More stories

  • in

    Machine learning facilitates “turbulence tracking” in fusion reactors

    Fusion, which promises practically unlimited, carbon-free energy using the same processes that power the sun, is at the heart of a worldwide research effort that could help mitigate climate change.

    A multidisciplinary team of researchers is now bringing tools and insights from machine learning to aid this effort. Scientists from MIT and elsewhere have used computer-vision models to identify and track turbulent structures that appear under the conditions needed to facilitate fusion reactions.

    Monitoring the formation and movements of these structures, called filaments or “blobs,” is important for understanding the heat and particle flows exiting from the reacting fuel, which ultimately determines the engineering requirements for the reactor walls to meet those flows. However, scientists typically study blobs using averaging techniques, which trade details of individual structures in favor of aggregate statistics. Individual blob information must be tracked by marking them manually in video data. 

    The researchers built a synthetic video dataset of plasma turbulence to make this process more effective and efficient. They used it to train four computer vision models, each of which identifies and tracks blobs. They trained the models to pinpoint blobs in the same ways that humans would.

    When the researchers tested the trained models using real video clips, the models could identify blobs with high accuracy — more than 80 percent in some cases. The models were also able to effectively estimate the size of blobs and the speeds at which they moved.

    Because millions of video frames are captured during just one fusion experiment, using machine-learning models to track blobs could give scientists much more detailed information.

    “Before, we could get a macroscopic picture of what these structures are doing on average. Now, we have a microscope and the computational power to analyze one event at a time. If we take a step back, what this reveals is the power available from these machine-learning techniques, and ways to use these computational resources to make progress,” says Theodore Golfinopoulos, a research scientist at the MIT Plasma Science and Fusion Center and co-author of a paper detailing these approaches.

    His fellow co-authors include lead author Woonghee “Harry” Han, a physics PhD candidate; senior author Iddo Drori, a visiting professor in the Computer Science and Artificial Intelligence Laboratory (CSAIL), faculty associate professor at Boston University, and adjunct at Columbia University; as well as others from the MIT Plasma Science and Fusion Center, the MIT Department of Civil and Environmental Engineering, and the Swiss Federal Institute of Technology at Lausanne in Switzerland. The research appears today in Nature Scientific Reports.

    Heating things up

    For more than 70 years, scientists have sought to use controlled thermonuclear fusion reactions to develop an energy source. To reach the conditions necessary for a fusion reaction, fuel must be heated to temperatures above 100 million degrees Celsius. (The core of the sun is about 15 million degrees Celsius.)

    A common method for containing this super-hot fuel, called plasma, is to use a tokamak. These devices utilize extremely powerful magnetic fields to hold the plasma in place and control the interaction between the exhaust heat from the plasma and the reactor walls.

    However, blobs appear like filaments falling out of the plasma at the very edge, between the plasma and the reactor walls. These random, turbulent structures affect how energy flows between the plasma and the reactor.

    “Knowing what the blobs are doing strongly constrains the engineering performance that your tokamak power plant needs at the edge,” adds Golfinopoulos.

    Researchers use a unique imaging technique to capture video of the plasma’s turbulent edge during experiments. An experimental campaign may last months; a typical day will produce about 30 seconds of data, corresponding to roughly 60 million video frames, with thousands of blobs appearing each second. This makes it impossible to track all blobs manually, so researchers rely on average sampling techniques that only provide broad characteristics of blob size, speed, and frequency.

    “On the other hand, machine learning provides a solution to this by blob-by-blob tracking for every frame, not just average quantities. This gives us much more knowledge about what is happening at the boundary of the plasma,” Han says.

    He and his co-authors took four well-established computer vision models, which are commonly used for applications like autonomous driving, and trained them to tackle this problem.

    Simulating blobs

    To train these models, they created a vast dataset of synthetic video clips that captured the blobs’ random and unpredictable nature.

    “Sometimes they change direction or speed, sometimes multiple blobs merge, or they split apart. These kinds of events were not considered before with traditional approaches, but we could freely simulate those behaviors in the synthetic data,” Han says.

    Creating synthetic data also allowed them to label each blob, which made the training process more effective, Drori adds.

    Using these synthetic data, they trained the models to draw boundaries around blobs, teaching them to closely mimic what a human scientist would draw.

    Then they tested the models using real video data from experiments. First, they measured how closely the boundaries the models drew matched up with actual blob contours.

    But they also wanted to see if the models predicted objects that humans would identify. They asked three human experts to pinpoint the centers of blobs in video frames and checked to see if the models predicted blobs in those same locations.

    The models were able to draw accurate blob boundaries, overlapping with brightness contours which are considered ground-truth, about 80 percent of the time. Their evaluations were similar to those of human experts, and successfully predicted the theory-defined regime of the blob, which agrees with the results from a traditional method.

    Now that they have shown the success of using synthetic data and computer vision models for tracking blobs, the researchers plan to apply these techniques to other problems in fusion research, such as estimating particle transport at the boundary of a plasma, Han says.

    They also made the dataset and models publicly available, and look forward to seeing how other research groups apply these tools to study the dynamics of blobs, says Drori.

    “Prior to this, there was a barrier to entry that mostly the only people working on this problem were plasma physicists, who had the datasets and were using their methods. There is a huge machine-learning and computer-vision community. One goal of this work is to encourage participation in fusion research from the broader machine-learning community toward the broader goal of helping solve the critical problem of climate change,” he adds.

    This research is supported, in part, by the U.S. Department of Energy and the Swiss National Science Foundation. More

  • in

    Finding community in high-energy-density physics

    Skylar Dannhoff knew one thing: She did not want to be working alone.

    As an undergraduate at Case Western Reserve University, she had committed to a senior project that often felt like solitary lab work, a feeling heightened by the pandemic. Though it was an enriching experience, she was determined to find a graduate school environment that would foster community, one “with lots of people, lots of collaboration; where it’s impossible to work until 3 a.m. without anyone noticing.” A unique group at the Plasma Science and Fusion Center (PSFC) looked promising: the High-Energy-Density Physics (HEDP) division, a lead partner in the National Nuclear Security Administration’s Center for Excellence at MIT.

    “It was a shot in the dark, just more of a whim than anything,” she says of her request to join HEDP on her application to MIT’s Department of Physics. “And then, somehow, they reached out to me. I told them I’m willing to learn about plasma. I didn’t know anything about it.”

    What she did know was that the HEDP group collaborates with other U.S. laboratories on an approach to creating fusion energy known as inertial confinement fusion (ICF). One version of the technique, known as direct-drive ICF, aims multiple laser beams symmetrically onto a spherical capsule filled with nuclear fuel. The other, indirect-drive ICF, instead aims multiple lasers beams into a gold cylindrical cavity called a hohlraum, within which the spherical fuel capsule is positioned. The laser beams are configured to hit the inner hohlraum wall, generating a “bath” of X-rays, which in turn compress the fuel capsule.

    Imploding the capsule generates intense fusion energy within a tiny fraction of a second (an order of tens of picoseconds). In August 2021, the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) used this method to produce an historic fusion yield of 1.3 megajoules, putting researchers within reach of “ignition,” the point where the self-sustained fusion burn spreads into the surrounding fuel, leading to a high fusion-energy gain.  

    Joining the group just a month before this long-sought success, Dannhoff was impressed more with the response of her new teammates and the ICF community than with the scientific milestone. “I got a better appreciation for people who had spent their entire careers working on this project, just chugging along doing their best, ignoring the naysayers. I was excited for the people.”

    Dannhoff is now working toward extending the success of NIF and other ICF experiments, like the OMEGA laser at the University of Rochester’s Laboratory for Laser Energetics. Under the supervision of Senior Research Scientist Chikang Li, she is studying what happens to the flow of plasma within the hohlraum cavity during indirect ICF experiments, particularly for hohlraums with inner-wall aerogel foam linings. Experiments, over the last decade, have shown just how excruciatingly precise the symmetry in ICF targets must be. The more symmetric the X-ray drive, the more effective the implosion, and it is possible that these foam linings will improve the X-ray symmetry and drive efficiency.

    Dannhoff is specifically interested in studying the behavior of silicon and tantalum-based foam liners. She is as concerned with the challenges of the people at General Atomics (GA) and LLNL who are creating these targets as she is with the scientific outcome.

    “I just had a meeting with GA yesterday,” she notes. “And it’s a really tricky process. It’s kind of pushing the boundaries of what is doable at the moment. I got a much better sense of how demanding this project is for them, how much we’re asking of them.”

    What excites Dannhoff is the teamwork she observes, both at MIT and between ICF institutions around the United States. With roughly 10 graduate students and postdocs down the hall, each with an assigned lead role in lab management, she knows she can consult an expert on almost any question. And collaborators across the country are just an email away. “Any information that people can give you, they will give you, and usually very freely,” she notes. “Everyone just wants to see this work.”

    That Dannhoff is a natural team player is also evidenced in her hobbies. A hockey goalie, she prioritizes playing with MIT’s intramural teams, “because goalies are a little hard to come by. I just play with whoever needs a goalie on that night, and it’s a lot of fun.”

    She is also a member of the radio community, a fellowship she first embraced at Case Western — a moment she describes as a turning point in her life. “I literally don’t know who I would be today if I hadn’t figured out radio is something I’m interested in,” she admits. The MIT Radio Society provided the perfect landing pad for her arrival in Cambridge, full of the kinds of supportive, interesting, knowledgeable students she had befriended as an undergraduate. She credits radio with helping her realize that she could make her greatest contributions to science by focusing on engineering.

    Danhoff gets philosophical as she marvels at the invisible waves that surround us.

    “Not just radio waves: every wave,” she asserts. “The voice is the everywhere. Music, signal, space phenomena: it’s always around. And all we have to do is make the right little device and have the right circuit elements put in the right order to unmix and mix the signals and amplify them. And bada-bing, bada-boom, we’re talking with the universe.”

    “Maybe that epitomizes physics to me,” she adds. “We’re trying to listen to the universe, and it’s talking to us. We just have to come up with the right tools and hear what it’s trying to say.” More

  • in

    3 Questions: Blue hydrogen and the world’s energy systems

    In the past several years, hydrogen energy has increasingly become a more central aspect of the clean energy transition. Hydrogen can produce clean, on-demand energy that could complement variable renewable energy sources such as wind and solar power. That being said, pathways for deploying hydrogen at scale have yet to be fully explored. In particular, the optimal form of hydrogen production remains in question.

    MIT Energy Initiative Research Scientist Emre Gençer and researchers from a wide range of global academic and research institutions recently published “On the climate impacts of blue hydrogen production,” a comprehensive life-cycle assessment analysis of blue hydrogen, a term referring to natural gas-based hydrogen production with carbon capture and storage. Here, Gençer describes blue hydrogen and the role that hydrogen will play more broadly in decarbonizing the world’s energy systems.

    Q: What are the differences between gray, green, and blue hydrogen?

    A: Though hydrogen does not generate any emissions directly when it is used, hydrogen production can have a huge environmental impact. Colors of hydrogen are increasingly used to distinguish different production methods and as a proxy to represent the associated environmental impact. Today, close to 95 percent of hydrogen production comes from fossil resources. As a result, the carbon dioxide (CO2) emissions from hydrogen production are quite high. Gray, black, and brown hydrogen refer to fossil-based production. Gray is the most common form of production and comes from natural gas, or methane, using steam methane reformation but without capturing CO2.

    There are two ways to move toward cleaner hydrogen production. One is applying carbon capture and storage to the fossil fuel-based hydrogen production processes. Natural gas-based hydrogen production with carbon capture and storage is referred to as blue hydrogen. If substantial amounts of CO2 from natural gas reforming are captured and permanently stored, such hydrogen could be a low-carbon energy carrier. The second way to produce cleaner hydrogen is by using electricity to produce hydrogen via electrolysis. In this case, the source of the electricity determines the environmental impact of the hydrogen, with the lowest impact being achieved when electricity is generated from renewable sources, such as wind and solar. This is known as green hydrogen.

    Q: What insights have you gleaned with a life cycle assessment (LCA) of blue hydrogen and other low-carbon energy systems?

    A: Mitigating climate change requires significant decarbonization of the global economy. Accurate estimation of cumulative greenhouse gas (GHG) emissions and its reduction pathways is critical irrespective of the source of emissions. An LCA approach allows the quantification of the environmental life cycle of a commercial product, process, or service impact with all the stages (cradle-to-grave). The LCA-based comparison of alternative energy pathways, fuel options, etc., provides an apples-to-apples comparison of low-carbon energy choices. In the context of low-carbon hydrogen, it is essential to understand the GHG impact of supply chain options. Depending on the production method, contribution of life-cycle stages to the total emissions might vary. For example, with natural gas–based hydrogen production, emissions associated with production and transport of natural gas might be a significant contributor based on its leakage and flaring rates. If these rates are not precisely accounted for, the environmental impact of blue hydrogen can be underestimated. However, the same rationale is also true for electricity-based hydrogen production. If the electricity is not supplied from low-
carbon sources such as wind, solar, or nuclear, the carbon intensity of hydrogen can be significantly underestimated. In the case of nuclear, there are also other environmental impact considerations.

    An LCA approach — if performed with consistent system boundaries — can provide an accurate environmental impact comparison. It should also be noted that these estimations can only be as good as the assumptions and correlations used unless they are supported by measurements. 

    Q: What conditions are needed to make blue hydrogen production most effective, and how can it complement other decarbonization pathways?

    A: Hydrogen is considered one of the key vectors for the decarbonization of hard-to-abate sectors such as heavy-duty transportation. Currently, more than 95 percent of global hydrogen production is fossil-fuel based. In the next decade, massive amounts of hydrogen must be produced to meet this anticipated demand. It is very hard, if not impossible, to meet this demand without leveraging existing production assets. The immediate and relatively cost-effective option is to retrofit existing plants with carbon capture and storage (blue hydrogen).

    The environmental impact of blue hydrogen may vary over large ranges but depends on only a few key parameters: the methane emission rate of the natural gas supply chain, the CO2 removal rate at the hydrogen production plant, and the global warming metric applied. State-of-the-art reforming with high CO2 capture rates, combined with natural gas supply featuring low methane emissions, substantially reduces GHG emissions compared to conventional natural gas reforming. Under these conditions, blue hydrogen is compatible with low-carbon economies and exhibits climate change impacts at the upper end of the range of those caused by hydrogen production from renewable-based electricity. However, neither current blue nor green hydrogen production pathways render fully “net-zero” hydrogen without additional CO2 removal.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Processing waste biomass to reduce airborne emissions

    To prepare fields for planting, farmers the world over often burn corn stalks, rice husks, hay, straw, and other waste left behind from the previous harvest. In many places, the practice creates huge seasonal clouds of smog, contributing to air pollution that kills 7 million people globally a year, according to the World Health Organization.

    Annually, $120 billion worth of crop and forest residues are burned in the open worldwide — a major waste of resources in an energy-starved world, says Kevin Kung SM ’13, PhD ’17. Kung is working to transform this waste biomass into marketable products — and capitalize on a billion-dollar global market — through his MIT spinoff company, Takachar.

    Founded in 2015, Takachar develops small-scale, low-cost, portable equipment to convert waste biomass into solid fuel using a variety of thermochemical treatments, including one known as oxygen-lean torrefaction. The technology emerged from Kung’s PhD project in the lab of Ahmed Ghoniem, the Ronald C. Crane (1972) Professor of Mechanical Engineering at MIT.

    Biomass fuels, including wood, peat, and animal dung, are a major source of carbon emissions — but billions of people rely on such fuels for cooking, heating, and other household needs. “Currently, burning biomass generates 10 percent of the primary energy used worldwide, and the process is used largely in rural, energy-poor communities. We’re not going to change that overnight. There are places with no other sources of energy,” Ghoniem says.

    What Takachar’s technology provides is a way to use biomass more cleanly and efficiently by concentrating the fuel and eliminating contaminants such as moisture and dirt, thus creating a “clean-burning” fuel — one that generates less smoke. “In rural communities where biomass is used extensively as a primary energy source, torrefaction will address air pollution head-on,” Ghoniem says.

    Thermochemical treatment densifies biomass at elevated temperatures, converting plant materials that are typically loose, wet, and bulky into compact charcoal. Centralized processing plants exist, but collection and transportation present major barriers to utilization, Kung says. Takachar’s solution moves processing into the field: To date, Takachar has worked with about 5,500 farmers to process 9,000 metric tons of crops.

    Takachar estimates its technology has the potential to reduce carbon dioxide equivalent emissions by gigatons per year at scale. (“Carbon dioxide equivalent” is a measure used to gauge global warming potential.) In recognition, in 2021 Takachar won the first-ever Earthshot Prize in the clean air category, a £1 million prize funded by Prince William and Princess Kate’s Royal Foundation.

    Roots in Kenya

    As Kung tells the story, Takachar emerged from a class project that took him to Kenya — which explains the company’s name, a combination of takataka, which mean “trash” in Swahili, and char, for the charcoal end product.

    It was 2011, and Kung was at MIT as a biological engineering grad student focused on cancer research. But “MIT gives students big latitude for exploration, and I took courses outside my department,” he says. In spring 2011, he signed up for a class known as 15.966 (Global Health Delivery Lab) in the MIT Sloan School of Management. The class brought Kung to Kenya to work with a nongovernmental organization in Nairobi’s Kibera, the largest urban slum in Africa.

    “We interviewed slum households for their views on health, and that’s when I noticed the charcoal problem,” Kung says. The problem, as Kung describes it, was that charcoal was everywhere in Kibera — piled up outside, traded by the road, and used as the primary fuel, even indoors. Its creation contributed to deforestation, and its smoke presented a serious health hazard.

    Eager to address this challenge, Kung secured fellowship support from the MIT International Development Initiative and the Priscilla King Gray Public Service Center to conduct more research in Kenya. In 2012, he formed Takachar as a team and received seed money from the MIT IDEAS Global Challenge, MIT Legatum Center for Development and Entrepreneurship, and D-Lab to produce charcoal from household organic waste. (This work also led to a fertilizer company, Safi Organics, that Kung founded in 2016 with the help of MIT IDEAS. But that is another story.)

    Meanwhile, Kung had another top priority: finding a topic for his PhD dissertation. Back at MIT, he met Alexander Slocum, the Walter M. May and A. Hazel May Professor of Mechanical Engineering, who on a long walk-and-talk along the Charles River suggested he turn his Kenya work into a thesis. Slocum connected him with Robert Stoner, deputy director for science and technology at the MIT Energy Initiative (MITEI) and founding director of MITEI’s Tata Center for Technology and Design. Stoner in turn introduced Kung to Ghoniem, who became his PhD advisor, while Slocum and Stoner joined his doctoral committee.

    Roots in MIT lab

    Ghoniem’s telling of the Takachar story begins, not surprisingly, in the lab. Back in 2010, he had a master’s student interested in renewable energy, and he suggested the student investigate biomass. That student, Richard Bates ’10, SM ’12, PhD ’16, began exploring the science of converting biomass to more clean-burning charcoal through torrefaction.

    Most torrefaction (also known as low-temperature pyrolysis) systems use external heating sources, but the lab’s goal, Ghoniem explains, was to develop an efficient, self-sustained reactor that would generate fewer emissions. “We needed to understand the chemistry and physics of the process, and develop fundamental scaling models, before going to the lab to build the device,” he says.

    By the time Kung joined the lab in 2013, Ghoniem was working with the Tata Center to identify technology suitable for developing countries and largely based on renewable energy. Kung was able to secure a Tata Fellowship and — building on Bates’ research — develop the small-scale, practical device for biomass thermochemical conversion in the field that launched Takachar.

    This device, which was patented by MIT with inventors Kung, Ghoniem, Stoner, MIT research scientist Santosh Shanbhogue, and Slocum, is self-contained and scalable. It burns a little of the biomass to generate heat; this heat bakes the rest of the biomass, releasing gases; the system then introduces air to enable these gases to combust, which burns off the volatiles and generates more heat, keeping the thermochemical reaction going.

    “The trick is how to introduce the right amount of air at the right location to sustain the process,” Ghoniem explains. “If you put in more air, that will burn the biomass. If you put in less, there won’t be enough heat to produce the charcoal. That will stop the reaction.”

    About 10 percent of the biomass is used as fuel to support the reaction, Kung says, adding that “90 percent is densified into a form that’s easier to handle and utilize.” He notes that the research received financial support from the Abdul Latif Jameel Water and Food Systems Lab and the Deshpande Center for Technological Innovation, both at MIT. Sonal Thengane, another postdoc in Ghoniem’s lab, participated in the effort to scale up the technology at the MIT Bates Lab (no relation to Richard Bates).

    The charcoal produced is more valuable per ton and easier to transport and sell than biomass, reducing transportation costs by two-thirds and giving farmers an additional income opportunity — and an incentive not to burn agricultural waste, Kung says. “There’s more income for farmers, and you get better air quality.”

    Roots in India

    When Kung became a Tata Fellow, he joined a program founded to take on the biggest challenges of the developing world, with a focus on India. According to Stoner, Tata Fellows, including Kung, typically visit India twice a year and spend six to eight weeks meeting stakeholders in industry, the government, and in communities to gain perspective on their areas of study.

    “A unique part of Tata is that you’re considering the ecosystem as a whole,” says Kung, who interviewed hundreds of smallholder farmers, met with truck drivers, and visited existing biomass processing plants during his Tata trips to India. (Along the way, he also connected with Indian engineer Vidyut Mohan, who became Takachar’s co-founder.)

    “It was very important for Kevin to be there walking about, experimenting, and interviewing farmers,” Stoner says. “He learned about the lives of farmers.”

    These experiences helped instill in Kung an appreciation for small farmers that still drives him today as Takachar rolls out its first pilot programs, tinkers with the technology, grows its team (now up to 10), and endeavors to build a revenue stream. So, while Takachar has gotten a lot of attention and accolades — from the IDEAS award to the Earthshot Prize — Kung says what motivates him is the prospect of improving people’s lives.

    The dream, he says, is to empower communities to help both the planet and themselves. “We’re excited about the environmental justice perspective,” he says. “Our work brings production and carbon removal or avoidance to rural communities — providing them with a way to convert waste, make money, and reduce air pollution.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Turning carbon dioxide into valuable products

    Carbon dioxide (CO2) is a major contributor to climate change and a significant product of many human activities, notably industrial manufacturing. A major goal in the energy field has been to chemically convert emitted CO2 into valuable chemicals or fuels. But while CO2 is available in abundance, it has not yet been widely used to generate value-added products. Why not?

    The reason is that CO2 molecules are highly stable and therefore not prone to being chemically converted to a different form. Researchers have sought materials and device designs that could help spur that conversion, but nothing has worked well enough to yield an efficient, cost-effective system.

    Two years ago, Ariel Furst, the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT, decided to try using something different — a material that gets more attention in discussions of biology than of chemical engineering. Already, results from work in her lab suggest that her unusual approach is paying off.

    The stumbling block

    The challenge begins with the first step in the CO2 conversion process. Before being transformed into a useful product, CO2 must be chemically converted into carbon monoxide (CO). That conversion can be encouraged using electrochemistry, a process in which input voltage provides the extra energy needed to make the stable CO2 molecules react. The problem is that achieving the CO2-to-CO conversion requires large energy inputs — and even then, CO makes up only a small fraction of the products that are formed.

    To explore opportunities for improving this process, Furst and her research group focused on the electrocatalyst, a material that enhances the rate of a chemical reaction without being consumed in the process. The catalyst is key to successful operation. Inside an electrochemical device, the catalyst is often suspended in an aqueous (water-based) solution. When an electric potential (essentially a voltage) is applied to a submerged electrode, dissolved CO2 will — helped by the catalyst — be converted to CO.

    But there’s one stumbling block: The catalyst and the CO2 must meet on the surface of the electrode for the reaction to occur. In some studies, the catalyst is dispersed in the solution, but that approach requires more catalyst and isn’t very efficient, according to Furst. “You have to both wait for the diffusion of CO2 to the catalyst and for the catalyst to reach the electrode before the reaction can occur,” she explains. As a result, researchers worldwide have been exploring different methods of “immobilizing” the catalyst on the electrode.

    Connecting the catalyst and the electrode

    Before Furst could delve into that challenge, she needed to decide which of the two types of CO2 conversion catalysts to work with: the traditional solid-state catalyst or a catalyst made up of small molecules. In examining the literature, she concluded that small-molecule catalysts held the most promise. While their conversion efficiency tends to be lower than that of solid-state versions, molecular catalysts offer one important advantage: They can be tuned to emphasize reactions and products of interest.

    Two approaches are commonly used to immobilize small-molecule catalysts on an electrode. One involves linking the catalyst to the electrode by strong covalent bonds — a type of bond in which atoms share electrons; the result is a strong, essentially permanent connection. The other sets up a non-covalent attachment between the catalyst and the electrode; unlike a covalent bond, this connection can easily be broken.

    Neither approach is ideal. In the former case, the catalyst and electrode are firmly attached, ensuring efficient reactions; but when the activity of the catalyst degrades over time (which it will), the electrode can no longer be accessed. In the latter case, a degraded catalyst can be removed; but the exact placement of the small molecules of the catalyst on the electrode can’t be controlled, leading to an inconsistent, often decreasing, catalytic efficiency — and simply increasing the amount of catalyst on the electrode surface without concern for where the molecules are placed doesn’t solve the problem.

    What was needed was a way to position the small-molecule catalyst firmly and accurately on the electrode and then release it when it degrades. For that task, Furst turned to what she and her team regard as a kind of “programmable molecular Velcro”: deoxyribonucleic acid, or DNA.

    Adding DNA to the mix

    Mention DNA to most people, and they think of biological functions in living things. But the members of Furst’s lab view DNA as more than just genetic code. “DNA has these really cool physical properties as a biomaterial that people don’t often think about,” she says. “DNA can be used as a molecular Velcro that can stick things together with very high precision.”

    Furst knew that DNA sequences had previously been used to immobilize molecules on surfaces for other purposes. So she devised a plan to use DNA to direct the immobilization of catalysts for CO2 conversion.

    Her approach depends on a well-understood behavior of DNA called hybridization. The familiar DNA structure is a double helix that forms when two complementary strands connect. When the sequence of bases (the four building blocks of DNA) in the individual strands match up, hydrogen bonds form between complementary bases, firmly linking the strands together.

    Using that behavior for catalyst immobilization involves two steps. First, the researchers attach a single strand of DNA to the electrode. Then they attach a complementary strand to the catalyst that is floating in the aqueous solution. When the latter strand gets near the former, the two strands hybridize; they become linked by multiple hydrogen bonds between properly paired bases. As a result, the catalyst is firmly affixed to the electrode by means of two interlocked, self-assembled DNA strands, one connected to the electrode and the other to the catalyst.

    Better still, the two strands can be detached from one another. “The connection is stable, but if we heat it up, we can remove the secondary strand that has the catalyst on it,” says Furst. “So we can de-hybridize it. That allows us to recycle our electrode surfaces — without having to disassemble the device or do any harsh chemical steps.”

    Experimental investigation

    To explore that idea, Furst and her team — postdocs Gang Fan and Thomas Gill, former graduate student Nathan Corbin PhD ’21, and former postdoc Amruta Karbelkar — performed a series of experiments using three small-molecule catalysts based on porphyrins, a group of compounds that are biologically important for processes ranging from enzyme activity to oxygen transport. Two of the catalysts involve a synthetic porphyrin plus a metal center of either cobalt or iron. The third catalyst is hemin, a natural porphyrin compound used to treat porphyria, a set of disorders that can affect the nervous system. “So even the small-molecule catalysts we chose are kind of inspired by nature,” comments Furst.

    In their experiments, the researchers first needed to modify single strands of DNA and deposit them on one of the electrodes submerged in the solution inside their electrochemical cell. Though this sounds straightforward, it did require some new chemistry. Led by Karbelkar and third-year undergraduate researcher Rachel Ahlmark, the team developed a fast, easy way to attach DNA to electrodes. For this work, the researchers’ focus was on attaching DNA, but the “tethering” chemistry they developed can also be used to attach enzymes (protein catalysts), and Furst believes it will be highly useful as a general strategy for modifying carbon electrodes.

    Once the single strands of DNA were deposited on the electrode, the researchers synthesized complementary strands and attached to them one of the three catalysts. When the DNA strands with the catalyst were added to the solution in the electrochemical cell, they readily hybridized with the DNA strands on the electrode. After half-an-hour, the researchers applied a voltage to the electrode to chemically convert CO2 dissolved in the solution and used a gas chromatograph to analyze the makeup of the gases produced by the conversion.

    The team found that when the DNA-linked catalysts were freely dispersed in the solution, they were highly soluble — even when they included small-molecule catalysts that don’t dissolve in water on their own. Indeed, while porphyrin-based catalysts in solution often stick together, once the DNA strands were attached, that counterproductive behavior was no longer evident.

    The DNA-linked catalysts in solution were also more stable than their unmodified counterparts. They didn’t degrade at voltages that caused the unmodified catalysts to degrade. “So just attaching that single strand of DNA to the catalyst in solution makes those catalysts more stable,” says Furst. “We don’t even have to put them on the electrode surface to see improved stability.” When converting CO2 in this way, a stable catalyst will give a steady current over time. Experimental results showed that adding the DNA prevented the catalyst from degrading at voltages of interest for practical devices. Moreover, with all three catalysts in solution, the DNA modification significantly increased the production of CO per minute.

    Allowing the DNA-linked catalyst to hybridize with the DNA connected to the electrode brought further improvements, even compared to the same DNA-linked catalyst in solution. For example, as a result of the DNA-directed assembly, the catalyst ended up firmly attached to the electrode, and the catalyst stability was further enhanced. Despite being highly soluble in aqueous solutions, the DNA-linked catalyst molecules remained hybridized at the surface of the electrode, even under harsh experimental conditions.

    Immobilizing the DNA-linked catalyst on the electrode also significantly increased the rate of CO production. In a series of experiments, the researchers monitored the CO production rate with each of their catalysts in solution without attached DNA strands — the conventional setup — and then with them immobilized by DNA on the electrode. With all three catalysts, the amount of CO generated per minute was far higher when the DNA-linked catalyst was immobilized on the electrode.

    In addition, immobilizing the DNA-linked catalyst on the electrode greatly increased the “selectivity” in terms of the products. One persistent challenge in using CO2 to generate CO in aqueous solutions is that there is an inevitable competition between the formation of CO and the formation of hydrogen. That tendency was eased by adding DNA to the catalyst in solution — and even more so when the catalyst was immobilized on the electrode using DNA. For both the cobalt-porphyrin catalyst and the hemin-based catalyst, the formation of CO relative to hydrogen was significantly higher with the DNA-linked catalyst on the electrode than in solution. With the iron-porphyrin catalyst they were about the same. “With the iron, it doesn’t matter whether it’s in solution or on the electrode,” Furst explains. “Both of them have selectivity for CO, so that’s good, too.”

    Progress and plans

    Furst and her team have now demonstrated that their DNA-based approach combines the advantages of the traditional solid-state catalysts and the newer small-molecule ones. In their experiments, they achieved the highly efficient chemical conversion of CO2 to CO and also were able to control the mix of products formed. And they believe that their technique should prove scalable: DNA is inexpensive and widely available, and the amount of catalyst required is several orders of magnitude lower when it’s immobilized using DNA.

    Based on her work thus far, Furst hypothesizes that the structure and spacing of the small molecules on the electrode may directly impact both catalytic efficiency and product selectivity. Using DNA to control the precise positioning of her small-molecule catalysts, she plans to evaluate those impacts and then extrapolate design parameters that can be applied to other classes of energy-conversion catalysts. Ultimately, she hopes to develop a predictive algorithm that researchers can use as they design electrocatalytic systems for a wide variety of applications.

    This research was supported by a grant from the MIT Energy Initiative Seed Fund.

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    High energy and hungry for the hardest problems

    A high school track star and valedictorian, Anne White has always relished moving fast and clearing high hurdles. Since joining the Department of Nuclear Science and Engineering (NSE) in 2009 she has produced path-breaking fusion research, helped attract a more diverse cohort of students and scholars into the discipline, and, during a worldwide pandemic, assumed the role of department head as well as co-lead of an Institute-wide initiative to address climate change. For her exceptional leadership, innovation, and accomplishments in education and research, White was named the School of Engineering Distinguished Professor of Engineering in July 2020.

    But White declares little interest in recognition or promotions. “I don’t care about all that stuff,” she says. She’s in the race for much bigger stakes. “I want to find ways to save the world with nuclear,” she says.

    Tackling turbulence

    It was this goal that drew White to MIT. Her research, honed during graduate studies at the University of California at Los Angeles, involved developing a detailed understanding of conditions inside fusion devices, and resolving issues critical to realizing the vision of fusion energy — a carbon-free, nearly limitless source of power generated by 150-million-degree plasma.

    Harnessing this superheated, gaseous form of matter requires a special donut-shaped device called a tokamak, which contains the plasma within magnetic fields. When White entered fusion around the turn of the millennium, models of plasma behavior in tokamaks didn’t reliably match observed or experimental conditions. She was determined to change that picture, working with MIT’s state-of-the-art research tokamak, Alcator C-Mod.

    Play video

    Alcator C-Mod Tokamak Tour

    White believed solving the fusion puzzle meant getting a handle on plasma turbulence — the process by which charged atomic particles, breaking out of magnetic confinement, transport heat from the core to the cool edges of the tokamak. Although researchers knew that fusion energy depends on containing and controlling the heat of plasma reactions, White recalls that when she began grad school, “it was not widely accepted that turbulence was important, and that it was central to heat transport. She “felt it was critical to compare experimental measurements to first principles physics models, so we could demonstrate the significance of turbulence and give tokamak models better predictive ability.”

    In a series of groundbreaking studies, White’s team created the tools for measuring turbulence in different conditions, and developed computational models that could account for variations in turbulence, all validated by experiments. She was one of the first fusion scientists both to perform experiments and conduct simulations. “We lived in the domain between these two worlds,” she says.

    White’s turbulence models opened up approaches for managing turbulence and maximizing tokamak performance, paving the way for net-energy fusion energy devices, including ITER, the world’s largest fusion experiment, and SPARC, a compact, high-magnetic-field tokamak, a collaboration between MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems.

    Laser-focused on turbulence

    Growing up in the desert city of Yuma, Arizona, White spent her free time outdoors, hiking and camping. “I was always in the space of protecting the environment,” she says. The daughter of two lawyers who taught her “to argue quickly and efficiently,” she excelled in math and physics in high school. Awarded a full ride at the University of Arizona, she was intent on a path in science, one where she could tackle problems like global warming, as it was known then. Physics seemed like the natural concentration for her.

    But there was unexpected pushback. The physics advisor believed her physics grades were lackluster. “I said, ‘Who cares what this guy thinks; I’ll take physics classes anyway,’” recalls White. Being tenacious and “thick skinned,” says White, turned out to be life-altering. “I took nuclear physics, which opened my eyes to fission, which then set me off on a path of understanding nuclear power and advanced nuclear systems,” she says. Math classes introduced her to chaotic systems, and she decided she wanted to study turbulence. Then, at a Society of Physics Students meeting White says she attended for the free food, she learned about fusion.

    “I realized this was what I wanted to do,” says White. “I became totally laser focused on turbulence and tokamaks.”

    At UCLA, she began to develop instruments and methods for measuring and modeling plasma turbulence, working on three different fusion research reactors, and earning fellowships from the Department of Energy (DOE) during her graduate and post-graduate years in fusion energy science. At MIT, she received a DOE Early Career Award that enabled her to build a research team that she now considers her “legacy.”

    As she expanded her research portfolio, White was also intent on incorporating fusion into the NSE curriculum at the undergraduate and graduate level, and more broadly, on making NSE a destination for students concerned about climate change. In recognition of her efforts, she received the 2014 Junior Bose Teaching Award. She also helped design the EdX course, Nuclear Engineering: Science, Systems and Society, introducing thousands of online learners to the potential of the field. “I have to be in the classroom,” she says. “I have to be with students, interacting, and sharing knowledge and lines of inquiry with them.”

    But even as she deepened her engagement with teaching and with her fusion research, which was helping spur development of new fusion energy technologies, White could not resist leaping into a consequential new undertaking: chairing the department. “It sounds cheesy, but I did it for my kid,” she says. “I can be helpful working on fusion, but I thought, what if I can help more by enabling other people across all areas of nuclear? This department gave me so much, I wanted to give back.”

    Although the pandemic struck just months after she stepped into the role in 2019, White propelled the department toward a new strategic plan. “It captures all the urgency and passion of the faculty, and is attractive to new students, with more undergraduates enrolling and more graduate students applying,” she says. White sees the department advancing the broader goals of the field, “articulating why nuclear is fundamentally important across many dimensions for carbon-free electricity and generation.” This means getting students involved in advanced fission technologies such as nuclear batteries and small modular reactors, as well as giving them an education in fusion that will help catalyze a nascent energy industry.

    Restless for a challenge

    White feels she’s still growing into the leadership role. “I’m really enthusiastic and sometimes too intense for people, so I have to dial it back during challenging conversations,” she says. She recently completed a Harvard Business School course on leadership.

    As the recently named co-chair of MIT’s Climate Nucleus (along with Professor Noelle Selin), charged with overseeing MIT’s campus initiatives around climate change, White says she draws on a repertoire of skills that come naturally to her: listening carefully, building consensus, and seeing value in the diversity of opinion. She is optimistic about mobilizing the Institute around goals to lower MIT’s carbon footprint, “using the entire campus as a research lab,” she says.

    In the midst of this push, White continues to advance projects of concern to her, such as making nuclear physics education more accessible. She developed an in-class module involving a simple particle detector for measuring background radiation. “Any high school or university student could build this experiment in 10 minutes and see alpha particle clusters and muons,” she says.

    White is also planning to host “Rising Stars,” an international conference intended to help underrepresented groups break barriers to entry in the field of nuclear science and engineering. “Grand intellectual challenges like saving the world appeal to all genders and backgrounds,” she says.

    These projects, her departmental and institutional duties, and most recently a new job chairing DOE’s Fusion Energy Sciences Advisory Committee leave her precious little time for a life outside work. But she makes time for walks and backpacking with her husband and toddler son, and reading the latest books by female faculty colleagues, such as “The New Breed,” by Media Lab robotics researcher Kate Darling, and “When People Want Punishment,” by Lily Tsai, Ford Professor of Political Science. “There are so many things I don’t know and want to understand,” says White.

    Yet even at leisure, White doesn’t slow down. “It’s restlessness: I love to learn, and anytime someone says a problem is hard, or impossible, I want to tackle it,” she says. There’s no time off, she believes, when the goal is “solving climate change and amplifying the work of other people trying to solve it.” More

  • in

    High-energy and hungry for the hardest problems

    A high school track star and valedictorian, Anne White has always relished moving fast and clearing high hurdles. Since joining the Department of Nuclear Science and Engineering (NSE) in 2009 she has produced path-breaking fusion research, helped attract a more diverse cohort of students and scholars into the discipline, and, during a worldwide pandemic, assumed the role of department head as well as co-lead of an Institute-wide initiative to address climate change. For her exceptional leadership, innovation, and accomplishments in education and research, White was named the School of Engineering Distinguished Professor of Engineering in July 2020.

    But White declares little interest in recognition or promotions. “I don’t care about all that stuff,” she says. She’s in the race for much bigger stakes. “I want to find ways to save the world with nuclear,” she says.

    Tackling turbulence

    It was this goal that drew White to MIT. Her research, honed during graduate studies at the University of California at Los Angeles, involved developing a detailed understanding of conditions inside fusion devices, and resolving issues critical to realizing the vision of fusion energy — a carbon-free, nearly limitless source of power generated by 150-million-degree plasma.

    Harnessing this superheated, gaseous form of matter requires a special donut-shaped device called a tokamak, which contains the plasma within magnetic fields. When White entered fusion around the turn of the millennium, models of plasma behavior in tokamaks didn’t reliably match observed or experimental conditions. She was determined to change that picture, working with MIT’s state-of-the-art research tokamak, Alcator C-Mod.

    Play video

    Alcator C-Mod Tokamak Tour

    White believed solving the fusion puzzle meant getting a handle on plasma turbulence — the process by which charged atomic particles, breaking out of magnetic confinement, transport heat from the core to the cool edges of the tokamak. Although researchers knew that fusion energy depends on containing and controlling the heat of plasma reactions, White recalls that when she began grad school, “it was not widely accepted that turbulence was important, and that it was central to heat transport. She “felt it was critical to compare experimental measurements to first principles physics models, so we could demonstrate the significance of turbulence and give tokamak models better predictive ability.”

    In a series of groundbreaking studies, White’s team created the tools for measuring turbulence in different conditions, and developed computational models that could account for variations in turbulence, all validated by experiments. She was one of the first fusion scientists both to perform experiments and conduct simulations. “We lived in the domain between these two worlds,” she says.

    White’s turbulence models opened up approaches for managing turbulence and maximizing tokamak performance, paving the way for net-energy fusion energy devices, including ITER, the world’s largest fusion experiment, and SPARC, a compact, high-magnetic-field tokamak, a collaboration between MIT’s Plasma Science and Fusion Center and Commonwealth Fusion Systems.

    Laser-focused on turbulence

    Growing up in the desert city of Yuma, Arizona, White spent her free time outdoors, hiking and camping. “I was always in the space of protecting the environment,” she says. The daughter of two lawyers who taught her “to argue quickly and efficiently,” she excelled in math and physics in high school. Awarded a full ride at the University of Arizona, she was intent on a path in science, one where she could tackle problems like global warming, as it was known then. Physics seemed like the natural concentration for her.

    But there was unexpected pushback. The physics advisor believed her physics grades were lackluster. “I said, ‘Who cares what this guy thinks; I’ll take physics classes anyway,’” recalls White. Being tenacious and “thick skinned,” says White, turned out to be life-altering. “I took nuclear physics, which opened my eyes to fission, which then set me off on a path of understanding nuclear power and advanced nuclear systems,” she says. Math classes introduced her to chaotic systems, and she decided she wanted to study turbulence. Then, at a Society of Physics Students meeting White says she attended for the free food, she learned about fusion.

    “I realized this was what I wanted to do,” says White. “I became totally laser focused on turbulence and tokamaks.”

    At UCLA, she began to develop instruments and methods for measuring and modeling plasma turbulence, working on three different fusion research reactors, and earning fellowships from the Department of Energy (DOE) during her graduate and post-graduate years in fusion energy science. At MIT, she received a DOE Early Career Award that enabled her to build a research team that she now considers her “legacy.”

    As she expanded her research portfolio, White was also intent on incorporating fusion into the NSE curriculum at the undergraduate and graduate level, and more broadly, on making NSE a destination for students concerned about climate change. In recognition of her efforts, she received the 2014 Junior Bose Teaching Award. She also helped design the EdX course, Nuclear Engineering: Science, Systems and Society, introducing thousands of online learners to the potential of the field. “I have to be in the classroom,” she says. “I have to be with students, interacting, and sharing knowledge and lines of inquiry with them.”

    But even as she deepened her engagement with teaching and with her fusion research, which was helping spur development of new fusion energy technologies, White could not resist leaping into a consequential new undertaking: chairing the department. “It sounds cheesy, but I did it for my kid,” she says. “I can be helpful working on fusion, but I thought, what if I can help more by enabling other people across all areas of nuclear? This department gave me so much, I wanted to give back.”

    Although the pandemic struck just months after she stepped into the role in 2019, White propelled the department toward a new strategic plan. “It captures all the urgency and passion of the faculty, and is attractive to new students, with more undergraduates enrolling and more graduate students applying,” she says. White sees the department advancing the broader goals of the field, “articulating why nuclear is fundamentally important across many dimensions for carbon-free electricity and generation.” This means getting students involved in advanced fission technologies such as nuclear batteries and small modular reactors, as well as giving them an education in fusion that will help catalyze a nascent energy industry.

    Restless for a challenge

    White feels she’s still growing into the leadership role. “I’m really enthusiastic and sometimes too intense for people, so I have to dial it back during challenging conversations,” she says. She recently completed a Harvard Business School course on leadership.

    As the recently named co-chair of MIT’s Climate Nucleus (along with Professor Noelle Selin), charged with overseeing MIT’s campus initiatives around climate change, White says she draws on a repertoire of skills that come naturally to her: listening carefully, building consensus, and seeing value in the diversity of opinion. She is optimistic about mobilizing the Institute around goals to lower MIT’s carbon footprint, “using the entire campus as a research lab,” she says.

    In the midst of this push, White continues to advance projects of concern to her, such as making nuclear physics education more accessible. She developed an in-class module involving a simple particle detector for measuring background radiation. “Any high school or university student could build this experiment in 10 minutes and see alpha particle clusters and muons,” she says.

    White is also planning to host “Rising Stars,” an international conference intended to help underrepresented groups break barriers to entry in the field of nuclear science and engineering. “Grand intellectual challenges like saving the world appeal to all genders and backgrounds,” she says.

    These projects, her departmental and institutional duties, and most recently a new job chairing DOE’s Fusion Energy Sciences Advisory Committee leave her precious little time for a life outside work. But she makes time for walks and backpacking with her husband and toddler son, and reading the latest books by female faculty colleagues, such as “The New Breed,” by Media Lab robotics researcher Kate Darling, and “When People Want Punishment,” by Lily Tsai, Ford Professor of Political Science. “There are so many things I don’t know and want to understand,” says White.

    Yet even at leisure, White doesn’t slow down. “It’s restlessness: I love to learn, and anytime someone says a problem is hard, or impossible, I want to tackle it,” she says. There’s no time off, she believes, when the goal is “solving climate change and amplifying the work of other people trying to solve it.” More

  • in

    Bridging careers in aerospace manufacturing and fusion energy, with a focus on intentional inclusion

    “A big theme of my life has been focusing on intentional inclusion and how I can create environments where people can really bring their whole authentic selves to work,” says Joy Dunn ’08. As the vice president of operations at Commonwealth Fusion Systems, an MIT spinout working to achieve commercial fusion energy, Dunn looks for solutions to the world’s greatest climate challenges — while creating an open and equitable work environment where everyone can succeed.

    This theme has been cultivated throughout her professional and personal life, including as a Young Global Leader at the World Economic Forum and as a board member at Out for Undergrad, an organization that works with LGBTQ+ college students to help them achieve their personal and professional goals. Through her careers both in aerospace and energy, Dunn has striven to instill a sense of equity and inclusion from the inside out.

    Developing a love for space

    Dunn’s childhood was shaped by space. “I was really inspired as a kid to be an astronaut,” she says, “and for me that never stopped.” Dunn’s parents — both of whom had careers in the aerospace industry — encouraged her from an early age to pursue her interests, from building model rockets to visiting the National Air and Space Museum to attending space camp. A large inspiration for this passion arose when she received a signed photo from Sally Ride — the first American woman in space — that read, “To Joy, reach for the stars.”

    As her interests continued to grow in middle school, she and her mom looked to see what it would take to become an astronaut, asking questions such as “what are the common career paths?” and “what schools did astronauts typically go to?” They quickly found that MIT was at the top of that list, and by seventh grade, Dunn had set her sights on the Institute. 

    After years of hard work, Dunn entered MIT in fall 2004 with a major in aeronautical and astronautical engineering (AeroAstro). At MIT, she remained fully committed to her passion while also expanding into other activities such as varsity softball, the MIT Undergraduate Association, and the Alpha Chi Omega sorority.

    One of the highlights of Dunn’s college career was Unified Engineering, a year-long course required for all AeroAstro majors that provides a foundational knowledge of aerospace engineering — culminating in a team competition where students design and build remote-controlled planes to be pitted against each other. “My team actually got first place, which was very exciting,” she recalls. “And I honestly give a lot of that credit to our pilot. He did a very good job of not crashing!” In fact, that pilot was Warren Hoburg ’08, a former assistant professor in AeroAstro and current NASA astronaut training for a mission on the International Space Station.

    Pursuing her passion at SpaceX

    Dunn’s undergraduate experience culminated with an internship at the aerospace manufacturing company SpaceX in summer 2008. “It was by far my favorite internship of the ones that I had in college. I got to work on really hands-on projects and had the same amount of responsibility as a full-time employee,” she says.

    By the end of the internship, she was hired as a propulsion development engineer for the Dragon spacecraft, where she helped to build the thrusters for the first Dragon mission. Eventually, she transferred to the role of manufacturing engineer. “A lot of what I’ve done in my life is building things and looking for process improvements,” so it was a natural fit. From there, she rose through the ranks, eventually becoming the senior manager of spacecraft manufacturing engineering, where she oversaw all the manufacturing, test, and integration engineers working on Dragon. “It was pretty incredible to go from building thrusters to building the whole vehicle,” she says.

    During her tenure, Dunn also co-founded SpaceX’s Women’s Network and its LGBT affinity group, Out and Allied. “It was about providing spaces for employees to get together and provide a sense of community,” she says. Through these groups, she helped start mentorship and community outreach programs, as well as helped grow the pipeline of women in leadership roles for the company.

    In spite of all her successes at SpaceX, she couldn’t help but think about what came next. “I had been at SpaceX for almost a decade and had these thoughts of, ‘do I want to do another tour of duty or look at doing something else?’ The main criteria I set for myself was to do something that is equally or more world-changing than SpaceX.”

    A pivot to fusion

    It was at this time in 2018 that Dunn received an email from a former mentor asking if she had heard about a fusion energy startup called Commonwealth Fusion Systems (CFS) that worked with the MIT Plasma Science and Fusion Center. “I didn’t know much about fusion at all,” she says. “I had heard about it as a science project that was still many, many years away as a viable energy source.”

    After learning more about the technology and company, “I was just like, ‘holy cow, this has the potential to be even more world-changing than what SpaceX is doing.’” She adds, “I decided that I wanted to spend my time and brainpower focusing on cleaning up the planet instead of getting off it.”

    After connecting with CFS CEO Bob Mumgaard SM ’15, PhD ’15, Dunn joined the company and returned to Cambridge as the head of manufacturing. While moving from the aerospace industry to fusion energy was a large shift, she said her first project — building a fusion-relevant, high-temperature superconducting magnet capable of achieving 20 tesla — tied back into her life of being a builder who likes to get her hands on things.

    Over the course of two years, she oversaw the production and scaling of the magnet manufacturing process. When she first came in, the magnets were being constructed in a time-consuming and manual way. “One of the things I’m most proud of from this project is teaching MIT research scientists how to think like manufacturing engineers,” she says. “It was a great symbiotic relationship. The MIT folks taught us the physics and science behind the magnets, and we came in to figure out how to make them into a more manufacturable product.”

    In September 2021, CFS tested this high-temperature superconducting magnet and achieved its goal of 20 tesla. This was a pivotal moment for the company that brought it one step closer to achieving its goal of producing net-positive fusion power. Now, CFS has begun work on a new campus in Devens, Massachusetts, to house their manufacturing operations and SPARC fusion device. Dunn plays a pivotal role in this expansion as well. In March 2021, she was promoted to the head of operations, which expanded her responsibilities beyond managing manufacturing to include facilities, construction, safety, and quality. “It’s been incredible to watch the campus grow from a pile of dirt … into full buildings.”

    In addition to the groundbreaking work, Dunn highlights the culture of inclusiveness as something that makes CFS stand apart to her. “One of the main reasons that drew me to CFS was hearing from the company founders about their thoughts on diversity, equity, and inclusion, and how they wanted to make that a key focus for their company. That’s been so important in my career, and I’m really excited to see how much that’s valued at CFS.” The company has carried this out through programs such as Fusion Inclusion, an initiative that aims to build a strong and inclusive community from the inside out.

    Dunn stresses “the impact that fusion can have on our world and for addressing issues of environmental injustice through an equitable distribution of power and electricity.” Adding, “That’s a huge lever that we have. I’m excited to watch CFS grow and for us to make a really positive impact on the world in that way.”

    This article appears in the Spring 2022 issue of Energy Futures, the magazine of the MIT Energy Initiative. More