More stories

  • in

    Vapor-collection technology saves water while clearing the air

    About two-fifths of all the water that gets withdrawn from lakes, rivers, and wells in the U.S. is used not for agriculture, drinking, or sanitation, but to cool the power plants that provide electricity from fossil fuels or nuclear power. Over 65 percent of these plants use evaporative cooling, leading to huge white plumes that billow from their cooling towers, which can be a nuisance and, in some cases, even contribute to dangerous driving conditions.

    Now, a small company based on technology recently developed at MIT by the Varanasi Research Group is hoping to reduce both the water needs at these plants and the resultant plumes — and to potentially help alleviate water shortages in areas where power plants put pressure on local water systems.

    The technology is surprisingly simple in principle, but developing it to the point where it can now be tested at full scale on industrial plants was a more complex proposition. That required the real-world experience that the company’s founders gained from installing prototype systems, first on MIT’s natural-gas-powered cogeneration plant and then on MIT’s nuclear research reactor.

    In these demanding tests, which involved exposure to not only the heat and vibrations of a working industrial plant but also the rigors of New England winters, the system proved its effectiveness at both eliminating the vapor plume and recapturing water. And, it purified the water in the process, so that it was 100 times cleaner than the incoming cooling water. The system is now being prepared for full-scale tests in a commercial power plant and in a chemical processing plant.

    “Campus as a living laboratory”

    The technology was originally envisioned by professor of mechanical engineering Kripa Varanasi to develop efficient water-recovery systems by capturing water droplets from both natural fog and plumes from power plant cooling towers. The project began as part of doctoral thesis research of Maher Damak PhD ’18, with funding from the MIT Tata Center for Technology and Design, to improve the efficiency of fog-harvesting systems like the ones used in some arid coastal regions as a source of potable water. Those systems, which generally consist of plastic or metal mesh hung vertically in the path of fogbanks, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them.

    Varanasi and Damak found that vapor collection could be made much more efficient by first zapping the tiny droplets of water with a beam of electrically charged particles, or ions, to give each droplet a slight electric charge. Then, the stream of droplets passes through a wire mesh, like a window screen, that has an opposite electrical charge. This causes the droplets to be strongly attracted to the mesh, where they fall away due to gravity and can be collected in trays placed below the mesh.

    Lab tests showed the concept worked, and the researchers, joined by Karim Khalil PhD ’18, won the MIT $100K Entrepreneurship Competition in 2018 for the basic concept. The nascent company, which they called Infinite Cooling, with Damak as CEO, Khalil as CTO, and Varanasi as chairperson, immediately went to work setting up a test installation on one of the cooling towers of MIT’s natural-gas-powered Central Utility Plant, with funding from the MIT Office of Sustainability. After experimenting with various configurations, they were able to show that the system could indeed eliminate the plume and produce water of high purity.

    Professor Jacopo Buongiorno in the Department of Nuclear Science and Engineering immediately spotted a good opportunity for collaboration, offering the use of MIT’s Nuclear Reactor Laboratory research facility for further testing of the system with the help of NRL engineer Ed Block. With its 24/7 operation and its higher-temperature vapor emissions, the plant would provide a more stringent real-world test of the system, as well as proving its effectiveness in an actual operating reactor licensed by the Nuclear Regulatory Commission, an important step in “de-risking” the technology so that electric utilities could feel confident in adopting the system.

    After the system was installed above one of the plant’s four cooling towers, testing showed that the water being collected was more than 100 times cleaner than the feedwater coming into the cooling system. It also proved that the installation — which, unlike the earlier version, had its mesh screens mounted vertically, parallel to the vapor stream — had no effect at all on the operation of the plant. Video of the tests dramatically illustrates how as soon as the power is switched on to the collecting mesh, the white plume of vapor immediately disappears completely.

    The high temperature and volume of the vapor plume from the reactor’s cooling towers represented “kind of a worst-case scenario in terms of plumes,” Damak says, “so if we can capture that, we can basically capture anything.”

    Working with MIT’s Nuclear Reactor Laboratory, Varanasi says, “has been quite an important step because it helped us to test it at scale. … It really both validated the water quality and the performance of the system.” The process, he says, “shows the importance of using the campus as a living laboratory. It allows us to do these kinds of experiments at scale, and also showed the ability to sustainably reduce the water footprint of the campus.”

    Far-reaching benefits

    Power plant plumes are often considered an eyesore and can lead to local opposition to new power plants because of the potential for obscured views, and even potential traffic hazards when the obscuring plumes blow across roadways. “The ability to eliminate the plumes could be an important benefit, allowing plants to be sited in locations that might otherwise be restricted,” Buongiorno says. At the same time, the system could eliminate a significant amount of water used by the plants and then lost to the sky, potentially alleviating pressure on local water systems, which could be especially helpful in arid regions.

    The system is essentially a distillation process, and the pure water it produces could go into power plant boilers — which are separate from the cooling system — that require high-purity water. That might reduce the need for both fresh water and purification systems for the boilers.

    What’s more, in many arid coastal areas power plants are cooled directly with seawater. This system would essentially add a water desalination capability to the plant, at a fraction of the cost of building a new standalone desalination plant, and at an even smaller fraction of its operating costs since the heat would essentially be provided for free.

    Contamination of water is typically measured by testing its electrical conductivity, which increases with the amount of salts and other contaminants it contains. Water used in power plant cooling systems typically measures 3,000 microsiemens per centimeter, Khalil explains, while the water supply in the City of Cambridge is typically around 500 or 600 microsiemens per centimeter. The water captured by this system, he says, typically measures below 50 microsiemens per centimeter.

    Thanks to the validation provided by the testing on MIT’s plants, the company has now been able to secure arrangements for its first two installations on operating commercial plants, which should begin later this year. One is a 900-megawatt power plant where the system’s clean water production will be a major advantage, and the other is at a chemical manufacturing plant in the Midwest.

    In many locations power plants have to pay for the water they use for cooling, Varanasi says, and the new system is expected to reduce the need for water by up to 20 percent. For a typical power plant, that alone could account for about a million dollars saved in water costs per year, he says.

    “Innovation has been a hallmark of the U.S. commercial industry for more than six decades,” says Maria G. Korsnick, president and CEO of the Nuclear Energy Institute, who was not involved in the research. “As the changing climate impacts every aspect of life, including global water supplies, companies across the supply chain are innovating for solutions. The testing of this innovative technology at MIT provides a valuable basis for its consideration in commercial applications.” More

  • in

    Cleaning up industrial filtration

    If you wanted to get pasta out of a pot of water, would you boil off the water, or use a strainer? While home cooks would choose the strainer, many industries continue to use energy-intensive thermal methods of separating out liquids. In some cases, that’s because it’s difficult to make a filtration system for chemical separation, which requires pores small enough to separate atoms.

    In other cases, membranes exist to separate liquids, but they are made of fragile polymers, which can break down or gum up in industrial use.

    Via Separations, a startup that emerged from MIT in 2017, has set out to address these challenges with a membrane that is cost-effective and robust. Made of graphene oxide (a “cousin” of pencil lead), the membrane can reduce the amount of energy used in industrial separations by 90 percent, according to Shreya Dave PhD ’16, company co-founder and CEO.

    This is valuable because separation processes account for about 22 percent of all in-plant energy use in the United States, according to Oak Ridge National Laboratory. By making such processes significantly more efficient, Via Separations plans to both save energy and address the significant emissions produced by thermal processes. “Our goal is eliminating 500 megatons of carbon dioxide emissions by 2050,” Dave says.

    Play video

    What do our passions for pasta and decarbonizing the Earth have in common? MIT alumna Shreya Dave PhD ’16 explains how she and her team at Via Separations are building the equivalent of a pasta strainer to separate chemical compounds for industry.

    Via Separations began piloting its technology this year at a U.S. paper company and expects to deploy a full commercial system there in the spring of 2022. “Our vision is to help manufacturers slow carbon dioxide emissions next year,” Dave says.

    MITEI Seed Grant

    The story of Via Separations begins in 2012, when the MIT Energy Initiative (MITEI) awarded a Seed Fund grant to Professor Jeffrey Grossman, who is now the Morton and Claire Goulder and Family Professor in Environmental Systems and head of MIT’s Department of Materials Science and Engineering. Grossman was pursuing research into nanoporous membranes for water desalination. “We thought we could bring down the cost of desalination and improve access to clean water,” says Dave, who worked on the project as a graduate student in Grossman’s lab.

    There, she teamed up with Brent Keller PhD ’16, another Grossman graduate student and a 2016-17 ExxonMobil-MIT Energy Fellow, who was developing lab experiments to fabricate and test new materials. “We were early comrades in figuring out how to debug experiments or fix equipment,” says Keller, Via Separations’ co-founder and chief technology officer. “We were fast friends who spent a lot of time talking about science over burritos.”

    Dave went on to write her doctoral thesis on using graphene oxide for water desalination, but that turned out to be the wrong application of the technology from a business perspective, she says. “The cost of desalination doesn’t lie in the membrane materials,” she explains.

    So, after Dave and Keller graduated from MIT in 2016, they spent a lot of time talking to customers to learn more about the needs and opportunities for their new separation technology. This research led them to target the paper industry, because the environmental benefits of improving paper processing are enormous, Dave says. “The paper industry is particularly exciting because separation processes just in that industry account for more than 2 percent of U.S. energy consumption,” she says. “It’s a very concentrated, high-energy-use industry.”

    Most paper today is made by breaking down the chemical bonds in wood to create wood pulp, the primary ingredient of paper. This process generates a byproduct called black liquor, a toxic solution that was once simply dumped into waterways. To clean up this process, paper mills turned to boiling off the water from black liquor and recovering both water and chemicals for reuse in the pulping process. (Today, the most valuable way to use the liquor is as biomass feedstock to generate energy.) Via Separations plans to accomplish this same separation work by filtering black liquor through its graphene oxide membrane.

    “The advantage of graphene oxide is that it’s very robust,” Dave says. “It’s got carbon double bonds that hold together in a lot of environments, including at different pH levels and temperatures that are typically unfriendly to materials.”

    Such properties should also make the company’s membranes attractive to other industries that use membrane separation, Keller says, because today’s polymer membranes have drawbacks. “For most of the things we make — from plastics to paper and gasoline — those polymers will swell or react or degrade,” he says.

    Graphene oxide is significantly more durable, and Via Separations can customize the pores in the material to suit each industry’s application. “That’s our secret sauce,” Dave says, “modulating pore size while retaining robustness to operate in challenging environments.”

    “We’re building a catalog of products to serve different applications,” Keller says, noting that the next target market could be the food and beverage industry. “In that industry, instead of separating different corrosive paper chemicals from water, we’re trying to separate particular sugars and food ingredients from other things.”

    Future target customers include pharmaceutical companies, oil refineries, and semiconductor manufacturers, or even carbon capture businesses.

    Scaling up

    Dave, Keller, and Grossman launched Via Separations in 2017 — with a lot of help from MIT. After the seed grant, in 2015, the founders received a year of funding and support from the J-WAFS Solutions program to explore markets and to develop their business plans. The company’s first capital investment came from The Engine, a venture firm founded by MIT to support “tough tech” companies (tech businesses with transformative potential but long and challenging paths to success). They also received advice and support from MIT’s Deshpande Center for Technological Innovation, Venture Mentoring Service, and Technology Licensing Office. In addition, Grossman continues to serve the company as chief scientist.

    “We were incredibly fortunate to be starting a company in the MIT entrepreneurial ecosystem,” Keller says, noting that The Engine support alone “probably shaved years off our progress.”

    Already, Via Separations has grown to employ 17 people, while significantly scaling up its product. “Our customers are producing thousands of gallons per minute,” Keller explains. “To process that much liquid, we need huge areas of membrane.”

    Via Separations’ manufacturing process, which is now capable of making more than 10,000 square feet of membrane in one production run, is a key competitive advantage, Dave says. The company rolls 300-400 square feet of membrane into a module, and modules can be combined as needed to increase filtration capacity.

    The goal, Dave says, is to contribute to a more sustainable world by making an environmentally beneficial product that makes good business sense. “What we do is make manufacturing things more energy-efficient,” she says. “We allow a paper mill or chemical facility to make more product using less energy and with lower costs. So, there is a bottom-line benefit that’s significant on an industrial scale.”

    Keller says he shares Dave’s goal of building a more sustainable future. “Climate change and energy are central challenges of our time,” he says. “Working on something that has a chance to make a meaningful impact on something so important to everyone is really fulfilling.”

    This article appears in the Spring 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative.  More