other researchers in the Methane Emission Removal Project are developing a catalyst that can convert methane to carbon dioxide. They are working to set up systems that would reduce methane in the air at dairy farms, which are major emitters of the gas. Overall, agricultural practices and waste generation are responsible for about 28 percent of the world’s methane emissions.

    “If we do our job really well, within the next five years, we will be able to reduce the operating temperature of this catalyst in a way that is net beneficial to the climate and potentially even economically incentivized for the farmer and for society,” says Desirée Plata, an associate professor of civil and environmental engineering who leads the Methane Emission Removal Project.

    Video by Melanie Gonick/MIT News | 4 minutes, 35 seconds More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    Q&A: Claire Walsh on how J-PAL’s King Climate Action Initiative tackles the twin climate and poverty crises

    The King Climate Action Initiative (K-CAI) is the flagship climate change program of the Abdul Latif Jameel Poverty Action Lab (J-PAL), which innovates, tests, and scales solutions at the nexus of climate change and poverty alleviation, together with policy partners worldwide.

    Claire Walsh is the associate director of policy at J-PAL Global at MIT. She is also the project director of K-CAI. Here, Walsh talks about the work of K-CAI since its launch in 2020, and describes the ways its projects are making a difference. This is part of an ongoing series exploring how the MIT School of Humanities, Arts, and Social Sciences is addressing the climate crisis.

    Q: According to the King Climate Action Initiative (K-CAI), any attempt to address poverty effectively must also simultaneously address climate change. Why is that?

    A: Climate change will disproportionately harm people in poverty, particularly in low- and middle-income countries, because they tend to live in places that are more exposed to climate risk. These are nations in sub-Saharan Africa and South and Southeast Asia where low-income communities rely heavily on agriculture for their livelihoods, so extreme weather — heat, droughts, and flooding — can be devastating for people’s jobs and food security. In fact, the World Bank estimates that up to 130 million more people may be pushed into poverty by climate change by 2030.

    This is unjust because these countries have historically emitted the least; their people didn’t cause the climate crisis. At the same time, they are trying to improve their economies and improve people’s welfare, so their energy demands are increasing, and they are emitting more. But they don’t have the same resources as wealthy nations for mitigation or adaptation, and many developing countries understandably don’t feel eager to put solving a problem they didn’t create at the top of their priority list. This makes finding paths forward to cutting emissions on a global scale politically challenging.

    For these reasons, the problems of enhancing the well-being of people experiencing poverty, addressing inequality, and reducing pollution and greenhouse gases are inextricably linked.

    Q: So how does K-CAI tackle this hybrid challenge?

    A: Our initiative is pretty unique. We are a competitive, policy-based research and development fund that focuses on innovating, testing, and scaling solutions. We support researchers from MIT and other universities, and their collaborators, who are actually implementing programs, whether NGOs [nongovernmental organizations], government, or the private sector. We fund pilots of small-scale ideas in a real-world setting to determine if they hold promise, followed by larger randomized, controlled trials of promising solutions in climate change mitigation, adaptation, pollution reduction, and energy access. Our goal is to determine, through rigorous research, if these solutions are actually working — for example, in cutting emissions or protecting forests or helping vulnerable communities adapt to climate change. And finally, we offer path-to-scale grants which enable governments and NGOs to expand access to programs that have been tested and have strong evidence of impact.

    We think this model is really powerful. Since we launched in 2020, we have built a portfolio of over 30 randomized evaluations and 13 scaling projects in more than 35 countries. And to date, these projects have informed the scale ups of evidence-based climate policies that have reached over 15 million people.

    Q: It seems like K-CAI is advancing a kind of policy science, demanding proof of a program’s capacity to deliver results at each stage. 

    A: This is one of the factors that drew me to J-PAL back in 2012. I majored in anthropology and studied abroad in Uganda. From those experiences I became very passionate about pursuing a career focused on poverty reduction. To me, it is unfair that in a world full of so much wealth and so much opportunity there exists so much extreme poverty. I wanted to dedicate my career to that, but I’m also a very detail-oriented nerd who really cares about whether a program that claims to be doing something for people is accomplishing what it claims.

    It’s been really rewarding to see demand from governments and NGOs for evidence-informed policymaking grow over my 12 years at J-PAL. This policy science approach holds exciting promise to help transform public policy and climate policy in the coming decades.  

    Q: Can you point to K-CAI-funded projects that meet this high bar and are now making a significant impact?

    A: Several examples jump to mind. In the state of Gujarat, India, pollution regulators are trying to cut particulate matter air pollution, which is devastating to human health. The region is home to many major industries whose emissions negatively affect most of the state’s 70 million residents.

    We partnered with state pollution regulators — kind of a regional EPA [Environmental Protection Agency] — to test an emissions trading scheme that is used widely in the U.S. and Europe but not in low- and middle-income countries. The government monitors pollution levels using technology installed at factories that sends data in real time, so the regulator knows exactly what their emissions look like. The regulator sets a cap on the overall level of pollution, allocates permits to pollute, and industries can trade emissions permits.

    In 2019, researchers in the J-PAL network conducted the world’s first randomized, controlled trial of this emissions trading scheme and found that it cut pollution by 20 to 30 percent — a surprising reduction. It also reduced firms’ costs, on average, because the costs of compliance went down. The state government was eager to scale up the pilot, and in the past two years, two other cities, including Ahmedabad, the biggest city in the state, have adopted the concept.

    We are also supporting a project in Niger, whose economy is hugely dependent on rain-fed agriculture but with climate change is experiencing rapid desertification. Researchers in the J-PAL network have been testing training farmers in a simple, inexpensive rainwater harvesting technique, where farmers dig a half-moon-shaped hole called a demi-lune right before the rainy season. This demi-lune feeds crops that are grown directly on top of it, and helps return land that resembled flat desert to arable production.

    Researchers found that training farmers in this simple technology increased adoption from 4 percent to 94 percent and that demi-lunes increased agricultural output and revenue for farmers from the first year. K-CAI is funding a path-to-scale grant so local implementers can teach this technique to over 8,000 farmers and build a more cost-effective program model. If this takes hold, the team will work with local partners to scale the training to other relevant regions of the country and potentially other countries in the Sahel.

    One final example that we are really proud of, because we first funded it as a pilot and now it’s in the path to scale phase: We supported a team of researchers working with partners in Bangladesh trying to reduce carbon emissions and other pollution from brick manufacturing, an industry that generates 17 percent of the country’s carbon emissions. The scale of manufacturing is so great that at some times of year, Dhaka (the capital of Bangladesh) looks like Mordor.

    Workers form these bricks and stack hundreds of thousands of them, which they then fire by burning coal. A team of local researchers and collaborators from our J-PAL network found that you can reduce the amount of coal needed for the kilns by making some low-cost changes to the manufacturing process, including stacking the bricks in a way that increases airflow in the kiln and feeding the coal fires more frequently in smaller rather than larger batches.

    In the randomized, controlled trial K-CAI supported, researchers found that this cut carbon and pollution emissions significantly, and now the government has invited the team to train 1,000 brick manufacturers in Dhaka in these techniques.

    Q: These are all fascinating and powerful instances of implementing ideas that address a range of problems in different parts of the world. But can K-CAI go big enough and fast enough to take a real bite out of the twin poverty and climate crisis?

    A: We’re not trying to find silver bullets. We are trying to build a large playbook of real solutions that work to solve specific problems in specific contexts. As you build those up in the hundreds, you have a deep bench of effective approaches to solve problems that can add up in a meaningful way. And because J-PAL works with governments and NGOs that have the capacity to take the research into action, since 2003, over 600 million people around the world have been reached by policies and programs that are informed by evidence that J-PAL-affiliated researchers produced. While global challenges seem daunting, J-PAL has shown that in 20 years we can achieve a great deal, and there is huge potential for future impact.

    But unfortunately, globally, there is an underinvestment in policy innovation to combat climate change that may generate quicker, lower-cost returns at a large scale — especially in policies that determine which technologies get adopted or commercialized. For example, a lot of the huge fall in prices of renewable energy was enabled by early European government investments in solar and wind, and then continuing support for innovation in renewable energy.

    That’s why I think social sciences have so much to offer in the fight against climate change and poverty; we are working where technology meets policy and where technology meets real people, which often determines their success or failure. The world should be investing in policy, economic, and social innovation just as much as it is investing in technological innovation.

    Q: Do you need to be an optimist in your job?

    A: I am half-optimist, half-pragmatist. I have no control over the climate change outcome for the world. And regardless of whether we can successfully avoid most of the potential damages of climate change, when I look back, I’m going to ask myself, “Did I fight or not?” The only choice I have is whether or not I fought, and I want to be a fighter. More