More stories

  • in

    How molecular biology could reduce global food insecurity

    Staple crops like rice, maize, and wheat feed over half of the global population, but they are increasingly vulnerable to severe environmental risks. The effects of climate change, including changing temperatures, rainfall variability, shifting patterns of agricultural pests and diseases, and saltwater intrusion from sea-level rise, all contribute to decreased crop yields. As these effects continue to worsen, there will be less food available for a rapidly growing population. 

    Mary Gehring, associate professor of biology and a member of the Whitehead Institute for Biomedical Research, is growing increasingly concerned about the potentially catastrophic impacts of climate change and has resolved to do something about it.

    The Gehring Lab’s primary research focus is plant epigenetics, which refers to the heritable information that influences plant cellular function but is not encoded in the DNA sequence itself. This research is adding to our fundamental understanding of plant biology and could have agricultural applications in the future. “I’ve been working with seeds for many years,” says Gehring. “Understanding how seeds work is going to be critical to agriculture and food security,” she explains.

    Laying the foundation

    Gehring is using her expertise to help crops develop climate resilience through a 2021 seed grant from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Her research is aimed at discovering how we can accelerate the production of genetic diversity to generate plant populations that are better suited to challenging environmental conditions.

    Genetic variation gives rise to phenotypic variations that can help plants adapt to a wider range of climates. Traits such as flood resistance and salt tolerance will become more important as the effects of climate change are realized. However, many important plant species do not appear to have much standing genetic variation, which could become an issue if farmers need to breed their crops quickly to adapt to a changing climate. 

    In researching a nutritious crop that has little genetic variation, Gehring came across the pigeon pea, a species she had never worked with before. Pigeon peas are a legume eaten in Asia, Africa, and Latin America. They have some of the highest levels of protein in a seed, so eating more pigeon peas could decrease our dependence on meat, which has numerous negative environmental impacts. Pigeon peas also have a positive impact on the environment; as perennial plants, they live for three to five years and sequester carbon for longer periods of time. They can also help with soil restoration. “Legumes are very interesting because they’re nitrogen-fixers, so they create symbioses with microbes in the soil and fix nitrogen, which can renew soils,” says Gehring. Furthermore, pigeon peas are known to be drought-resistant, so they will likely become more attractive as many farmers transition away from water-intensive crops.

    Developing a strategy

    Using the pigeon pea plant, Gehring began to explore a universal technology that would increase the amount of genetic diversity in plants. One method her research group chose is to enhance transposable element proliferation. Genomes are made up of genes that make proteins, but large fractions are also made up of transposable elements. In fact, about 45 percent of the human genome is made up of transposable elements, Gehring notes. The primary function of transposable elements is to make more copies of themselves. Since our bodies do not need an infinite number of these copies, there are systems in place to “silence” them from copying. 

    Gehring is trying to reverse that silencing so that the transposable elements can move freely throughout the genome, which could create genetic variation by creating mutations or altering the promoter of a gene — that is, what controls a certain gene’s expression. Scientists have traditionally initiated mutagenesis by using a chemical that changes single base pairs in DNA, or by using X-rays, which can cause very large chromosome breaks. Gehring’s research team is attempting to induce transposable element proliferation by treatment with a suite of chemicals that inhibit transposable element silencing. The goal is to impact multiple sites in the genome simultaneously. “This is unexplored territory where you’re changing 50 genes at a time, or 100, rather than just one,” she explains. “It’s a fairly risky project, but sometimes you have to be ambitious and take risks.”

    Looking forward

    Less than one year after receiving the J-WAFS seed grant, the research project is still in its early stages. Despite various restrictions due to the ongoing pandemic, the Gehring Lab is now generating data on the Arabidopsis plant that will be applied to pigeon pea plants. However, Gehring expects it will take a good amount of time to complete this research phase, considering the pigeon pea plants can take upward of 100 days just to flower. While it might take time, this technology could help crops withstand the effects of climate change, ultimately contributing to J-WAFS’ goal of finding solutions to food system challenges.

    “Climate change is not something any of us can ignore. … If one of us has the ability to address it, even in a very small way, that’s important to try to pursue,” Gehring remarks. “It’s part of our responsibility as scientists to take what knowledge we have and try to apply it to these sorts of problems.” More

  • in

    Q&A: Latifah Hamzah ’12 on creating sustainable solutions in Malaysia and beyond

    Latifah Hamzah ’12 graduated from MIT with a BS in mechanical engineering and minors in energy studies and music. During their time at MIT, Latifah participated in various student organizations, including the MIT Symphony Orchestra, Alpha Phi Omega, and the MIT Design/Build/Fly team. They also participated in the MIT Energy Initiative’s Undergraduate Research Opportunities Program (UROP) in the lab of former professor of mechanical engineering Alexander Mitsos, examining solar-powered thermal and electrical co-generation systems.

    After graduating from MIT, Latifah worked as a subsea engineer at Shell Global Solutions and co-founded Engineers Without Borders – Malaysia, a nonprofit organization dedicated to finding sustainable and empowering solutions that impact disadvantaged populations in Malaysia. More recently, Latifah received a master of science in mechanical engineering from Stanford University, where they are currently pursuing a PhD in environmental engineering with a focus on water and sanitation in developing contexts.

    Q: What inspired you to pursue energy studies as an undergraduate student at MIT?

    A: I grew up in Malaysia, where I was at once aware of both the extent to which the oil and gas industry is a cornerstone of the economy and the need to transition to a lower-carbon future. The Energy Studies minor was therefore enticing because it gave me a broader view of the energy space, including technical, policy, economic, and other viewpoints. This was my first exposure to how things worked in the real world — in that many different fields and perspectives had to be considered cohesively in order to have a successful, positive, and sustained impact. Although the minor was predominantly grounded in classroom learning, what I learned drove me to want to discover for myself how the forces of technology, society, and policy interacted in the field in my subsequent endeavors.

    In addition to the breadth that the minor added to my education, it also provided a structure and focus for me to build on my technical fundamentals. This included taking graduate-level classes and participating in UROPs that had specific energy foci. These were my first forays into questions that, while still predominantly technical, were more open-ended and with as-yet-unknown answers that would be substantially shaped by the framing of the question. This shift in mindset required from typical undergraduate classes and problem sets took a bit of adjusting to, but ultimately gave me the confidence and belief that I could succeed in a more challenging environment.

    Q: How did these experiences with energy help shape your path forward, particularly in regard to your work with Engineers Without Borders – Malaysia and now at Stanford?

    A: When I returned home after graduation, I was keen to harness my engineering education and explore in practice what the Energy Studies minor curriculum had taught by theory and case studies: to consider context, nuance, and interdisciplinary and myriad perspectives to craft successful, sustainable solutions. Recognizing that there were many underserved communities in Malaysia, I co-founded Engineers Without Borders – Malaysia with some friends with the aim of working with these communities to bring simple and sustainable engineering solutions. Many of these projects did have an energy focus. For example, we designed, sized, and installed micro-hydro or solar-power systems for various indigenous communities, allowing them to continue living on their ancestral lands while reducing energy poverty. Many other projects incorporated other aspects of engineering, such as hydrotherapy pools for folks with special needs, and water and sanitation systems for stateless maritime communities.

    Through my work with Engineers Without Borders – Malaysia, I found a passion for the broader aspects of sustainability, development, and equity. By spending time with communities in the field and sharing in their experiences, I recognized gaps in my skill set that I could work on to be more effective in advocating for social and environmental justice. In particular, I wanted to better understand communities and their perspectives while being mindful of my positionality. In addition, I wanted to address the more systemic aspects of the problems they faced, which I felt in many cases would only be possible through a combination of research, evidence, and policy. To this end, I embarked on a PhD in environmental engineering with a minor in anthropology and pursued a Community-Based Research Fellowship with Stanford’s Haas Center for Public Service. I have also participated in the Rising Environmental Leaders Program (RELP), which helps graduate students “hone their leadership and communications skills to maximize the impact of their research.” RELP afforded me the opportunity to interact with representatives from government, NGOs [nongovernmental organizations], think tanks, and industry, from which I gained a better understanding of the policy and adjacent ecosystems at both the federal and state levels.

    Q: What are you currently studying, and how does it relate to your past work and educational experiences?

    A: My dissertation investigates waste management and monitoring for improved planetary health in three distinct projects. Suboptimal waste management can lead to poor outcomes, including environmental contamination, overuse of resources, and lost economic and environmental opportunities in resource recovery. My first project showed that three combinations of factors resulted in ruminant feces contaminating the stored drinking water supplies of households in rural Kenya, and the results were published in the International Journal of Environmental Research and Public Health. Consequently, water and sanitation interventions must also consider animal waste for communities to have safe drinking water.

    My second project seeks to establish a circular economy in the chocolate industry with indigenous Malaysian farmers and the Chocolate Concierge, a tree-to-bar social enterprise. Having designed and optimized apparatuses and processes to create biochar from cacao husk waste, we are now examining its impact on the growth of cacao saplings and their root systems. The hope is that biochar will increase the resilience of saplings for when they are transplanted from the nursery to the farm. As biochar can improve soil health and yield while reducing fertilizer inputs and sequestering carbon, farmers can accrue substantial economic and environmental benefits, especially if they produce, use, and sell it themselves.

    My third project investigates the gap in sanitation coverage worldwide and potential ways of reducing it. Globally, 46 percent of the population lacks access to safely managed sanitation, while the majority of the 54 percent who do have access use on-site sanitation facilities such as septic tanks and latrines. Given that on-site, decentralized systems typically have a lower space and resource footprint, are cheaper to build and maintain, and can be designed to suit various contexts, they could represent the best chance of reaching the sanitation Sustainable Development Goal. To this end, I am part of a team of researchers at the Criddle Group at Stanford working to develop a household-scale system as part of the Gates Reinvent the Toilet Challenge, an initiative aimed at developing new sanitation and toilet technologies for developing contexts.

    The thread connecting these projects is a commitment to investigating both the technical and socio-anthropological dimensions of an issue to develop sustainable, reliable, and environmentally sensitive solutions, especially in low- and middle-income countries (LMICs). I believe that an interdisciplinary approach can provide a better understanding of the problem space, which will hopefully lead to effective potential solutions that can have a greater community impact.

    Q: What do you plan to do once you obtain your PhD?

    A: I hope to continue working in the spheres of water and sanitation and/or sustainability post-PhD. It is a fascinating moment to be in this space as a person of color from an LMIC, especially as ideas such as community-based research and decolonizing fields and institutions are becoming more widespread and acknowledged. Even during my time at Stanford, I have noticed some shifts in the discourse, although we still have a long way to go to achieve substantive and lasting change. Folks like me are underrepresented in forums where the priorities, policies, and financing of aid and development are discussed at the international or global scale. I hope I’ll be able to use my qualifications, experience, and background to advocate for more just outcomes.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative More

  • in

    Bringing climate reporting to local newsrooms

    Last summer, Nora Hertel, a reporter for the St. Cloud Times in central Minnesota, visited a farm just northeast of the Twin Cities run by the Native American-led nonprofit Dream of Wild Health. The farm raises a mix of vegetables and flowering plants, and has a particular focus on cultivating rare heirloom varieties. It’s also dealing with severely depleted soil, inherited from previous owners who grew corn on the same land. Hertel had come to learn about the techniques the farm was using to restore its soil, many of which were traditional parts of Indigenous farming practice, including planting cover crops over the winter and incorporating burnt wood and manure into the earth.

    The trip was part of a multi-part reporting project that Hertel undertook as an inaugural fellow in a new program from the MIT Environmental Solutions Initiative (ESI). The ESI Journalism Fellowship was created to help local reporters around the United States connect climate change science and solutions with issues that are already of importance to their audiences — particularly in areas where many people are still unclear or unsure about climate change. For Hertel, that meant visiting 10 farms and forest lands across Minnesota to understand how natural climate solutions are taking shape in her state. The practices she saw at the Dream of Wild Health farm not only helped to restore soil, but also helped slow climate change by taking carbon dioxide out of the air and storing it in soils and plants.

    “There is enthusiasm for natural climate solutions,” Hertel says, but these practices can be expensive and difficult to adopt. She wanted to explain the benefits and the hurdles, especially for farmers and land managers considering new agricultural techniques.

    Hertel produced six news pieces for the St. Cloud Times as part of her project, as well as a six-episode podcast series and two videos. To conclude the series, she ran a public event where 130 attendees — including conventional farmers, regenerative farmers, state senators, the St. Cloud mayor, and other community stakeholders — gathered outside in the 40-degree Fahrenheit cold to discuss carbon markets in Minnesota. The stories were republished in 12 additional outlets, including USA Today, Associated Press, Yahoo News, and US News & World Report. 

    “I had been hoping to write about cover crops and carbon markets for about two years before I pitched my project to ESI,” says Hertel. “I hadn’t been able to take the time and resources with all my other responsibilities. Joining the fellowship allowed me to focus on those topics and dive in deep to understand how much is uncertain and changing in the field right now.”

    Supporting local climate reporting

    In today’s news landscape, local coverage is dwindling, which has major effects on the ways people hear about climate change. At times, the only in-depth climate coverage available is covered by specialty or national publications, which can miss the opportunity to understand the nuances of the communities they are parachuting into.

    “Climate change is or will impact all of us, but many Americans don’t see it as relevant to their lives,” says Laur Hesse Fisher, program director at the ESI, who created and manages the fellowship program. “We’re working to help change that.”

    In this first year of the fellowship, five local journalists were selected from around the country to pursue long-form or serial climate-focused reporting. Fellows received funding and stipends to help them dedicate extra time and resources to their projects. They gathered virtually for workshops and were connected with MIT experts in a variety of relevant fields: scientists such as Adam Schlosser, senior research scientist and deputy director for science research at the MIT Joint Program on the Science and Policy of Global Change; economists and policy experts such as Joshua Hodge, executive director of the MIT Center for Energy and Environmental Policy Research (CEEPR); and journalism experts from the MIT Knight Science Journalism Program.

    Fellows were also given full access to MIT’s extensive library databases and geographic data visualization tools, along with tools focused specifically on climate science and policy like the MIT Socio-Environmental Triage platform and CEEPR’s working papers. All these resources aimed to give the journalism fellows the backing they needed to undertake ambitious projects on climate issues their audiences might otherwise never have known were playing out right in their backyards.

    Stories around the country

    The result was five distinct reporting projects spread across the United States.

    ESI Fellow Tristan Baurick is an environment reporter for the Times Picayune | New Orleans Advocate, Louisiana’s largest newspaper. His multi-part series, “Wind of Change: How the Gulf of Mexico could be the next offshore wind powerhouse,” ran on the front page of the Thanksgiving print edition of the paper. It explores how the state’s offshore oil companies are pivoting to support the emerging wind energy industry, as well as the outcomes of the U.S.’s first offshore wind farm in Rhode Island, which Baurick visited on an extended reporting trip. The series looks at the history of Louisiana, which, despite being a hub for wind engineering technology production, has seen most of that technology exported. “The project relied on experts from the oil and gas industry to introduce the idea of offshore wind energy and the opportunities it could offer the region,” says Baurick. “This approach made readers who are skeptical of climate change and renewable energy let their guard down and consider these topics with a more open mind.”

    Oregon-based environmental journalist Alex Schwartz explored water rights and climate change within the Klamath River Basin for the Herald & News. The result was a five-part digital series that examines the many stakeholders, including Indigenous groups, farmers, fishers, and park managers, who depend on the Klamath River for water even as the region enters a period of extended climate change-induced drought. “The fellowship provided me with financial resources to be able to execute a project at this scale,” says Schwartz. “We never would have been able to take the time off and travel throughout the basin without the support of the fellowship.”

    Melba Newsome is a North Carolina-based independent reporter. Her two-part series for NC Health News focuses on Smithfield’s Foods, whose hog houses continue to have lasting health and environmental implications for majority Black communities in the southeastern part of the state. The series, which has been republished by Indy Weekly, the Daily Yonder, and others, interviews residents and activists to untangle a history of legal battles, neglect, and accusations of environmental racism — while noting that sea-level rise has made the region increasingly vulnerable to dangerous releases of waste from its growing factory farms.

    The final project supported by the fellowship came from Wyoming, famous for its vast outdoors and coal industry. In his three-part series for WyoFile, journalist Dustin Bleizeffer — whose beat shifted from education to energy and climate in part as a result of his fellowship — spoke to local residents to capture their personal experiences of warming temperatures and changing landscapes. “[Of] the people I interviewed and featured in my reporting … all but one are climate skeptics, but they spoke in detail about climate changes they’ve observed, and very eloquently described their concerns,” says Bleizeffer. “I’m still receiving comments and enthusiasm to keep the conversation going.” He also looked at how two Wyoming counties, Gillette and Campbell, are faring through the coal industry’s decline. His series provided a boost to efforts by grassroots organizations and conservation groups that are trying to open “the climate conversation” in the state.

    Lessons for climate conversations

    All five fellows joined ESI for a wrap-up event on Nov. 4, Connecting with Americans on Climate Change, which both showcased their work and gave them the opportunity to publicly discuss ways to engage Americans across the political spectrum on climate change.

    The event was joined by sociologist Arlie Russell Hochschild, author of the bestselling “Strangers in Their Own Land: Anger and Mourning on the American Right,” who had earlier joined the fellows in one of their workshops to offer her own experience engaging with people who feel ill-served by the national media. Her book, which followed members of the Tea Party in Louisiana for five years, illustrates the importance of deep listening to bridging America’s social and political divides. Hochschild applied this insight to climate change in talking with the fellows and event attendees about strategies to understand and respond to local perspectives on what is often framed as a contentious political issue. “Sociology gives us forgiveness; [it] gets blame and guilt out of the picture,” said Hochschild.

    That was an insight echoed by several of the journalism fellows. “I think rural people feel blamed a lot for every problem,” said Schwartz. “If we were to take the carbon footprint of the Klamath River Basin, it would be minuscule compared to any corporation, right? … We have to create that safety net for our communities to be able to bear the brunt of these cascading disasters that are already occurring and are just going to get worse in the future. Focusing on the adaptation side was really helpful in terms of just getting people to talk about climate change.”

    Other fellows had their own strategies for opening conversations about climate change — and by responding to their audiences’ concerns, they did see opportunities for change in their reporting. In Wyoming, Bleizeffer talked about the need to retain young people in the state, and about changes to landscapes residents loved. Newsome emphasized that people need to see climate change as not someone else’s problem — for her audience, it illustrated and exacerbated injustices they were already feeling.

    And Hertel, speaking of the conventional farmers, everyday people, and local government officials featured in her series, left event attendees with one more insight about effective climate reporting. “Don’t expect people to change on a dime,” she said. “You must bring people [along] on the journey.”

    ESI will be opening journalism fellowship applications for its second cohort later this year. Experienced reporters are encouraged to apply. If you are interested in supporting this fellowship or are curious about opportunities for partnerships, please contact Laur Hesse Fisher. More

  • in

    A dirt cheap solution? Common clay materials may help curb methane emissions

    Methane is a far more potent greenhouse gas than carbon dioxide, and it has a pronounced effect within first two decades of its presence in the atmosphere. In the recent international climate negotiations in Glasgow, abatement of methane emissions was identified as a major priority in attempts to curb global climate change quickly.

    Now, a team of researchers at MIT has come up with a promising approach to controlling methane emissions and removing it from the air, using an inexpensive and abundant type of clay called zeolite. The findings are described in the journal ACS Environment Au, in a paper by doctoral student Rebecca Brenneis, Associate Professor Desiree Plata, and two others.

    Although many people associate atmospheric methane with drilling and fracking for oil and natural gas, those sources only account for about 18 percent of global methane emissions, Plata says. The vast majority of emitted methane comes from such sources as slash-and-burn agriculture, dairy farming, coal and ore mining, wetlands, and melting permafrost. “A lot of the methane that comes into the atmosphere is from distributed and diffuse sources, so we started to think about how you could take that out of the atmosphere,” she says.

    The answer the researchers found was something dirt cheap — in fact, a special kind of “dirt,” or clay. They used zeolite clays, a material so inexpensive that it is currently used to make cat litter. Treating the zeolite with a small amount of copper, the team found, makes the material very effective at absorbing methane from the air, even at extremely low concentrations.

    The system is simple in concept, though much work remains on the engineering details. In their lab tests, tiny particles of the copper-enhanced zeolite material, similar to cat litter, were packed into a reaction tube, which was then heated from the outside as the stream of gas, with methane levels ranging from just 2 parts per million up to 2 percent concentration, flowed through the tube. That range covers everything that might exist in the atmosphere, down to subflammable levels that cannot be burned or flared directly.

    The process has several advantages over other approaches to removing methane from air, Plata says. Other methods tend to use expensive catalysts such as platinum or palladium, require high temperatures of at least 600 degrees Celsius, and tend to require complex cycling between methane-rich and oxygen-rich streams, making the devices both more complicated and more risky, as methane and oxygen are highly combustible on their own and in combination.

    “The 600 degrees where they run these reactors makes it almost dangerous to be around the methane,” as well as the pure oxygen, Brenneis says. “They’re solving the problem by just creating a situation where there’s going to be an explosion.” Other engineering complications also arise from the high operating temperatures. Unsurprisingly, such systems have not found much use.

    As for the new process, “I think we’re still surprised at how well it works,” says Plata, who is the Gilbert W. Winslow Associate Professor of Civil and Environmental Engineering. The process seems to have its peak effectiveness at about 300 degrees Celsius, which requires far less energy for heating than other methane capture processes. It also can work at concentrations of methane lower than other methods can address, even small fractions of 1 percent, which most methods cannot remove, and does so in air rather than pure oxygen, a major advantage for real-world deployment.

    The method converts the methane into carbon dioxide. That might sound like a bad thing, given the worldwide efforts to combat carbon dioxide emissions. “A lot of people hear ‘carbon dioxide’ and they panic; they say ‘that’s bad,’” Plata says. But she points out that carbon dioxide is much less impactful in the atmosphere than methane, which is about 80 times stronger as a greenhouse gas over the first 20 years, and about 25 times stronger for the first century. This effect arises from that fact that methane turns into carbon dioxide naturally over time in the atmosphere. By accelerating that process, this method would drastically reduce the near-term climate impact, she says. And, even converting half of the atmosphere’s methane to carbon dioxide would increase levels of the latter by less than 1 part per million (about 0.2 percent of today’s atmospheric carbon dioxide) while saving about 16 percent of total radiative warming.

    The ideal location for such systems, the team concluded, would be in places where there is a relatively concentrated source of methane, such as dairy barns and coal mines. These sources already tend to have powerful air-handling systems in place, since a buildup of methane can be a fire, health, and explosion hazard. To surmount the outstanding engineering details, the team has just been awarded a $2 million grant from the U.S. Department of Energy to continue to develop specific equipment for methane removal in these types of locations.

    “The key advantage of mining air is that we move a lot of it,” she says. “You have to pull fresh air in to enable miners to breathe, and to reduce explosion risks from enriched methane pockets. So, the volumes of air that are moved in mines are enormous.” The concentration of methane is too low to ignite, but it’s in the catalysts’ sweet spot, she says.

    Adapting the technology to specific sites should be relatively straightforward. The lab setup the team used in their tests consisted of  “only a few components, and the technology you would put in a cow barn could be pretty simple as well,” Plata says. However, large volumes of gas do not flow that easily through clay, so the next phase of the research will focus on ways of structuring the clay material in a multiscale, hierarchical configuration that will aid air flow.

    “We need new technologies for oxidizing methane at concentrations below those used in flares and thermal oxidizers,” says Rob Jackson, a professor of earth systems science at Stanford University, who was not involved in this work. “There isn’t a cost-effective technology today for oxidizing methane at concentrations below about 2,000 parts per million.”

    Jackson adds, “Many questions remain for scaling this and all similar work: How quickly will the catalyst foul under field conditions? Can we get the required temperatures closer to ambient conditions? How scaleable will such technologies be when processing large volumes of air?”

    One potential major advantage of the new system is that the chemical process involved releases heat. By catalytically oxidizing the methane, in effect the process is a flame-free form of combustion. If the methane concentration is above 0.5 percent, the heat released is greater than the heat used to get the process started, and this heat could be used to generate electricity.

    The team’s calculations show that “at coal mines, you could potentially generate enough heat to generate electricity at the power plant scale, which is remarkable because it means that the device could pay for itself,” Plata says. “Most air-capture solutions cost a lot of money and would never be profitable. Our technology may one day be a counterexample.”

    Using the new grant money, she says, “over the next 18 months we’re aiming to demonstrate a proof of concept that this can work in the field,” where conditions can be more challenging than in the lab. Ultimately, they hope to be able to make devices that would be compatible with existing air-handling systems and could simply be an extra component added in place. “The coal mining application is meant to be at a stage that you could hand to a commercial builder or user three years from now,” Plata says.

    In addition to Plata and Brenneis, the team included Yale University PhD student Eric Johnson and former MIT postdoc Wenbo Shi. The work was supported by the Gerstner Philanthropies, Vanguard Charitable Trust, the Betty Moore Inventor Fellows Program, and MIT’s Research Support Committee. More

  • in

    Reducing food waste to increase access to affordable foods

    About a third of the world’s food supply never gets eaten. That means the water, labor, energy, and fertilizer that went into growing, processing, and distributing the food is wasted.

    On the other end of the supply chain are cash-strapped consumers, who have been further distressed in recent years by factors like the Covid-19 pandemic and inflation.

    Spoiler Alert, a company founded by two MIT alumni, is helping companies bridge the gap between food waste and food insecurity with a platform connecting major food and beverage brands with discount grocers, retailers, and nonprofits. The platform helps brands discount or donate excess and short-dated inventory days, weeks, and months before it expires.

    “There is a tremendous amount of underutilized data that exists in the manufacturing and distribution space that results in good food going to waste,” says Ricky Ashenfelter MBA ’15, who co-founded the company with Emily Malina MBA ’15.

    Spoiler Alert helps brands manage distressed inventory data, create offers for potential buyers, and review and accept bids. The platform is designed to work with companies’ existing inventory and fulfillment systems, using automation and pricing intelligence to further streamline sales.

    “At a high level, we’re a waste-prevention software built for sales and supply-chain teams,” Ashenfelter says. “You can think of it as a private [business-to-business] eBay of sorts.”

    Spoiler Alert is working with global companies like Nestle, Kraft Heinz, and Danone, as well as discount grocers like the United Grocery Outlet and Misfits Market. Those brands are already using the platform to reduce food waste and get more food on people’s tables.

    “Project Drawdown [a nonprofit working on climate solutions] has identified food waste as the number one priority to address the global climate crisis, so these types of corporate initiatives can be really powerful from an environmental standpoint,” Ashenfelter says, noting the nonprofit estimates food waste accounts for 8 percent of global greenhouse gas emissions. “Contrast that with growing levels of food insecurity and folks not being able to access affordable nutrition, and you start to see how tackling supply-chain inefficiency can have a dramatic impact from both an environmental and a social lens. That’s what motivates us.”

    Untapped data for change

    Ashenfelter came to MIT’s Sloan School of Management after several years in sustainability software and management consulting within the retail and consumer products industries.

    “I was really attracted to transitioning into something much more entrepreneurial, and to leverage not only Sloan’s focus on entrepreneurship, but also the broader MIT ecosystem’s focus on technology, entrepreneurship, clean tech innovation, and other themes along that front,” he says.

    Ashenfelter met Malina at one of Sloan’s admitted students events in 2013, and the founders soon set out to use data to decrease food waste.

    “For us, the idea was clear: How do we better leverage data to manage excess and short-dated inventory?” Ashenfelter says. “How we go about that has evolved over the last six years, but it’s all rooted in solving an enormous climate problem, solving a major food insecurity problem, and from a capitalistic standpoint, helping businesses cut costs and generate revenue from otherwise wasted products.”

    The founders spent many hours in the Martin Trust Center for MIT Entrepreneurship with support from the Sloan Sustainability Initiative, and used Spoiler Alert as a case study in nearly every class they took, thinking through product development, sales, marketing, pricing, and more through their coursework.

    “We brought our idea into just about every action learning class that we could at Sloan and MIT,” Ashenfelter says.

    They also participated in the MIT $100K Entrepreneurship Competition and received support from the Venture Mentoring Service and the IDEAS Global Challenge program.

    Upon graduation, the founders initially began building a platform to facilitate donations of excess inventory, but soon learned big companies’ processes for discounting that inventory were also highly manual. Today, more than 90 percent of Spoiler Alert’s transaction volume is discounted, with the remainder donated.

    Different teams within an organization can upload excess inventory reports to Spoiler Alert’s system, eliminating the need to manually aggregate datasets and preparing what the industry refers to as “blowout lists” to sell. Spoiler Alert uses machine-learning-based tools to help both parties with pricing and negotiations to close deals more quickly.

    “Companies are taking pretty manual and slow approaches to deciding [what to do with excess inventory],” Ashenfelter says. “And when you have slow decision-making, you’re losing days or even weeks of shelf life on that product. That can be the difference between selling product versus donating, and donating versus dumping.”

    Once a deal has been made, Spoiler Alert automatically generates the forms and workflows needed by fulfillment teams to get the product out the door. The relationships companies build on the platform are also a major driver for cutting down waste.

    “We’re providing suppliers with the ability to control where their discounted and donated product ends up,” Ashenfelter says. “That’s really powerful because it allows these CPG brands to ensure that this product is, in many cases, getting to affordable nutrition outlets in underserved communities.”

    Ashenfelter says the majority of inventory goes to regional and national discount grocers, supplemented with extensive purchasing from local and nonprofit grocery chains.

    “Everything we do is oriented around helping sell as much product as possible to a reputable set of buyers at the most fair, equitable prices possible,” Ashenfelter says.

    Scaling for impact

    The pandemic has disrupted many aspects of the food supply chains. But Ashenfelter says it has also accelerated the adoption of digital solutions that can better manage such volatility.

    When Campbell began using Spoiler Alert’s system in 2019, for instance, it achieved a 36 percent increase in discount sales and a 27 percent increase in donations over the first five months.

    Ashenfelter says the results have proven that companies’ sustainability targets can go hand in hand with initiatives that boost their bottom lines. In fact, because Spoiler Alert focuses so much on the untapped revenue associated with food waste, many customers don’t even realize Spoiler Alert is a sustainability company until after they’ve signed on.

    “What’s neat about this program is that it becomes an incredibly powerful case study internally for how sustainability and operational outcomes aren’t in conflict and can drive both business results as well as overall environmental impact,” Ashenfelter says.

    Going forward, Spoiler Alert will continue building out algorithmic solutions that could further cut down on waste internationally and across a wider array of products.

    “At every step in our process, we’re collecting a tremendous amount of data in terms of what is and isn’t selling, at what price point, to which buyers, out of which geographies, and with how much remaining shelf life,” Ashenfelter explains. “We are only starting to scratch the surface in terms of bringing our recommendations engine to life for our suppliers and buyers. Ultimately our goal is to power the waste-free economy, and rooted in that is making better decisions faster, in collaboration with a growing ecosystem of supply chain partners, and with as little manual intervention as possible.” More

  • in

    SMART researchers develop method for early detection of bacterial infection in crops

    Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) Interdisciplinary Research Group (IRG) ofSingapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL), have developed a rapid Raman spectroscopy-based method for detecting and quantifying early bacterial infection in crops. The Raman spectral biomarkers and diagnostic algorithm enable the noninvasive and early diagnosis of bacterial infections in crop plants, which can be critical for the progress of plant disease management and agricultural productivity.

    Due to the increasing demand for global food supply and security, there is a growing need to improve agricultural production systems and increase crop productivity. Globally, bacterial pathogen infection in crop plants is one of the major contributors to agricultural yield losses. Climate change also adds to the problem by accelerating the spread of plant diseases. Hence, developing methods for rapid and early detection of pathogen-infected crops is important to improve plant disease management and reduce crop loss.

    The breakthrough by SMART and TLL researchers offers a faster and more accurate method to detect bacterial infection in crop plants at an earlier stage, as compared to existing techniques. The new results appear in a paper titled “Rapid detection and quantification of plant innate immunity response using Raman spectroscopy” published in the journal Frontiers in Plant Science.

    “The early detection of pathogen-infected crop plants is a significant step to improve plant disease management,” says Chua Nam Hai, DiSTAP co-lead principal investigator, professor, TLL deputy chair, and co-corresponding author. “It will allow the fast and selective removal of pathogen load and curb the further spread of disease to other neighboring crops.”

    Traditionally, plant disease diagnosis involves a simple visual inspection of plants for disease symptoms and severity. “Visual inspection methods are often ineffective, as disease symptoms usually manifest only at relatively later stages of infection, when the pathogen load is already high and reparative measures are limited. Hence, new methods are required for rapid and early detection of bacterial infection. The idea would be akin to having medical tests to identify human diseases at an early stage, instead of waiting for visual symptoms to show, so that early intervention or treatment can be applied,” says MIT Professor Rajeev Ram, who is a DiSTAP principal investigator and co-corresponding author on the paper.

    While existing techniques, such as current molecular detection methods, can detect bacterial infection in plants, they are often limited in their use. Molecular detection methods largely depend on the availability of pathogen-specific gene sequences or antibodies to identify bacterial infection in crops; the implementation is also time-consuming and nonadaptable for on-site field application due to the high cost and bulky equipment required, making it impractical for use in agricultural farms.

    “At DiSTAP, we have developed a quantitative Raman spectroscopy-based algorithm that can help farmers to identify bacterial infection rapidly. The developed diagnostic algorithm makes use of Raman spectral biomarkers and can be easily implemented in cloud-based computing and prediction platforms. It is more effective than existing techniques as it enables accurate identification and early detection of bacterial infection, both of which are crucial to saving crop plants that would otherwise be destroyed,” explains Gajendra Pratap Singh, scientific director and principal investigator at DiSTAP and co-lead author.

    A portable Raman system can be used on farms and provides farmers with an accurate and simple yes-or-no response when used to test for the presence of bacterial infections in crops. The development of this rapid and noninvasive method could improve plant disease management and have a transformative impact on agricultural farms by efficiently reducing agricultural yield loss and increasing productivity.

    “Using the diagnostic algorithm method, we experimented on several edible plants such as choy sum,” says DiSTAP and TLL principal investigator and co-corresponding author Rajani Sarojam. “The results showed that the Raman spectroscopy-based method can swiftly detect and quantify innate immunity response in plants infected with bacterial pathogens. We believe that this technology will be beneficial for agricultural farms to increase their productivity by reducing their yield loss due to plant diseases.”

    The researchers are currently working on the development of high-throughput, custom-made portable or hand-held Raman spectrometers that will allow Raman spectral analysis to be quickly and easily performed on field-grown crops.

    SMART and TLL developed and discovered the diagnostic algorithm and Raman spectral biomarkers. TLL also confirmed and validated the detection method through mutant plants. The research is carried out by SMART and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART was established by MIT and the NRF in 2007. The first entity in CREATE developed by NRF, SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Center and five IRGs: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, DiSTAP, Future Urban Mobility, and Low Energy Electronic Systems. SMART research is funded by the NRF under the CREATE program.

    Led by Professor Michael Strano of MIT and Professor Chua Nam Hai of Temasek Lifesciences Laboratory, the DiSTAP program addresses deep problems in food production in Singapore and the world by developing a suite of impactful and novel analytical, genetic, and biomaterial technologies. The goal is to fundamentally change how plant biosynthetic pathways are discovered, monitored, engineered, and ultimately translated to meet the global demand for food and nutrients. Scientists from MIT, TTL, Nanyang Technological University, and National University of Singapore are collaboratively developing new tools for the continuous measurement of important plant metabolites and hormones for novel discovery, deeper understanding and control of plant biosynthetic pathways in ways not yet possible, especially in the context of green leafy vegetables; leveraging these new techniques to engineer plants with highly desirable properties for global food security, including high-yield density production, and drought and pathogen resistance; and applying these technologies to improve urban farming. More

  • in

    J-WAFS launches Food and Climate Systems Transformation Alliance

    Food systems around the world are increasingly at risk from the impacts of climate change. At the same time, these systems, which include all activities from food production to consumption and food waste, are responsible for about one-third of the human-caused greenhouse gas emissions warming the planet. 

    To drive research-based innovation that will make food systems more resilient and sustainable, MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) announced the launch of a new initiative at an event during the UN Climate Change Conference in Glasgow, Scotland, last week. The initiative, called the Food and Climate Systems Transformation (FACT) Alliance, will better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders around the world. 

    “Time is not on our side,” says Greg Sixt, the director of the FACT Alliance and research manager for food and climate systems at J-WAFS. “To date, the research community hasn’t delivered actionable solutions quickly enough or in the policy-relevant form needed if time-critical changes are to be made to our food systems. The FACT Alliance aims to change this.”

    Why, in fact, do our food systems need transformation?

    At COP26 (which stands for “conference of the parties” to the UN Framework Convention on Climate Change, being held for the 26th time this year), a number of countries have pledged to end deforestation, reduce methane emissions, and cease public financing of coal power. In his keynote address at the FACT Alliance event, Professor Pete Smith of the University of Aberdeen, an alliance member institution, noted that food and agriculture also need to be addressed because “there’s an interaction between climate change and the food system.” 

    The UN Intergovernmental Panel on Climate Change warns that a two-degree Celsius increase in average global temperature over preindustrial levels could trigger a worldwide food crisis, and emissions from food systems alone could push us past the two-degree mark even if energy-related emissions could be zeroed out. 

    Smith said dramatic and rapid transformations are needed to deliver safe, nutritious food for all, with reduced environmental impact and increased resilience to climate change. With a global network of leading research institutions and collaborating stakeholder organizations, the FACT Alliance aims to facilitate new, solutions-oriented research for addressing the most challenging aspects of food systems in the era of climate change. 

    How the FACT Alliance works

    Central to the work of the FACT Alliance is the development of new methodologies for aligning data across scales and food systems components, improving data access, integrating research across the diverse disciplines that address aspects of food systems, making stakeholders partners in the research process, and assessing impact in the context of complex and interconnected food and climate systems. 

    The FACT Alliance will conduct what’s known as “convergence research,” which meets complex problems with approaches that embody deep integration across disciplines. This kind of research calls for close association with the stakeholders who both make decisions and are directly affected by how food systems work, be they farmers, extension services (i.e., agricultural advisories), policymakers, international aid organizations, consumers, or others. By inviting stakeholders and collaborators to be part of the research process, the FACT Alliance allows for engagement at the scale, geography, and scope that is most relevant to the needs of each, integrating global and local teams to achieve better outcomes. 

    “Doing research in isolation of all the stakeholders and in isolation of the goals that we want to achieve will not deliver the transformation that we need,” said Smith. “The problem is too big for us to solve in isolation, and we need broad alliances to tackle the issue, and that’s why we developed the FACT Alliance.” 

    Members and collaborators

    Led by MIT’s J-WAFS, the FACT Alliance is currently made up of 16 core members and an associated network of collaborating stakeholder organizations. 

    “As the central convener of MIT research on food systems, J-WAFS catalyzes collaboration across disciplines,” says Maria Zuber, vice president for research at MIT. “Now, by bringing together a world-class group of research institutions and stakeholders from key sectors, the FACT Alliance aims to advance research that will help alleviate climate impacts on food systems and mitigate food system impacts on climate.”

    J-WAFS co-hosted the COP26 event “Bridging the Science-Policy Gap for Impactful, Demand-Driven Food Systems Innovation” with Columbia University, the American University of Beirut, and the CGIAR research program Climate Change, Agriculture and Food Security (CCAFS). The event featured a panel discussion with several FACT Alliance members and the UK Foreign, Commonwealth and Development Office (FCDO). More

  • in

    Saving seaweed with machine learning

    Last year, Charlene Xia ’17, SM ’20 found herself at a crossroads. She was finishing up her master’s degree in media arts and sciences from the MIT Media Lab and had just submitted applications to doctoral degree programs. All Xia could do was sit and wait. In the meantime, she narrowed down her career options, regardless of whether she was accepted to any program.

    “I had two thoughts: I’m either going to get a PhD to work on a project that protects our planet, or I’m going to start a restaurant,” recalls Xia.

    Xia poured over her extensive cookbook collection, researching international cuisines as she anxiously awaited word about her graduate school applications. She even looked into the cost of a food truck permit in the Boston area. Just as she started hatching plans to open a plant-based skewer restaurant, Xia received word that she had been accepted into the mechanical engineering graduate program at MIT.

    Shortly after starting her doctoral studies, Xia’s advisor, Professor David Wallace, approached her with an interesting opportunity. MathWorks, a software company known for developing the MATLAB computing platform, had announced a new seed funding program in MIT’s Department of Mechanical Engineering. The program encouraged collaborative research projects focused on the health of the planet.

    “I saw this as a super-fun opportunity to combine my passion for food, my technical expertise in ocean engineering, and my interest in sustainably helping our planet,” says Xia.

    Play video

    From MIT Mechanical Engineering: “Saving Seaweed with Machine Learning”

    Wallace knew Xia would be up to the task of taking an interdisciplinary approach to solve an issue related to the health of the planet. “Charlene is a remarkable student with extraordinary talent and deep thoughtfulness. She is pretty much fearless, embracing challenges in almost any domain with the well-founded belief that, with effort, she will become a master,” says Wallace.

    Alongside Wallace and Associate Professor Stefanie Mueller, Xia proposed a project to predict and prevent the spread of diseases in aquaculture. The team focused on seaweed farms in particular.

    Already popular in East Asian cuisines, seaweed holds tremendous potential as a sustainable food source for the world’s ever-growing population. In addition to its nutritive value, seaweed combats various environmental threats. It helps fight climate change by absorbing excess carbon dioxide in the atmosphere, and can also absorb fertilizer run-off, keeping coasts cleaner.

    As with so much of marine life, seaweed is threatened by the very thing it helps mitigate against: climate change. Climate stressors like warm temperatures or minimal sunlight encourage the growth of harmful bacteria such as ice-ice disease. Within days, entire seaweed farms are decimated by unchecked bacterial growth.

    To solve this problem, Xia turned to the microbiota present in these seaweed farms as a predictive indicator of any threat to the seaweed or livestock. “Our project is to develop a low-cost device that can detect and prevent diseases before they affect seaweed or livestock by monitoring the microbiome of the environment,” says Xia.

    The team pairs old technology with the latest in computing. Using a submersible digital holographic microscope, they take a 2D image. They then use a machine learning system known as a neural network to convert the 2D image into a representation of the microbiome present in the 3D environment.

    “Using a machine learning network, you can take a 2D image and reconstruct it almost in real time to get an idea of what the microbiome looks like in a 3D space,” says Xia.

    The software can be run in a small Raspberry Pi that could be attached to the holographic microscope. To figure out how to communicate these data back to the research team, Xia drew upon her master’s degree research.

    In that work, under the guidance of Professor Allan Adams and Professor Joseph Paradiso in the Media Lab, Xia focused on developing small underwater communication devices that can relay data about the ocean back to researchers. Rather than the usual $4,000, these devices were designed to cost less than $100, helping lower the cost barrier for those interested in uncovering the many mysteries of our oceans. The communication devices can be used to relay data about the ocean environment from the machine learning algorithms.

    By combining these low-cost communication devices along with microscopic images and machine learning, Xia hopes to design a low-cost, real-time monitoring system that can be scaled to cover entire seaweed farms.

    “It’s almost like having the ‘internet of things’ underwater,” adds Xia. “I’m developing this whole underwater camera system alongside the wireless communication I developed that can give me the data while I’m sitting on dry land.”

    Armed with these data about the microbiome, Xia and her team can detect whether or not a disease is about to strike and jeopardize seaweed or livestock before it is too late.

    While Xia still daydreams about opening a restaurant, she hopes the seaweed project will prompt people to rethink how they consider food production in general.

    “We should think about farming and food production in terms of the entire ecosystem,” she says. “My meta-goal for this project would be to get people to think about food production in a more holistic and natural way.” More