More stories

  • in

    Q&A: Gabriela Sá Pessoa on Brazilian politics, human rights in the Amazon, and AI

    Gabriela Sá Pessoa is a journalist passionate about the intersection of human rights and climate change. She came to MIT from The Washington Post, where she worked from her home country of Brazil as a news researcher reporting on the Amazon, human rights violations, and environmental crimes. Before that, she held roles at two of the most influential media outlets in Brazil: Folha de S.Paulo, covering local and national politics, and UOL, where she was assigned to coronavirus coverage and later joined the investigative desk.

    Sá Pessoa was awarded the 2023 Elizabeth Neuffer Fellowship by the International Women’s Media Foundation, which supports its recipient with research opportunities at MIT and further training at The Boston Globe and The New York Times. She is currently based at the MIT Center for International Studies. Recently, she sat down to talk about her work on the Amazon, recent changes in Brazilian politics, and her experience at MIT.

    Q: One focus of your reporting is human rights and environmental issues in the Amazon. As part of your fellowship, you contributed to a recent editorial in The Boston Globe on fighting deforestation in the region. Why is reporting on this topic important?

    A: For many Brazilians, the Amazon is a remote and distant territory, and people living in other parts of the country aren’t fully aware of all of its problems and all of its potential. This is similar to the United States — like many people here, they don’t see how they could be related to the human rights violations and the destruction of the rainforest that are happening.

    But, we are all complicit in the destruction in some ways because the economic forces driving the deforestation of the rainforest all have a market, and these markets are everywhere, in Brazil and here in the U.S. I think it is part of journalism to show people in the U.S., Brazil, and elsewhere that we are part of the problem, and as part of the problem, we should be part of the solution by being aware of it, caring about it, and taking actions that are within our power.

    In the U.S., for example, voters can influence policy like the current negotiations for financial support for fighting deforestation in the Amazon. And as consumers, we can be more aware — is the beef we are consuming related to deforestation? Is the timber on our construction sites coming from the Amazon?

    Truth is, in Brazil, we have turned our backs to the Amazon for so long. It’s our duty to protect it for the sake of climate change. If we don’t take care of it, there will be serious consequences to our local climate, our local communities, and for the whole world. It’s a huge matter of human rights because our living depends on that, both locally and globally.

    Q: Before coming to MIT, you were at The Washington Post in São Paulo, where you contributed to reporting on the recent presidential election. What changes do you expect to see with the new Lula administration?

    A: To climate and environment, the first signs were positive. But the optimism did not last a semester, as politics is imposing itself. Lula is facing increasing difficulty building a majority in a conservative Congress, over which agribusiness holds tremendous power and influence. As we speak, environmental policy is under Congress’s attack. A committee in the House has just passed a ruling drowning power from the environmental minister, Marina Silva, and from the recently created National Indigenous People Ministry, led by Sonia Guajajara. Both Marina and Sonia are global ecological and human rights champions, and I wonder what the impact would be if Congress ratifies these changes. It is still unclear how it would impact the efforts to fight deforestation.

    In addition, there is an internal dispute in the government between environmentalists and those in favor of mining and big infrastructure projects. Petrobras, the state-run oil company, is trying to get authorization to research and drill offshore oil reserves in the mouth of the Amazon River. The federal environmental protection agency did a conclusive report suspending the operation, saying it is critical and threatens the region’s sensitive environment and indigenous communities. And, of course, it would be another source of greenhouse gas emissions. ​

    That said, it’s not a denialist government. I should mention the quick response from the administration to the Yanomami genocide earlier this year. In January, an independent media organization named Sumaúma reported on the deaths of over five hundred indigenous children from the Yanomami community in the Amazon over the past four years. This was a huge shock in Brazil, and the administration responded immediately. They sent task forces to the region and are now expelling the illegal miners that were bringing diseases and were ultimately responsible for these humanitarian tragedies. To be clear: It is still a problem. It’s not solved. But this is already a good example of positive action.

    Fighting deforestation in the Amazon and the Cerrado, another biome critical to climate regulation in Brazil, will not be easy. Rebuilding the environmental policy will take time, and the agencies responsible for enforcement are understaffed. In addition, environmental crime has become more sophisticated, connecting with other major criminal organizations in the country. In April, for the first time, there was a reduction in deforestation in the Amazon after two consecutive months of higher numbers. These are still preliminary data, and it is still too early to confirm whether they signal a turning point and may indicate a tendency for deforestation to decrease. On the other hand, the Cerrado registered record deforestation in April.

    There are problems everywhere in the economy and politics that Lula will have to face. In the first week of the new term, on Jan. 8, we saw an insurrection in Brasília, the country’s capital, from Bolsonaro voters who wouldn’t accept the election results. The events resembled what Americans saw in the Capitol attacks in 2021. We also seem to have imported problems from the United States, like mass killings in schools. We never used to have them in Brazil, but we are seeing them now. I’m curious to see how the country will address those problems and if the U.S. can also inspire solutions to that. That’s something I’m thinking about, being here: Are there solutions here? What are they?

    Q: What have you learned so far from MIT and your fellowship?

    A: It’s hard to put everything into words! I’m mostly taking courses and attending lectures on pressing issues to humanity, like existential threats such as climate change, artificial intelligence, biosecurity, and more.

    I’m learning about all these issues, but also, as a journalist, I think that I’m learning more about how I can incorporate the scientific approach into my work; for example, being more pro-positive. I am already a rigorous journalist, but I am thinking about how I can be more rigorous and more transparent about my methods. Being in the academic and scientific environment is inspiring that way.

    I am also learning a lot about how to cover scientific topics and thinking about how technology can offer us solutions (and problems). I’m learning so much that I think I will need some time to digest and fully understand what this period means for me!

    Q: You mentioned artificial intelligence. Would you like to weigh in on this subject and what you have been learning?

    A: It has been a particularly good semester to be at MIT. Generative artificial intelligence, which became more popular after ChatGPT, has been a topic of intense discussion this semester, and I was able to attend many classes, seminars, and events about AI here, especially from a policy perspective.

    Algorithms have influenced the economy, society, and public health for many years. It has had great outcomes, but also injustice. Popular systems like ChatGPT have made this technology incredibly popular and accessible, even for those with no computer knowledge. This is scary and, at the same time, very exciting. Here, I learned that we need guardrails for artificial intelligence, just like other technologies. Think of the pharmaceutical or automobile industries, which have to meet safety criteria before putting a new product on the market. But with artificial intelligence, it’s going to be different; supply chains are very complex and sometimes not very transparent, and the speed at which new resources develop is so fast that it challenges the policymaker’s ability to respond.

    Artificial intelligence is changing the world radically. It’s exciting to have the privilege of being here and seeing these discussions take place. After all, I have a future to report on. At least, I hope so!

    Q: What are you working on going forward?

    A: After MIT, I am going to New York, where I’ll be working with The New York Times in their internship program. I’m really excited about that because it will be a different pace from MIT. I am also doing research on carbon credit markets and hope to continue that project, either in a reporting or academic environment. 

    Honestly, I feel inspired to keep studying. I would love to spend more time here at MIT. I would love to do a master’s or join any program here. I’m going to work on coming back to academia because I think that I need to learn more from the academic environment. I hope that it’s at MIT because honestly, it’s the most exciting environment that I’ve ever been in, with all the people here from different fields and different backgrounds. I’m not a scientist, but it’s inspiring to be with them, and if there’s a way that I could contribute to their work in a way that they’re contributing to my work, I’ll be thrilled to spend more time here. More

  • in

    Six ways MIT is taking action on climate

    From reuse and recycling to new carbon markets, events during Earth Month at MIT spanned an astonishing range of ideas and approaches to tackling the climate crisis. The MIT Climate Nucleus offered funding to departments and student organizations to develop programming that would showcase the countless initiatives underway to make a better world.

    Here are six — just six of many — ways the MIT community is making a difference on climate right now.

    1. Exchanging knowledge with policymakers to meet local, regional, and global challenges

    Creating solutions begins with understanding the problem.

    Speaking during the annual Earth Day Colloquium of the MIT Energy Initiative (MITEI) about the practical challenges of implementing wind-power projects, for instance, Massachusetts State Senator Michael J. Barrett offered a sobering assessment.

    The senate chair of the Joint Committee on Telecommunications, Utilities, and Energy, Barrett reported that while the coast of Massachusetts provides a conducive site for offshore wind, economic forces have knocked a major offshore wind installation project off track. The combination of the pandemic and global geopolitical instability has led to such great supply chain disruptions and rising commodity costs that a project considered necessary for the state to meet its near-term climate goals now faces delays, he said.

    Like others at MIT, MITEI researchers keep their work grounded in the real-world constraints and possibilities for decarbonization, engaging with policymakers and industry to understand the on-the-ground challenges to technological and policy-based solutions and highlight the opportunities for greatest impact.

    2. Developing new ways to prevent, mitigate, and adapt to the effects of climate change

    An estimated 20 percent of MIT faculty work on some aspect of the climate crisis, an enormous research effort distributed throughout the departments, labs, centers, and institutes.

    About a dozen such projects were on display at a poster session coordinated by the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), Environmental Solutions Initiative (ESI), and MITEI.

    Students and postdocs presented innovations including:

    Graduate student Alexa Reese Canaan describes her research on household energy consumption to Massachusetts State Senator Michael J. Barrett, chair of the Joint Committee on Telecommunications, Utilities, and Energy.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    3. Preparing students to meet the challenges of a climate-changed world

    Faculty and staff from more than 30 institutions of higher education convened at the MIT Symposium on Advancing Climate Education to exchange best practices and innovations in teaching and learning. Speakers and participants considered paths to structural change in higher education, the imperative to place equity and justice at the center of new educational approaches, and what it means to “educate the whole student” so that graduates are prepared to live and thrive in a world marked by global environmental and economic disruption.

    Later in April, MIT faculty voted to approve the creation of a new joint degree program in climate system science and engineering.

    4. Offering climate curricula to K-12 teachers

    At a daylong conference on climate education for K-12 schools, the attendees were not just science teachers. Close to 50 teachers of arts, literature, history, math, mental health, English language, world languages, and even carpentry were all hungry for materials and approaches to integrate into their curricula. They were joined by another 50 high school students, ready to test out the workshops and content developed by MIT Climate Action Through Education (CATE), which are already being piloted in at least a dozen schools.

    The CATE initiative is led by Christopher Knittel, the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management, deputy director for policy at MITEI, and faculty director of the MIT Center for Energy and Environmental Policy Research. The K-12 Climate Action and Education Conference was hosted as a collaboration with the Massachusetts Teachers Association Climate Action Network and Earth Day Boston.

    “We will be honest about the threats posed by climate change, but also give students a sense of agency that they can do something about this,” Knittel told MITEI Energy Futures earlier this spring. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    High school students and K-12 teachers participated in a workshop on “Exploring a Green City,” part of the Climate Action and Education Conference on April 1.

    Photo: Tony Rinaldo

    Previous item
    Next item

    5. Guiding our communities in making sense of the coming changes

    The arts and humanities, vital in their own right, are also central to the sharing of scientific knowledge and its integration into culture, behavior, and decision-making. A message well-delivered can reach new audiences and prompt reflection and reckoning on ethics and values, identity, and optimism.

    The Climate Machine, part of ESI’s Arts and Climate program, produced an evening art installation on campus featuring dynamic, large-scale projections onto the façade of MIT’s new music building and a musical performance by electronic duo Warung. Passers-by were invited to take a Climate Identity Quiz, with the responses reflected in the visuals. Another exhibit displayed the results of a workshop in which attendees had used an artificial intelligence art tool to imagine the future of their hometowns, while another highlighted native Massachusetts wildlife.

    The Climate Machine is an MIT research project undertaken in collaboration with record label Anjunabeats. The collaborative team imagines interactive experiences centered on sustainability that could be deployed at musical events and festivals to inspire climate action.

    Dillon Ames (left) and Aaron Hopkins, known as the duo Warung, perform a live set during the Climate Machine art installation.

    Photo: Caitlin Cunningham

    Previous item
    Next item

    6. Empowering students to seize this unique policy moment

    ESI’s TILclimate Podcast, which breaks down important climate topics for general listeners, held a live taping at the MIT Museum and offered an explainer on three recent, major pieces of federal legislation: the Inflation Reduction Act of 2022, the Bipartisan Infrastructure Bill of 2021, and the CHIPS and Science Act of 2022.

    The combination of funding and financial incentives for energy- and climate-related projects, along with reinvestment in industrial infrastructure, create “a real moment and an opportunity,” said special guest Elisabeth Reynolds, speaking with host Laur Hesse Fisher. Reynolds was a member of the National Economic Council from 2021 to 2022, serving as special assistant to the president for manufacturing and economic development; after leaving the White House, Reynolds returned to MIT, where she is a lecturer in MIT’s Department of Urban Studies and Planning.

    For students, the opportunities to engage have never been better, Reynolds urged: “There is so much need. … Find a way to contribute, and find a way to help us make this transformation.”

    “What we’re embarking on now, you just can’t overstate the significance of it,” she said.

    For more information on how MIT is advancing climate action across education; research and innovation; policy; economic, social, and environmental justice; public and global engagement; sustainable campus operations; and more, visit Fast Forward: MIT’s Climate Action Plan for the Decade. The actions described in the plan aim to accelerate the global transition to net-zero carbon emissions, and to “educate and empower the next generation.” More

  • in

    3 Questions: Can disused croplands help mitigate climate change?

    As the world struggles to meet internationally agreed targets for reducing greenhouse gas emissions, methods of removing carbon dioxide such as reforestation of cleared areas have become an increasingly important strategy. But little attention has been paid to the potential for abandoned or marginal croplands to be restored to natural vegetation as an additional carbon sink, say MIT assistant professor of civil and environmental engineering César Terrer, recent visiting MIT doctoral student Stephen M. Bell, and six others, in a recent open-access paper in the journal Nature Communications. Here, Terrer and Bell explain the potential use of these “post-agricultural” lands to help in the fight against damaging climate change.

    Q: How significant is the potential of unused agricultural lands as a carbon sink to help mitigate climate change?

    Bell: We know of these huge instances of land abandonment and post-agricultural succession throughout history, like following the collapse of major cities from ancient Mesopotamia to the Mayans. And when the Europeans arrived in the Americas in the 15th century, so many people died and so much forest grew back on abandoned farmland that it helped cool the entire planet and was potentially a driver of the coldest part of the so-called “Little Ice Age” period.

    Today, we have abandoned farmland all over the Mediterranean region, where I did my PhD field work. As young people left rural areas for the cities throughout the 20th century, farmers couldn’t pass on their land to anyone, and the land succeeded back into shrub lands and forests. The biggest recent example of abandonment is for sure the collapse of the Soviet Union, where an estimated 60 million hectares of forest regrew when support for collective farming stopped, resulting in one of the largest carbon sinks ever attributed to a single event.

    So, when we look back at the past, we know there’s potential. Of course, these are huge events, and no one is proposing to replicate anything like that. We need to use land for multiple purposes, but looking back at these big examples, we know there is potential for abandoned or restored agricultural land to be carbon sinks. And so that tells us to dig deeper into this question and get a better idea of realistic scenarios, a better understanding of the climate change mitigation potential of agricultural cessation in the most strategic places.

    Terrer: More than 115 billion tons of carbon have been lost from soils due to agricultural practices that disturb soil integrity — such as tilling, monoculture farming, removing crop residue, excessive use of fertilizers and pesticides, and over-grazing. To put this into perspective, the amount of carbon lost is equivalent to the total CO2 emissions ever produced in the United States.

    Our current research synthesizes field data from thousands of experiments, aiming to understand the factors that influence soil carbon accrual in abandoned croplands transitioning back to forests or natural grasslands. We’re working to quantify the potential for carbon sequestration in these soils over 30-, 50-, and 100-year time frames and mapping the areas with the greatest potential for carbon storage. This includes both increases in soil carbon and in vegetation biomass.

    Q: What are some of the key uncertainties in evaluating this potential for unused cropland to serve as a carbon sink, and how could those uncertainties be addressed?

    Bell: We use this word uncertainties in two ways. Specifically, the longevity of potential recarbonization, and the intensity of the potential recarbonization. Those are two factors, two aspects that we need to quantify to reduce our uncertainty.

    So, how long will the land recarbonize, regardless of the intensity? If the carbon level is going up, that’s good. If there’s more carbon increasing in the soil, we know that it came from somewhere, it came from the atmosphere. But how long does that happen? We know soil can get saturated. It can reach its carbon capacity limit, it won’t continue to increase the carbon stock, and the recarbonization curve will flatten out. When does that happen? Is it after a hundred years? Is it after 20 years?

    But the world’s soils are very diverse and complex, so what might be true in one place is not true in another place. It may take a longer time to reach saturation for more fertile soils in the Midwest U.S. than less fertile soils in the Southwest, for example. Alternatively, sometimes soils in drier areas like in the Southwest may never reach true saturation if they are degraded and have stalled recovery following abandonment.

    The second uncertainty is intensity: How high on the y-axis on the chart of recarbonization does saturation occur? With the analogy comparing U.S. soils, you might have a relatively huge carbon increase on an abandoned farm in the Southwest, but because the soil is not very carbon-rich it’s not a large increase in absolute terms. In the Midwest, there might only be a small relative increase, but that increase could be much more in total than in the Southwest. These are just nuances to keep in mind as we look at this at the global scale.

    These nuances are essentially uncertainties. Soil carbon responses to agricultural land abandonment is complicated, and unfortunately it hasn’t been studied in much detail so far. We need to reduce those uncertainties to get a better understanding of the recarbonization potential. This is easier said than done because not only do we have these temporal data uncertainties, but we also have spatial uncertainties. We don’t have very good maps of past and present post-agricultural landscapes.

    Q: Can this potential use of post-agricultural lands be implemented without putting global food supplies at risk? How can these needs be balanced?

    Terrer: As to whether utilizing post-agricultural lands for carbon sequestration can be implemented without jeopardizing global food supplies, and how to balance these needs, our recent research provides valuable insights.

    The challenge, of course, lies in balancing cropland restoration for climate mitigation with food security for a growing global population. Abandoned croplands represent an opportunity for carbon sequestration without impacting active agricultural lands. However, the available area of abandoned croplands is insufficient to make a substantial impact on climate mitigation on its own.

    Thus, our proposal also emphasizes the importance of closing yield gaps, which involves increasing crop production per hectare to its theoretical limits. This would enable us to maintain or even increase global crop yields using only a fraction of the currently cultivated area, allowing the remaining land to be dedicated to climate mitigation efforts. By pursuing this strategy, we estimate that over half of the amount of soil carbon lost so far due to agriculture could be recovered, while ensuring food security for the world’s population. More

  • in

    J-WAFS announces 2023 seed grant recipients

    Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced its ninth round of seed grants to support innovative research projects at MIT. The grants are designed to fund research efforts that tackle challenges related to water and food for human use, with the ultimate goal of creating meaningful impact as the world population continues to grow and the planet undergoes significant climate and environmental changes.Ten new projects led by 15 researchers from seven different departments will be supported this year. The projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop monitoring and other systems to help manage various aquaculture industries, optimize water purification materials, and more.“The seed grant program is J-WAFS’ flagship grant initiative,” says J-WAFS executive director Renee J. Robins. “The funding is intended to spur groundbreaking MIT research addressing complex issues that are challenging our water and food systems. The 10 projects selected this year show great promise, and we look forward to the progress and accomplishments these talented researchers will make,” she adds.The 2023 J-WAFS seed grant researchers and their projects are:Sara Beery, an assistant professor in the Department of Electrical Engineering and Computer Science (EECS), is building the first completely automated system to estimate the size of salmon populations in the Pacific Northwest (PNW).Salmon are a keystone species in the PNW, feeding human populations for the last 7,500 years at least. However, overfishing, habitat loss, and climate change threaten extinction of salmon populations across the region. Accurate salmon counts during their seasonal migration to their natal river to spawn are essential for fisheries’ regulation and management but are limited by human capacity. Fish population monitoring is a widespread challenge in the United States and worldwide. Beery and her team are working to build a system that will provide a detailed picture of the state of salmon populations in unprecedented, spatial, and temporal resolution by combining sonar sensors and computer vision and machine learning (CVML) techniques. The sonar will capture individual fish as they swim upstream and CVML will train accurate algorithms to interpret the sonar video for detecting, tracking, and counting fish automatically while adapting to changing river conditions and fish densities.Another aquaculture project is being led by Michael Triantafyllou, the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering, and Robert Vincent, the assistant director at MIT’s Sea Grant Program. They are working with Otto Cordero, an associate professor in the Department of Civil and Environmental Engineering, to control harmful bacteria blooms in aquaculture algae feed production.

    Aquaculture in the United States represents a $1.5 billion industry annually and helps support 1.7 million jobs, yet many American hatcheries are not able to keep up with demand. One barrier to aquaculture production is the high degree of variability in survival rates, most likely caused by a poorly controlled microbiome that leads to bacterial infections and sub-optimal feed efficiency. Triantafyllou, Vincent, and Cordero plan to monitor the microbiome composition of a shellfish hatchery in order to identify possible causing agents of mortality, as well as beneficial microbes. They hope to pair microbe data with detail phenotypic information about the animal population to generate rapid diagnostic tests and explore the potential for microbiome therapies to protect larvae and prevent future outbreaks. The researchers plan to transfer their findings and technology to the local and regional aquaculture community to ensure healthy aquaculture production that will support the expansion of the U.S. aquaculture industry.

    David Des Marais is the Cecil and Ida Green Career Development Professor in the Department of Civil and Environmental Engineering. His 2023 J-WAFS project seeks to understand plant growth responses to elevated carbon dioxide (CO2) in the atmosphere, in the hopes of identifying breeding strategies that maximize crop yield under future CO2 scenarios.Today’s crop plants experience higher atmospheric CO2 than 20 or 30 years ago. Crops such as wheat, oat, barley, and rice typically increase their growth rate and biomass when grown at experimentally elevated atmospheric CO2. This is known as the so-called “CO2 fertilization effect.” However, not all plant species respond to rising atmospheric CO2 with increased growth, and for the ones that do, increased growth doesn’t necessarily correspond to increased crop yield. Using specially built plant growth chambers that can control the concentration of CO2, Des Marais will explore how CO2 availability impacts the development of tillers (branches) in the grass species Brachypodium. He will study how gene expression controls tiller development, and whether this is affected by the growing environment. The tillering response refers to how many branches a plant produces, which sets a limit on how much grain it can yield. Therefore, optimizing the tillering response to elevated CO2 could greatly increase yield. Des Marais will also look at the complete genome sequence of Brachypodium, wheat, oat, and barley to help identify genes relevant for branch growth.Darcy McRose, an assistant professor in the Department of Civil and Environmental Engineering, is researching whether a combination of plant metabolites and soil bacteria can be used to make mineral-associated phosphorus more bioavailable.The nutrient phosphorus is essential for agricultural plant growth, but when added as a fertilizer, phosphorus sticks to the surface of soil minerals, decreasing bioavailability, limiting plant growth, and accumulating residual phosphorus. Heavily fertilized agricultural soils often harbor large reservoirs of this type of mineral-associated “legacy” phosphorus. Redox transformations are one chemical process that can liberate mineral-associated phosphorus. However, this needs to be carefully controlled, as overly mobile phosphorus can lead to runoff and pollution of natural waters. Ideally, phosphorus would be made bioavailable when plants need it and immobile when they don’t. Many plants make small metabolites called coumarins that might be able to solubilize mineral-adsorbed phosphorus and be activated and inactivated under different conditions. McRose will use laboratory experiments to determine whether a combination of plant metabolites and soil bacteria can be used as a highly efficient and tunable system for phosphorus solubilization. She also aims to develop an imaging platform to investigate exchanges of phosphorus between plants and soil microbes.Many of the 2023 seed grants will support innovative technologies to monitor, quantify, and remediate various kinds of pollutants found in water. Two of the new projects address the problem of per- and polyfluoroalkyl substances (PFAS), human-made chemicals that have recently emerged as a global health threat. Known as “forever chemicals,” PFAS are used in many manufacturing processes. These chemicals are known to cause significant health issues including cancer, and they have become pervasive in soil, dust, air, groundwater, and drinking water. Unfortunately, the physical and chemical properties of PFAS render them difficult to detect and remove.Aristide Gumyusenge, the Merton C. Assistant Professor of Materials Science and Engineering, is using metal-organic frameworks for low-cost sensing and capture of PFAS. Most metal-organic frameworks (MOFs) are synthesized as particles, which complicates their high accuracy sensing performance due to defects such as intergranular boundaries. Thin, film-based electronic devices could enable the use of MOFs for many applications, especially chemical sensing. Gumyusenge’s project aims to design test kits based on two-dimensional conductive MOF films for detecting PFAS in drinking water. In early demonstrations, Gumyusenge and his team showed that these MOF films can sense PFAS at low concentrations. They will continue to iterate using a computation-guided approach to tune sensitivity and selectivity of the kits with the goal of deploying them in real-world scenarios.Carlos Portela, the Brit (1961) and Alex (1949) d’Arbeloff Career Development Professor in the Department of Mechanical Engineering, and Ariel Furst, the Cook Career Development Professor in the Department of Chemical Engineering, are building novel architected materials to act as filters for the removal of PFAS from water. Portela and Furst will design and fabricate nanoscale materials that use activated carbon and porous polymers to create a physical adsorption system. They will engineer the materials to have tunable porosities and morphologies that can maximize interactions between contaminated water and functionalized surfaces, while providing a mechanically robust system.Rohit Karnik is a Tata Professor and interim co-department head of the Department of Mechanical Engineering. He is working on another technology, his based on microbead sensors, to rapidly measure and monitor trace contaminants in water.Water pollution from both biological and chemical contaminants contributes to an estimated 1.36 million deaths annually. Chemical contaminants include pesticides and herbicides, heavy metals like lead, and compounds used in manufacturing. These emerging contaminants can be found throughout the environment, including in water supplies. The Environmental Protection Agency (EPA) in the United States sets recommended water quality standards, but states are responsible for developing their own monitoring criteria and systems, which must be approved by the EPA every three years. However, the availability of data on regulated chemicals and on candidate pollutants is limited by current testing methods that are either insensitive or expensive and laboratory-based, requiring trained scientists and technicians. Karnik’s project proposes a simple, self-contained, portable system for monitoring trace and emerging pollutants in water, making it suitable for field studies. The concept is based on multiplexed microbead-based sensors that use thermal or gravitational actuation to generate a signal. His proposed sandwich assay, a testing format that is appealing for environmental sensing, will enable both single-use and continuous monitoring. The hope is that the bead-based assays will increase the ease and reach of detecting and quantifying trace contaminants in water for both personal and industrial scale applications.Alexander Radosevich, a professor in the Department of Chemistry, and Timothy Swager, the John D. MacArthur Professor of Chemistry, are teaming up to create rapid, cost-effective, and reliable techniques for on-site arsenic detection in water.Arsenic contamination of groundwater is a problem that affects as many as 500 million people worldwide. Arsenic poisoning can lead to a range of severe health problems from cancer to cardiovascular and neurological impacts. Both the EPA and the World Health Organization have established that 10 parts per billion is a practical threshold for arsenic in drinking water, but measuring arsenic in water at such low levels is challenging, especially in resource-limited environments where access to sensitive laboratory equipment may not be readily accessible. Radosevich and Swager plan to develop reaction-based chemical sensors that bind and extract electrons from aqueous arsenic. In this way, they will exploit the inherent reactivity of aqueous arsenic to selectively detect and quantify it. This work will establish the chemical basis for a new method of detecting trace arsenic in drinking water.Rajeev Ram is a professor in the Department of Electrical Engineering and Computer Science. His J-WAFS research will advance a robust technology for monitoring nitrogen-containing pollutants, which threaten over 15,000 bodies of water in the United States alone.Nitrogen in the form of nitrate, nitrite, ammonia, and urea can run off from agricultural fertilizer and lead to harmful algal blooms that jeopardize human health. Unfortunately, monitoring these contaminants in the environment is challenging, as sensors are difficult to maintain and expensive to deploy. Ram and his students will work to establish limits of detection for nitrate, nitrite, ammonia, and urea in environmental, industrial, and agricultural samples using swept-source Raman spectroscopy. Swept-source Raman spectroscopy is a method of detecting the presence of a chemical by using a tunable, single mode laser that illuminates a sample. This method does not require costly, high-power lasers or a spectrometer. Ram will then develop and demonstrate a portable system that is capable of achieving chemical specificity in complex, natural environments. Data generated by such a system should help regulate polluters and guide remediation.Kripa Varanasi, a professor in the Department of Mechanical Engineering, and Angela Belcher, the James Mason Crafts Professor and head of the Department of Biological Engineering, will join forces to develop an affordable water disinfection technology that selectively identifies, adsorbs, and kills “superbugs” in domestic and industrial wastewater.Recent research predicts that antibiotic-resistance bacteria (superbugs) will result in $100 trillion in health care expenses and 10 million deaths annually by 2050. The prevalence of superbugs in our water systems has increased due to corroded pipes, contamination, and climate change. Current drinking water disinfection technologies are designed to kill all types of bacteria before human consumption. However, for certain domestic and industrial applications there is a need to protect the good bacteria required for ecological processes that contribute to soil and plant health. Varanasi and Belcher will combine material, biological, process, and system engineering principles to design a sponge-based water disinfection technology that can identify and destroy harmful bacteria while leaving the good bacteria unharmed. By modifying the sponge surface with specialized nanomaterials, their approach will be able to kill superbugs faster and more efficiently. The sponge filters can be deployed under very low pressure, making them an affordable technology, especially in resource-constrained communities.In addition to the 10 seed grant projects, J-WAFS will also fund a research initiative led by Greg Sixt. Sixt is the research manager for climate and food systems at J-WAFS, and the director of the J-WAFS-led Food and Climate Systems Transformation (FACT) Alliance. His project focuses on the Lake Victoria Basin (LVB) of East Africa. The second-largest freshwater lake in the world, Lake Victoria straddles three countries (Uganda, Tanzania, and Kenya) and has a catchment area that encompasses two more (Rwanda and Burundi). Sixt will collaborate with Michael Hauser of the University of Natural Resources and Life Sciences, Vienna, and Paul Kariuki, of the Lake Victoria Basin Commission.The group will study how to adapt food systems to climate change in the Lake Victoria Basin. The basin is facing a range of climate threats that could significantly impact livelihoods and food systems in the expansive region. For example, extreme weather events like droughts and floods are negatively affecting agricultural production and freshwater resources. Across the LVB, current approaches to land and water management are unsustainable and threaten future food and water security. The Lake Victoria Basin Commission (LVBC), a specialized institution of the East African Community, wants to play a more vital role in coordinating transboundary land and water management to support transitions toward more resilient, sustainable, and equitable food systems. The primary goal of this research will be to support the LVBC’s transboundary land and water management efforts, specifically as they relate to sustainability and climate change adaptation in food systems. The research team will work with key stakeholders in Kenya, Uganda, and Tanzania to identify specific capacity needs to facilitate land and water management transitions. The two-year project will produce actionable recommendations to the LVBC. More

  • in

    Finding “hot spots” where compounding environmental and economic risks converge

    A computational tool developed by researchers at the MIT Joint Program on the Science and Policy of Global Change pinpoints specific counties within the United States that are particularly vulnerable to economic distress resulting from a transition from fossil fuels to low-carbon energy sources. By combining county-level data on employment in fossil fuel (oil, natural gas, and coal) industries with data on populations below the poverty level, the tool identifies locations with high risks for transition-driven economic hardship. It turns out that many of these high-risk counties are in the south-central U.S., with a heavy concentration in the lower portions of the Mississippi River.

    The computational tool, which the researchers call the System for the Triage of Risks from Environmental and Socio-economic Stressors (STRESS) platform, almost instantly displays these risk combinations on an easy-to-read visual map, revealing those counties that stand to gain the most from targeted green jobs retraining programs.  

    Drawing on data that characterize land, water, and energy systems; biodiversity; demographics; environmental equity; and transportation networks, the STRESS platform enables users to assess multiple, co-evolving, compounding hazards within a U.S. geographical region from the national to the county level. Because of its comprehensiveness and precision, this screening-level visualization tool can pinpoint risk “hot spots” that can be subsequently investigated in greater detail. Decision-makers can then plan targeted interventions to boost resilience to location-specific physical and economic risks.

    The platform and its applications are highlighted in a new study in the journal Frontiers in Climate.

    “As risks to natural and managed resources — and to the economies that depend upon them — become more complex, interdependent, and compounding amid rapid environmental and societal changes, they require more and more human and computational resources to understand and act upon,” says MIT Joint Program Deputy Director C. Adam Schlosser, the lead author of the study. “The STRESS platform provides decision-makers with an efficient way to combine and analyze data on those risks that matter most to them, identify ‘hot spots’ of compounding risk, and design interventions to minimize that risk.”

    In one demonstration of the STRESS platform’s capabilities, the study shows that national and global actions to reduce greenhouse gas emissions could simultaneously reduce risks to land, water, and air quality in the upper Mississippi River basin while increasing economic risks in the lower basin, where poverty and unemployment are already disproportionate. In another demonstration, the platform finds concerning “hot spots” where flood risk, poverty, and nonwhite populations coincide.

    The risk triage platform is based on an emerging discipline called multi-sector dynamics (MSD), which seeks to understand and model compounding risks and potential tipping points across interconnected natural and human systems. Tipping points occur when these systems can no longer sustain multiple, co-evolving stresses, such as extreme events, population growth, land degradation, drinkable water shortages, air pollution, aging infrastructure, and increased human demands. MSD researchers use observations and computer models to identify key precursory indicators of such tipping points, providing decision-makers with critical information that can be applied to mitigate risks and boost resilience in natural and managed resources. With funding from the U.S. Department of Energy, the MIT Joint Program has since 2018 been developing MSD expertise and modeling tools and using them to explore compounding risks and potential tipping points in selected regions of the United States.

    Current STRESS platform data includes more than 100 risk metrics at the county-level scale, but data collection is ongoing. MIT Joint Program researchers are continuing to develop the STRESS platform as an “open-science tool” that welcomes input from academics, researchers, industry and the general public. More

  • in

    Inaugural J-WAFS Grand Challenge aims to develop enhanced crop variants and move them from lab to land

    According to MIT’s charter, established in 1861, part of the Institute’s mission is to advance the “development and practical application of science in connection with arts, agriculture, manufactures, and commerce.” Today, the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) is one of the driving forces behind water and food-related research on campus, much of which relates to agriculture. In 2022, J-WAFS established the Water and Food Grand Challenge Grant to inspire MIT researchers to work toward a water-secure and food-secure future for our changing planet. Not unlike MIT’s Climate Grand Challenges, the J-WAFS Grand Challenge seeks to leverage multiple areas of expertise, programs, and Institute resources. The initial call for statements of interests returned 23 letters from MIT researchers spanning 18 departments, labs, and centers. J-WAFS hosted workshops for the proposers to present and discuss their initial ideas. These were winnowed down to a smaller set of invited concept papers, followed by the final proposal stage. 

    Today, J-WAFS is delighted to report that the inaugural J-WAFS Grand Challenge Grant has been awarded to a team of researchers led by Professor Matt Shoulders and research scientist Robert Wilson of the Department of Chemistry. A panel of expert, external reviewers highly endorsed their proposal, which tackles a longstanding problem in crop biology — how to make photosynthesis more efficient. The team will receive $1.5 million over three years to facilitate a multistage research project that combines cutting-edge innovations in synthetic and computational biology. If successful, this project could create major benefits for agriculture and food systems worldwide.

    “Food systems are a major source of global greenhouse gas emissions, and they are also increasingly vulnerable to the impacts of climate change. That’s why when we talk about climate change, we have to talk about food systems, and vice versa,” says Maria T. Zuber, MIT’s vice president for research. “J-WAFS is central to MIT’s efforts to address the interlocking challenges of climate, water, and food. This new grant program aims to catalyze innovative projects that will have real and meaningful impacts on water and food. I congratulate Professor Shoulders and the rest of the research team on being the inaugural recipients of this grant.”

    Shoulders will work with Bryan Bryson, associate professor of biological engineering, as well as Bin Zhang, associate professor of chemistry, and Mary Gehring, a professor in the Department of Biology and the Whitehead Institute for Biomedical Research. Robert Wilson from the Shoulders lab will be coordinating the research effort. The team at MIT will work with outside collaborators Spencer Whitney, a professor from the Australian National University, and Ahmed Badran, an assistant professor at the Scripps Research Institute. A milestone-based collaboration will also take place with Stephen Long, a professor from the University of Illinois at Urbana-Champaign. The group consists of experts in continuous directed evolution, machine learning, molecular dynamics simulations, translational plant biochemistry, and field trials.

    “This project seeks to fundamentally improve the RuBisCO enzyme that plants use to convert carbon dioxide into the energy-rich molecules that constitute our food,” says J-WAFS Director John H. Lienhard V. “This difficult problem is a true grand challenge, calling for extensive resources. With J-WAFS’ support, this long-sought goal may finally be achieved through MIT’s leading-edge research,” he adds.

    RuBisCO: No, it’s not a new breakfast cereal; it just might be the key to an agricultural revolution

    A growing global population, the effects of climate change, and social and political conflicts like the war in Ukraine are all threatening food supplies, particularly grain crops. Current projections estimate that crop production must increase by at least 50 percent over the next 30 years to meet food demands. One key barrier to increased crop yields is a photosynthetic enzyme called Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase (RuBisCO). During photosynthesis, crops use energy gathered from light to draw carbon dioxide (CO2) from the atmosphere and transform it into sugars and cellulose for growth, a process known as carbon fixation. RuBisCO is essential for capturing the CO2 from the air to initiate conversion of CO2 into energy-rich molecules like glucose. This reaction occurs during the second stage of photosynthesis, also known as the Calvin cycle. Without RuBisCO, the chemical reactions that account for virtually all carbon acquisition in life could not occur.

    Unfortunately, RuBisCO has biochemical shortcomings. Notably, the enzyme acts slowly. Many other enzymes can process a thousand molecules per second, but RuBisCO in chloroplasts fixes less than six carbon dioxide molecules per second, often limiting the rate of plant photosynthesis. Another problem is that oxygen (O2) molecules and carbon dioxide molecules are relatively similar in shape and chemical properties, and RuBisCO is unable to fully discriminate between the two. The inadvertent fixation of oxygen by RuBisCO leads to energy and carbon loss. What’s more, at higher temperatures RuBisCO reacts even more frequently with oxygen, which will contribute to decreased photosynthetic efficiency in many staple crops as our climate warms.

    The scientific consensus is that genetic engineering and synthetic biology approaches could revolutionize photosynthesis and offer protection against crop losses. To date, crop RuBisCO engineering has been impaired by technological obstacles that have limited any success in significantly enhancing crop production. Excitingly, genetic engineering and synthetic biology tools are now at a point where they can be applied and tested with the aim of creating crops with new or improved biological pathways for producing more food for the growing population.

    An epic plan for fighting food insecurity

    The 2023 J-WAFS Grand Challenge project will use state-of-the-art, transformative protein engineering techniques drawn from biomedicine to improve the biochemistry of photosynthesis, specifically focusing on RuBisCO. Shoulders and his team are planning to build what they call the Enhanced Photosynthesis in Crops (EPiC) platform. The project will evolve and design better crop RuBisCO in the laboratory, followed by validation of the improved enzymes in plants, ultimately resulting in the deployment of enhanced RuBisCO in field trials to evaluate the impact on crop yield. 

    Several recent developments make high-throughput engineering of crop RuBisCO possible. RuBisCO requires a complex chaperone network for proper assembly and function in plants. Chaperones are like helpers that guide proteins during their maturation process, shielding them from aggregation while coordinating their correct assembly. Wilson and his collaborators previously unlocked the ability to recombinantly produce plant RuBisCO outside of plant chloroplasts by reconstructing this chaperone network in Escherichia coli (E. coli). Whitney has now established that the RuBisCO enzymes from a range of agriculturally relevant crops, including potato, carrot, strawberry, and tobacco, can also be expressed using this technology. Whitney and Wilson have further developed a range of RuBisCO-dependent E. coli screens that can identify improved RuBisCO from complex gene libraries. Moreover, Shoulders and his lab have developed sophisticated in vivo mutagenesis technologies that enable efficient continuous directed evolution campaigns. Continuous directed evolution refers to a protein engineering process that can accelerate the steps of natural evolution simultaneously in an uninterrupted cycle in the lab, allowing for rapid testing of protein sequences. While Shoulders and Badran both have prior experience with cutting-edge directed evolution platforms, this will be the first time directed evolution is applied to RuBisCO from plants.

    Artificial intelligence is changing the way enzyme engineering is undertaken by researchers. Principal investigators Zhang and Bryson will leverage modern computational methods to simulate the dynamics of RuBisCO structure and explore its evolutionary landscape. Specifically, Zhang will use molecular dynamics simulations to simulate and monitor the conformational dynamics of the atoms in a protein and its programmed environment over time. This approach will help the team evaluate the effect of mutations and new chemical functionalities on the properties of RuBisCO. Bryson will employ artificial intelligence and machine learning to search the RuBisCO activity landscape for optimal sequences. The computational and biological arms of the EPiC platform will work together to both validate and inform each other’s approaches to accelerate the overall engineering effort.

    Shoulders and the group will deploy their designed enzymes in tobacco plants to evaluate their effects on growth and yield relative to natural RuBisCO. Gehring, a plant biologist, will assist with screening improved RuBisCO variants using the tobacco variety Nicotiana benthamianaI, where transient expression can be deployed. Transient expression is a speedy approach to test whether novel engineered RuBisCO variants can be correctly synthesized in leaf chloroplasts. Variants that pass this quality-control checkpoint at MIT will be passed to the Whitney Lab at the Australian National University for stable transformation into Nicotiana tabacum (tobacco), enabling robust measurements of photosynthetic improvement. In a final step, Professor Long at the University of Illinois at Urbana-Champaign will perform field trials of the most promising variants.

    Even small improvements could have a big impact

    A common criticism of efforts to improve RuBisCO is that natural evolution has not already identified a better enzyme, possibly implying that none will be found. Traditional views have speculated a catalytic trade-off between RuBisCO’s specificity factor for CO2 / O2 versus its CO2 fixation efficiency, leading to the belief that specificity factor improvements might be offset by even slower carbon fixation or vice versa. This trade-off has been suggested to explain why natural evolution has been slow to achieve a better RuBisCO. But Shoulders and the team are convinced that the EPiC platform can unlock significant overall improvements to plant RuBisCO. This view is supported by the fact that Wilson and Whitney have previously used directed evolution to improve CO2 fixation efficiency by 50 percent in RuBisCO from cyanobacteria (the ancient progenitors of plant chloroplasts) while simultaneously increasing the specificity factor. 

    The EPiC researchers anticipate that their initial variants could yield 20 percent increases in RuBisCO’s specificity factor without impairing other aspects of catalysis. More sophisticated variants could lift RuBisCO out of its evolutionary trap and display attributes not currently observed in nature. “If we achieve anywhere close to such an improvement and it translates to crops, the results could help transform agriculture,” Shoulders says. “If our accomplishments are more modest, it will still recruit massive new investments to this essential field.”

    Successful engineering of RuBisCO would be a scientific feat of its own and ignite renewed enthusiasm for improving plant CO2 fixation. Combined with other advances in photosynthetic engineering, such as improved light usage, a new green revolution in agriculture could be achieved. Long-term impacts of the technology’s success will be measured in improvements to crop yield and grain availability, as well as resilience against yield losses under higher field temperatures. Moreover, improved land productivity together with policy initiatives would assist in reducing the environmental footprint of agriculture. With more “crop per drop,” reductions in water consumption from agriculture would be a major boost to sustainable farming practices.

    “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders adds. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.” More

  • in

    US and UAE governments highlight early warning system for climate resilience

    The following is a joint announcement from MIT and Community Jameel.

    An international project to build community resilience to the effects of climate change, launched by Community Jameel and a research team at MIT, has been recognized as an innovation sprint at the 2023 summit of the United States’ and United Arab Emirates’ Agriculture Innovation Mission for Climate (AIM4C).

    The Jameel Observatory Climate Resilience Early Warning System Network (Jameel Observatory-CREWSnet), one of MIT’s five Climate Grand Challenges flagship projects, aims to empower communities worldwide, specifically within the agriculture sector, to adapt to climate shocks by launching cross-sector collaborations and by combining state-of-the-art climate and socioeconomic forecasting techniques with technological solutions to support communities’ resilience.

    AIM4C is a joint initiative of the U.S. and U.A.E. that seeks to enhance climate action by accelerating agriculture and food systems innovation and investment. Innovation sprints are selected by AIM4C to accelerate their impact following a competitive process that considers scientific excellence and financial support.

    “As we launch Jameel Observatory-CREWSnet, the AIM4C summit offers a great opportunity to share our plans and initial work with all those who are interested in enhancing the capacity of agricultural communities in vulnerable countries to deal with challenges of climate change,” says Elfatih Eltahir, HM King Bhumibol Professor of Hydrology and Climate at MIT and project leader of the Jameel Observatory-CREWSnet.

    Jameel Observatory-CREWSnet seeks to bridge the gap between the knowledge about climate change created at research institutions such as MIT and the local farming communities that are adapting to the impacts of climate change. By effectively informing and engaging local communities, the project seeks to enable farmers to sustainably increase their agricultural productivity and income.     

    The Jameel Observatory-CREWSnet will initially pilot in Bangladesh and Sudan, working with local partners BRAC, a leading international nonprofit headquartered in Bangladesh, and the Agricultural Research Corporation-Sudan, the principal agricultural research arm of the Sudanese government, and with MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL), the global research center working to reduce poverty by ensuring that policy is informed by scientific evidence. Beginning in southwestern Bangladesh, the Jameel Observatory-CREWSnet will integrate next-generation climate forecasting, predictive analytics, new technologies, and financial instruments. In East Africa, with a focus on Sudan, the initiative will emphasize adopting modern technology to use a better variety of heat-resistant seeds, increasing the use of targeted fertilizers, strengthening soils through soil fertility mapping combined with data modeling, and emphasizing vertical expansion of agriculture over traditional horizontal expansion. The work in Sudan is extensible to other regions in Africa. Jameel Observatory-CREWSnet’s activities and timeline will be reevaluated as the team monitors the ongoing situation in Sudan.

    Using local climate insights, communities will be empowered to adapt proactively to climate change by optimally planning their agricultural activities, targeting emergent economic opportunities, and proactively managing risks from climate change.

    George Richards, director of Community Jameel, says: “Community Jameel is proud to be collaborating with MIT, BRAC, and the Agricultural Research Corporation-Sudan to empower agricultural communities to adapt to the ever-growing challenges arising from climate change — challenges which, as we are seeing acutely in Sudan, are compounded by other crises. We welcome the support of the U.S. and U.A.E. governments in selecting the Jameel Observatory-CREWSnet as an AIM4C innovation sprint.”

    Md Liakath Ali, director of climate change, urban development, and disaster risk management at BRAC, says: “Over our five decades working alongside climate-vulnerable communities in Bangladesh, BRAC has seen firsthand how locally led climate adaptation helps protect lives and livelihoods. BRAC is proud to work with Community Jameel and MIT to empower vulnerable communities to proactively adapt to the impacts of climate change.”

    The Jameel Observatory-CREWSnet was launched at COP27 in Sharm El Sheikh as part of the Jameel Observatory, an international collaboration launched in 2021 that focuses on convening researchers and practitioners who use data and technology to help communities adapt to the impacts of climate change and short-term climate shocks.

    The Jameel Observatory focuses on using data and evidence to prepare for and act on environmental shocks as well as those impacts of climate change and variability which threaten human and environmental well-being. With a special focus on low- and middle-income countries, the Jameel Observatory works at the interface of climate, natural disasters, agricultural and food systems, and health. It emphasizes the need to incorporate local as well as scientific knowledge to prepare and act in anticipation of environmental shocks.

    Launched in 2020, MIT’s Climate Grand Challenges initiative is designed to mobilize the Institute’s research community around tackling the most difficult unsolved climate problems in emissions reduction, climate adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change. MIT selected 27 teams as finalists from a field of nearly 100 initial proposals. In 2022, five teams with the most promising concepts were announced as multi-year flagship projects. More

  • in

    Podcast: Curiosity Unbounded, Episode 1 — How a free-range kid from Maine is helping green-up industrial practices

    The Curiosity Unbounded podcast is a conversation between MIT President Sally Kornbluth and newly-tenured faculty members. President Kornbluth invites us to listen in as she dives into the research happening in MIT’s labs and in the field. Along the way, she and her guests discuss pressing issues, as well as what inspires the people running at the world’s toughest challenges at one of the most innovative institutions on the planet.

    In this episode, President Kornbluth sits down with Desirée Plata, a newly tenured associate professor of civil and environmental engineering. Her work focuses on making industrial processes more environmentally friendly, and removing methane — a key factor in global warming — from the air.

    FULL TRANSCRIPT:

    Sally Kornbluth: Hello, I’m Sally Kornbluth, president of MIT, and I’m thrilled to welcome you to this MIT community podcast, Curiosity Unbounded. In my first few months at MIT, I’ve been particularly inspired by talking with members of our faculty who recently earned tenure. Like their colleagues, they are pushing the boundaries of knowledge. Their passion and brilliance, their boundless curiosity, offer a wonderful glimpse of the future of MIT.

    Today, I’m talking with Desirée Plata, associate professor of civil and environmental engineering. Desirée’s work is focused on predicting the environmental impact of  industrial processes and translating that research to real-world technologies. She describes herself as an environmental chemist. Tell me a little more about that. What led you to this work either personally or professionally?

    Desirée Plata: I guess I always loved chemistry, but before that, I was just a kid growing up in the state of Maine. I like to describe myself as a free-range kid. I ran around and talked to the neighbors and popped into the local businesses. One thing I observed in my grandparents’ town was that there were a whole lot of sick people. Not everybody, but maybe every other house. I remember being about seven or eight years old and driving home with my mom to our apartment one day and saying, “It’s got to be something everybody shares. The water, maybe something in the food or the air.” That was really my first environmental hypothesis.

    Sally: You had curiosity unbounded even when you were a child. 

    Desirée: That’s right. I spent the next several decades trying to figure it out and ultimately discovered that there was something in the water where my grandmother lived. In that time, I had earned a chemistry degree and came to MIT to do my grad work at MIT in the Woods Hole Oceanographic in environmental chemistry and chemical oceanography.

    Sally: You saw a pattern, you thought about it, and it took some time to get the tools to actually address the questions, but eventually you were there. That is great. As I understand it, you have two distinct areas of interest. One is getting methane out of the atmosphere to mitigate climate warming, and the other is making industrial processes more environmentally sound. Do you see these two as naturally connected?

    Desirée: I’ll start by saying that when I was young and thinking about this chemical contamination that I hypothesized was there in my grandmother’s neighborhood, one of the things—when I finally found out there was a Superfund site there—one of the things I discovered was that it was owned by close family friends. They were our neighbors. The decisions that they made as part of their industrial practice were just part of standard operating procedure. That’s when it clicked for me that industry is just going along, hoping to innovate to make the world a better place. When these environmental impacts occur, it’s often because they didn’t have enough information or know the right questions to ask. I was in graduate school at the time and said, “I’m at one of the most innovative places on planet Earth. I want to go knock on the doors of other labs and say, ‘What are you making and how can I help you make it better?'”

    If we all flash back to around 2008 or so, hydraulic fracturing was really taking off in this country and there was a lot of hypotheses about the number of chemicals being used in that process. It turns out that there are many hundreds of chemicals being used in the hydraulic fracturing process. My group has done an immense amount of work to study every groundwater we could get our hands on across the Appalachian region of the eastern United States, which is where a lot of this development took place and is still taking place. One of the things we discovered was that some of the biggest environmental impacts are actually not from the injected chemicals but from the released methane that’s coming into the atmosphere. Methane is growing at an exorbitant rate and is responsible for about as much warming as CO2 over the next 10 years. I started realizing that we, as engineers and scientists, would need a way to get these emissions back. To take them back from the atmosphere, if you will. To abate methane at very dilute concentrations. That’s what led to my work in methane abatement and methane mitigation.

    Sally: Interesting. Am I wrong about when we think about the impact of agriculture on the environment, that methane is a big piece of that as well?

    Desirée: You are certainly not wrong there. If you look at anthropogenic emissions or human-derived emissions, more than half are associated with agricultural practices. The cultivation of meat and dairy in particular. Cows and sheep are what are known as enteric methane formers. Part of their digestion process actually leads to the formation of methane. It’s estimated that about 28% of the global methane cycle is associated with enteric methane formers in our agricultural practices as humans. There’s another 18% that’s associated with fossil energy extraction.

    Sally: That’s really interesting. Thinking about your work then, particularly in agriculture, part of the equation has got to be how people live, what they eat, and production of methane as part of the sustainability of agriculture. The other part then seems to be how you actually, if you will, mitigate what we’ve already bought in terms of methane in the environment.

    Desirée: Yes, this is a really important topic right now.

    Sally: Tell me a little bit about, maybe in semi-lay terms, about how you think about removal of methane from the environment.

    Desirée: Recently, over 120 countries signed something called the Global Methane Pledge, which is essentially a pledge to reduce 45% of methane emissions by 2030. If you can do that, you can save about 0.5 degree centigrade warming by 2100. That’s a full third of the 1.5 degrees that politicians speak about. We can argue about whether or not that’s really the full extent of the warming we’ll see, but the point is that methane impacts near-term warming in our lifetimes. It’s one of the unique greenhouse gases that can do that.

    It’s called a short-lived climate pollutant. What that means is that it lives in the atmosphere for about 12 years before it’s removed. That means if you take it out of the atmosphere, you’re going to have a rapid reduction in the total warming of planet Earth, the total radiative forcing. Your question more specifically was about, how do we grapple with this? We’ve already omitted so much methane. How do we think about, as technologists, getting it back? It’s a really hard problem, actually. In the air in the room in front of us that we’re breathing, only two of the million molecules in front of us are methane. 417 or so are CO2. If you think direct air capture of CO2 is hard, direct air capture of methane is that much harder.

    The other thing that makes methane a challenge to abate is that activating the bonds in methane to promote its destruction or its removal is really, really tricky. It’s one of the smallest carbon-based molecules. It doesn’t have what we call “Van der Waals interactions”—there are no handles to grab onto. It’s not polar. That first destruction and that first C-H bond is what we as chemists would call “spin forbidden”. It’s hard to do and it takes a lot of energy to do that. One of the things we’ve developed in my lab is a catalyst that’s based on earth-abundant materials. There are some other groups at MIT that also work on these same types of materials. It’s able to convert methane at very low levels, down to the levels that we’re breathing in this room right now.

    Sally: That’s fascinating. do you see that as being something that will move to practical application?

    Desirée: One of the things that we’re doing to try to translate this to meaningful applications for the world is to scale the technology. We’re fortunate to have funding from several different sources, some private philanthropy groups and the United States Department of Energy. They’re helping us over the next three years try to scale this in places where it might matter most. Perhaps counterintuitive places, coal mines. Coal mines emit a lot of methane and it happens to be enriched in such a way that it releases energy. It might release enough energy to actually pay for the technology itself. Another place we’re really focused on is dairy.

    Sally: Really interesting. You mentioned at the beginning that you were at MIT, you left, you came back. I’m just wondering — I’m new to MIT and, obviously, I’m just learning it — but how do you think about the MIT community or culture in a way that is particularly helpful in advancing your work?

    Desirée: For me, I was really excited to come back to MIT because it is such an innovative place. If you’re someone who says, “I want to change the way we invent materials and processes,” it’s one of the best places you could possibly be. Because you can walk down the hall and bump into people who are making new things, new molecules, new materials, and say, “How can we incorporate the environment into our decision-making process?”

    As engineering professors, we’re guilty of teaching our students to optimize for performance and cost. They go out into their jobs, and guess what? That’s what they optimize for. We want to transition, and we’re at a point in our understanding of the earth system, that we could actually start to incorporate environmental objectives into that design process.

    Engineering professors of tomorrow should, say, optimize for performance and cost and the environment. That’s really what made me very excited to come back to MIT. Not just the great research that’s going on in every nook and corner of the Institute, but also thinking about how we might influence engineering education so that this becomes part of the fabric of how humans invent new practices and processes.

    Sally: If you look back in your past, you talked about your childhood in Maine and observing these patterns. You talked about your training and how you came to MIT and have really been, I think, thriving here. Was there a path not taken, a road not taken if you hadn’t become an environmental chemist? Was there something else you really wanted to do?

    Desirée: That’s such a great question. I have a lot of loves. I love the ocean. I love writing. I love teaching and I’m doing that, so I’m lucky there. I also love the beer business. My family’s in the beer business in Maine. I thought, as a biochemist, I would always be able to fall back on that if I needed to. My family’s not in the beer business because we’re particularly good at making beer, but because they’re interested in making businesses and creating opportunities for people. That’s been an important part of our role in the state of Maine.

    MIT really supports that side of my mind, as well. I love the entrepreneurial ecosystem that exists here. I love that when you bump into people and you have a crazy idea, instead of giving you all the reasons it won’t work, an MIT person gives you all the reasons it won’t work and then they say, “This is how we’re going to make it happen.” That’s really fun and exciting. The entrepreneurship environment that exists here is really very supportive of the translation process that has to happen to get something from the lab to the global impact that we’re looking for. That supports my mission just so much. It’s been a joy.

    Sally: That’s excellent. You weren’t actually tempted to become a yeast cell biologist in the service of beer production?

    Desirée: No, no, but I joke, “They only call me when something goes really bad.”

    Sally: That’s really funny. You experienced MIT as a student, now you’re experiencing it as a faculty member. What do you wish there was one thing about each group that the other knew?

    Desirée: I wish that, speaking with my faculty hat on, that the students knew just how much we care about them. I know that some of them do and really appreciate that. When I send an email at 3:00 in the morning, I get emails back from my colleagues at 3:00 in the morning. We work around the clock and we don’t do that for ourselves. We do that to make great sustainable systems for them and to create opportunity for them to propel themselves forward. To me, that’s one of the common unifying features of an MIT faculty member. We care really deeply about the student experience.

    As a student, I think that we’re hungry to learn. We wanted to really see the ins and outs of operation, how to run a research lab. I think sometimes faculty try to spare their students from that and maybe it’s okay to let them know just what’s going on in all those meetings that we sit through.

    Sally: That’s interesting. I think there are definitely things you find out when you become a faculty member and you’re like, “Oh, so this is what they were thinking.” With regard to the passion of the faculty about teaching, it really is remarkable here. I really think some of the strongest researchers here are so invested in teaching and you see that throughout the community.

    Desirée: It’s a labor of love for sure.

    Sally: Exactly. You talked a little bit about the passion for teaching. Were there teachers along your way that you really think impacted you and changed the direction of what you’re doing?

    Desirée: Yes, absolutely. I could name all of them. I had a kindergarten teacher who would stay after school and wait for my mom to be done work. I was raised by a single mom and her siblings and that was amazing. I had a fourth-grade teacher who helped promote me through school and taught me to love the environment. If you ask fourth graders if they saw any trash on the way to school, they’ll all say, “No.” You take them outside and give them a trash bag to fill up and it’ll be full by the end of the hour. This is something I’ve done with students in Cambridge to this day and this was many years on now. She really got me aware and thinking about environmental problems and how we might change systems.

    Sally: I think it’s really great for faculty to think about their own experiences, but also to hear people who become faculty members reflect on the great impact their own teachers had. I think the things folks are doing here are going to reverberate in their student’s minds for many, many years. It also is interesting in terms of thinking about the pipeline and when you get students interested in science. You talk about your own early years of education that really ultimately had an impact.

    It’s funny, when I became president at MIT, I got a note from my second-grade teacher. I remembered her like it was yesterday. These are people that really had an impact. It’s great that we honor teaching here at MIT and we acknowledge that this is going to have a really big impact on our student’s lives.

    Desirée: Yes, absolutely. It’s a privilege to teach these top talents. At many schools around the country, it’s just young people that have so much potential. I feel like when we walk into that classroom, we’ve got to bring inspiration with us along with the tangible, practical skills. It’s been great to see what they become.

    Sally: Tell me a little bit about what you do outside of work. When you ask faculty hobbies, sometimes I go, “Hobbies?” There must be something you spend your time on. I’m just curious.

    Desirée: We’re worried we’re going to fail this part of the Q&A. Yes. I have four children.

    Sally: You don’t need any hobbies then.

    Desirée: I know. It’s been the good graces of the academic institution. Just for those people who are out there thinking about going into academia and say, “It’s too hard. I couldn’t possibly have the work and life that I seek if I go into academia,” I don’t think that’s true anymore. I know there are a lot of women who paved the way for me, and men for that matter. I remember my PhD advisors being fully present for their children. I’ve been very fortunate to be able to do the same thing. I spend lots of time taking care of them right now. But we love being out in nature hiking, skiing, and kayaking and enjoying what the Earth gives us.

    Sally: It’s also fun to see that “aha” moment in your children when they start to learn a little bit about science and they get the idea that you really can discover things by observing closely. I don’t know if they realize they benefit from having parents who think that way, but I think that also stays with them through their lives.

    Desirée: My son is just waiting for the phone call to be able to be part of MIT’s toy design class.

    Sally: That’s fantastic.

    Desirée: As an official evaluator. Yes.

    Sally: In the last five years or so, we’ve been through the pandemic. In practical terms, how you think about your work and your life, what do you do that has improved your life? I always hate the words of “work-life balance” because they’re so intermeshed, but just for the broader community, how have you thought about that?

    Desirée: I’ve been thinking about my Zoom world and how I am still able to do quite a bit of talking to my colleagues and advancing the research mission and talking to my students that I wouldn’t have been able to do. Even pre-pandemic, it would’ve been pretty hard. We’re all really trained to interact more efficiently through these media and mechanisms. I know how to give a good talk on Zoom, for better or worse. I think that that’s been something that has been great.

    In the context of environment, I think a lot of us—this might be cliched at this point—but realize that there are things that we don’t need to get up on a plane for and perhaps we can work on the computer and interact in that way. I think that’s awesome. There’s not much that can replace real, in-person human interaction, but if it means that you can juggle a few more balls in the air and have your family feel valued and yourself feel valued while you’re also valuing your work that thing that is igniting for you, I think that’s a great outcome.

    Sally: I think that’s right. Unfortunately, though, your kids may never know the meaning of a snow day.

    Desirée: You got it.

    Sally: They may be on a remote school whenever we would’ve been home building snow forts.

    Desirée: As a Mainer, I appreciate this fully, and almost had to write a note this year. Just let them go outside.

    Sally: Exactly, exactly. As we’re wrapping up, just thinking about the future of climate work and coming back to the science, I think you’ve thought a lot about what you’re doing and impact on the climate. I’m just wondering, as you look around MIT, where you think we might have some of the greatest impact? How do you think about what some of your colleagues are doing? Because I’m starting to think a lot about what MIT’s real footprint in this area is going to be.

    Desirée: The first thing I want to say is that I think for a long time, the world’s been looking for a silver bullet climate solution. That is not how we got into this problem and it’s not how we’re going to get out of it.

    Sally: Exactly.

    Desirée: We need a thousand BBs. Fortunately, at MIT, there are many thousands of minds that all have something to contribute. I like to impose, especially on the undergraduates and the graduate researchers, our student population out there, think, “How can I bring my talents to bear on this really most pressing and important problem that’s facing our world right now?” I would say just whatever your skill is and whatever your passion is, try to find a way to marry those things together and find a way to have impact.

    The other thing I would say is that we think really differently about problems. That’s what might be needed. If you’re going to break systems, you need to come at it from a different perspective or a different angle. Encouraging people to think differently, as this community does so well, I think is going to be an enormous asset in bringing some solutions to the climate change challenge.

    Sally: Excellent. If you look back over your career, and even earlier than when you became a faculty member, what do you think the best advice is that you’ve ever been given?

    Desirée: There’s so much. I’ve been fortunate to have a lot of really great mentors. What is the best piece of advice? I think this notion of balancing work and not work. I’ve gotten two really key points of advice. One is about travel. I think that ties into this concept of COVID and whether now we can actually go remote for a lot of things. It was from an MIT professor. He said, “You know, the biggest thing you can do to protect your personal life and your life with your family is to say no and travel less. Travel eats up time on the front, in the back, and it’s your family that’s paying the price for that, so be really judicious about your choices.” That was excellent advice for me.

    Another female faculty member of mine said, “You have to prioritize your family like they are an appointment on your calendar and it’s okay when you do that.” I think those have been really helpful for me as I navigate and struggle with my own very mission-oriented self where I want to keep working and put my focus there, but know that it’s okay to maybe go for a walk and talk to real people.

    Sally: Go wild.

    Desirée: Yes, that’s right.

    Sally: This issue, actually, of saying no, not only to travel but thinking about where you really place your efforts and when there’s a finite amount of time. When I think about this—and advising junior faculty in terms of service—every faculty member is going to be asked way more things than they’re going to want to do. Yet, their service to the department, service to the Institute, is important, not only for their advancement but in how we create a community. I always advise people to say yes to the things they’re truly interested in and they’re passionate about, and there will be enough of those things.

    Desirée: I have a flowchart for when to say yes and when to say no. Having an interest is at the top of the list and then feeling like you’re going to have an impact. That’s something I think, when we do this service at MIT, we really are able to have an impact. It’s not just the oldest people in the room that get to drive the bus. They’re really listening and want to hear that perspective from everybody.

    Sally: That’s excellent. Thanks again, Desirée. I really enjoyed that conversation. To our audience, thanks again for listening to Curiosity Unbounded. I very much hope you’ll all join us again. I’m Sally Kornbluth. Stay curious. More