More stories

  • in

    A clean alternative to one of the world’s most common ingredients

    Never underestimate the power of a time crunch.

    In 2016, MIT classmates David Heller ’18, Shara Ticku, and Harry McNamara PhD ’19 were less than two weeks away from the deadline to present a final business plan as part of their class MAS.883 (Revolutionary Ventures: How to Invent and Deploy Transformative Technologies). The students had connected over a shared passion for using biology to solve climate challenges, but their first few ideas didn’t pan out, so they went back to the drawing board.

    In a brainstorming session, Ticku began to reminisce about a trip to Singapore she’d taken where the burning of forests had cast a dark haze over the city. The story sparked a memory from halfway across the world in Costa Rica, where McNamara had traveled and noticed endless rows of palm plantations, which are used to harvest palm oil.

    “Besides Shara’s experience in Singapore and Harry’s in Costa Rica, palm was a material none of us had seriously thought about,” Heller recalls. “That conversation made us realize it was a big, big industry, and there’s major issues to the way that palm is produced.”

    The classmates decided to try using synthetic biology to create a sustainable alternative to palm oil. The idea was the beginning of C16 Biosciences. Today C16 is fulfilling that mission at scale with a palm oil alternative it harvests from oil-producing yeast, which ferment sugars in a process similar to brewing beer.

    The company’s product, which it sells to personal care brands and directly to consumers, holds enormous potential to improve the sustainability of the personal care and food industries because, as it turns out, the classmates had stumbled onto a massive problem.

    Palm oil is the most popular vegetable oil in the world. It’s used in everything from soaps and cosmetics to sauces, rolls, and crackers. But palm oil can only be harvested from palm trees near the equator, so producers often burn down tropical rainforests and swamps in those regions to make way for plantations, decimating wildlife habitats and producing a staggering amount of greenhouse gas emissions. One recent study found palm expansion in Southeast Asia could account for 0.75 percent of the world’s total greenhouse gas emissions. That’s not even including the palm expansion happening across west Africa and South America. Among familiar creatures threatened by palm oil deforestation are orangutans, all three species of which are now listed as “critically endangered” — the most urgent status on the IUCN Red List of Threatened Species, a global endangered species list.

    “To respond to increasing demand over the last few decades, large palm producers usually inappropriately seize land,” Heller explains. “They’ll literally slash and burn tropical rainforests to the ground, drive out indigenous people, they’ll kill or drive out local wildlife, and they’ll replace everything with hectares and hectares of palm oil plantations. That land conversion process has been emitting something like a gigaton of CO2 per year, just for the expansion of palm oil.”

    From milliliters to metric tons

    Heller took Revolutionary Ventures his junior year as one of the few undergraduates in the Media Lab-based class, which is also open to students from nearby colleges. On one of the first days, students were asked to stand in front of the class and explain their passions, or “what makes them tick,” as Heller recalls. He focused on climate tech.

    McNamara, who was a PhD candidate in the Harvard-MIT Program in Health Sciences and Technology at the time, talked about his interest in applying new technology to global challenges in biotech and biophysics. Ticku, who was attending Harvard Business School, discussed her experience working in fertility health and her passion for global health initiatives. The three decided to team up.

    “The core group is very, very passionate about using biology to solve major climate problems,” says Heller, who majored in biological engineering while at MIT.

    After a successful final presentation in the class, the founders received a small amount of funding by participating in the MIT $100K Pitch Competition and from the MIT Sandbox Innovation Fund.

    “MIT Sandbox was one of our first bits of financial support,” Heller says. “We also received great mentorship. We learned from other startups at MIT and made connections with professors whom we learned a lot from.”

    By the time Heller graduated in 2018, the team had experimented with different yeast strains and produced a few milliliters of oil. The process has gradually been optimized and scaled up from there. Today C16 is producing metric tons of oil in 50,000-liter tanks and has launched a consumer cosmetic brand called Palmless.

    Heller says C16 started its own brand as a way to spread the word about the harms associated with palm oil and to show larger companies it was ready to be a partner.

    “The oil palm tree is amazing in terms of the yields it generates, but the location needed for the crop is in conflict with what’s essential in our ecosystem: tropical rainforests,” Heller says. “There’s a lot of excitement when it comes to microbial palm alternatives. A lot of brands have been under pressure from consumers and even governments who are feeling the urgency around climate and are feeling the urgency from consumers to make changes to get away from an oil ingredient that is incredibly destructive.”

    Scaling with biology

    C16’s first offering, which it calls Torula Oil, is a premium product compared to traditional palm oil, but Heller notes the cost of palm oil today is deflated because companies don’t factor in its costs to the planet and society. He also notes that C16 has a number of advantages in its quest to upend the $60 billion palm oil industry: It’s far easier to improve the productivity of C16’s precision fermentation process than it is to improve agricultural processes. C16 also expects its costs to plummet as it continues to grow.

    “What’s exciting for us is we have these economies of scale,” Heller says. “We have the opportunity to expand vertically, in large stainless steel tanks, as opposed to horizontally on land, so we can drive down our cost curve by increasing the size of the infrastructure and improving the optimization of our strain. The timelines for improvement in a precision fermentation process are a fraction of the time it takes in an agricultural context.”

    Heller says C16 is currently focused on partnering with large personal care brands and expects to announce some important deals in coming months. Further down the line, C16 also hopes to use its product to replace the palm oil in food products, although additional regulations mean that dream is still a few years away.

    With all of its efforts, C16 tries to shine a light on the problems associated with the palm industry, which the company feels are underappreciated despite palm oil’s ubiquitous presence in our society.

    “We need to find a way to reduce our reliance on deforestation products,” Heller says. “We do a lot of work to help educate people on the palm oil industry. Just because something has palm oil in it doesn’t mean you should stop using it, but you should understand what that means for the world.” More

  • in

    Preparing Colombia’s cities for life amid changing forests

    It was an uncharacteristically sunny morning as Marcela Angel MCP ’18, flanked by a drone pilot from the Boston engineering firm AirWorks and a data collection team from the Colombian regional environmental agency Corpoamazonia, climbed a hill in the Andes Mountains of southwest Colombia. The area’s usual mountain cloud cover — one of the major challenges to working with satellite imagery or flying UAVs (unpiloted aerial vehicles, or drones) in the Pacific highlands of the Amazon — would roll through in the hours to come. But for now, her team had chosen a good day to hike out for their first flight. Angel is used to long travel for her research. Raised in Bogotá, she maintained strong ties to Colombia throughout her master’s program in the MIT Department of Urban Studies and Planning (DUSP). Her graduate thesis, examining Bogotá’s management of its public green space, took her regularly back to her hometown, exploring how the city could offer residents more equal access to the clean air, flood protection and day-to-day health and social benefits provided by parks and trees. But the hill she was hiking this morning, outside the remote city of Mocoa, had taken an especially long time to climb: five years building relationships with the community of Mocoa and the Colombian government, recruiting project partners, and navigating the bureaucracy of bringing UAVs into the country. Now, her team finally unwrapped their first, knee-high drone from its tarp and set it carefully in the grass. Under the gathering gray clouds, the buzz of its rotors joined the hum of insects in the trees, and the machine at last took to the skies.

    From Colombia to Cambridge

    “I actually grew up on the last street before the eastern mountains reserve,” Angel says of her childhood in Bogotá. “I’ve always been at that border between city and nature.” This idea, that urban areas are married to the ecosystems around them, would inform Angel’s whole education and career. Before coming to MIT, she studied architecture at Bogotá’s Los Andes University; for her graduation project she proposed a plan to resettle an informal neighborhood on Bogotá’s outskirts to minimize environmental risks to its residents. Among her projects at MIT was an initiative to spatially analyze Bogotá’s tree canopy, providing data for the city to plan a tree-planting program as a strategy to give vulnerable populations in the city more access to nature. And she was naturally intrigued when Colombia’s former minister of environment and sustainable development came to MIT in 2017 to give a guest presentation to the DUSP master’s program. The minister, Luis Gilberto Murillo (now the Colombian ambassador to the United States), introduced the students to the challenges triggered by a recent disaster in the city of Mocoa, on the border between the lowland Amazon and the Andes Mountains. Unprecedented rainstorms had destabilized the surrounding forests, and that April a devastating flood and landslide had killed hundreds of people and destroyed entire neighborhoods. And as climate change contributed to growing rainfall in the region, the risks of more landslide events were rising. Murillo provided useful insights into how city planning decisions had contributed to the crisis. But he also asked for MIT’s support addressing future landslide risks in the area. Angel and Juan Camilo Osorio, a PhD candidate at DUSP, decided to take up the challenge, and in January 2018 and 2019, a research delegation from MIT traveled to Colombia for a newly-created graduate course. Returning once again to Bogotá, Angel interviewed government agencies and nonprofits to understand the state of landslide monitoring and public policy. In Mocoa, further interviews and a series of workshops helped clarify what locals needed most and what MIT could provide: better information on where and when landslides might strike, and a process to increase risk awareness and involve traditionally marginalized groups in decision-making processes around that risk. Over the coming year, a core team formed to put the insights from this trip into action, including Angel, Osorio, postdoc Norhan Bayomi of the MIT Environmental Solutions Initiative (ESI) and MIT Professor John Fernández, director of the ESI and one of Angel’s mentors at DUSP. After a second visit to Mocoa that brought into the fold Indigenous groups, environmental agencies, and the national army, a plan was formed: MIT would partner with Corpoamazonia and build a network of community researchers to deploy and test drone technology and machine learning models to monitor the mountain forests for both landslide risks and signs of forest health, while implementing a participatory planning process with residents. “What our projects aim to do is give the communities new tools to continue protecting and restoring the forest,” says Angel, “and support new and inclusive development models, even in the face of new challenges.”

    Lifelines for the climate

    The goal of tropical forest conservation is an urgent one. As forests are cut down, their trees and soils release carbon they have stored over millennia, adding huge amounts of heat-trapping carbon dioxide to the atmosphere. Deforestation, mainly in the tropics, is now estimated to contribute more to climate change than any country besides the United States and China — and once lost, tropical forests are exceptionally hard to restore. “Tropical forests should be a natural way to slow and reverse climate change,” says Angel. “And they can be. But today, we are reaching critical tipping points where it is just the opposite.” This became the motivating force for Angel’s career after her graduation. In 2019, Fernández invited her to join the ESI and lead a new Natural Climate Solutions Program, with the Mocoa project as its first centerpiece. She quickly mobilized the partners to raise funding for the project from the Global Environmental Facility and the CAF Development Bank of Latin America and the Caribbean, and recruited additional partners including MIT Lincoln Laboratories, AirWorks, and the Pratt Institute, where Osorio had become an assistant professor. She hired machine learning specialists from MIT to begin design on UAVs’ data processing, and helped assemble a local research network in Mocoa to increase risk awareness, promote community participation, and better understand what information city officials and community groups needed for city planning and conservation. “This is the amazing thing about MIT,” she says. “When you study a problem here, you’re not just playing in a sandbox. Everyone I’ve worked with is motivated by the complexity of the technical challenge and the opportunity for meaningful engagement in Mocoa, and hopefully in many more places besides.” At the same time, Angel created opportunities for the next generation of MIT graduate students to follow in her footsteps. With Fernández and Bayomi, she created a new course, 4.S23 (Biodiversity and Cities), in which students traveled to Colombia to develop urban planning strategies for the cities of Quidbó and Leticia, located in carbon-rich and biodiverse areas. The course has been taught twice, with Professor Gabriella Carolini joining the teaching team for spring 2023, and has already led to a student report to city officials in Quidbó recommending ways to enhance biodiversity and adapt to climate change as the city grows, a multi-stakeholder partnership to train local youth and implement a citizen-led biodiversity survey, and a seed grant from the MIT Climate and Sustainability Consortium to begin providing both cities detailed data on their tree cover derived from satellite images. “These regions face serious threats, especially on a warming planet, but many of the solutions for climate change, biodiversity conservation, and environmental equity in the region go hand-in-hand,” Angel says. “When you design a city to use fewer resources, to contribute less to climate change, it also causes less pressure on the environment around it. When you design a city for equity and quality of life, you’re giving attention to its green spaces and what they can provide for people and as habitat for other species. When you protect and restore forests, you’re protecting local bioeconomies.”

    Bringing the data home

    Meanwhile, in Mocoa, Angel’s original vision is taking flight. With the team’s test flights behind them, they can now begin creating digital models of the surrounding area. Regular drone flights and soil samples will fill in changing information about trees, water, and local geology, allowing the project’s machine learning specialists to identify warning signs for future landslides and extreme weather events. More importantly, there is now an established network of local community researchers and leaders ready to make use of this information. With feedback from their Mocoan partners, Angel’s team has built a prototype of the online platform they will use to share their UAV data; they’re now letting Mocoa residents take it for a test drive and suggest how it can be made more user-friendly. Her visit this January also paved the way for new projects that will tie the Environmental Solutions Initiative more tightly to Mocoa. With her project partners, Angel is exploring developing a course to teach local students how to use UAVs like the ones her team is flying. She is also considering expanded efforts to collect the kind of informal knowledge of Mocoa, on the local ecology and culture, that people everywhere use in making their city planning and emergency response decisions, but that is rarely codified and included in scientific risk analyses. It’s a great deal of work to offer this one community the tools to adapt successfully to climate change. But even with all the robotics and machine learning models in the world, this close, slow-unfolding engagement, grounded in trust and community inclusion, is what it takes to truly prepare people to confront profound changes in their city and environment. “Protecting natural carbon sinks is a global socio-environmental challenge, and one where it is not enough for MIT to just contribute to the knowledge base or develop a new technology,” says Angel. “But we can help mobilize decision-makers and nontraditional actors, and design more inclusive and technology-enhanced processes, to make this easier for the people who have lifelong stakes in these ecosystems. That is the vision.” More

  • in

    Arina Khotimsky ’23 awarded 2023 Michel David-Weill Scholarship

    Arina Khotimsky ’23 was selected for the 2023 Michel David-Weill scholarship, awarded each year to one student from the United States in a master’s program at Sciences Po in France who exemplifies the core values embodied by its namesake: excellence, leadership, multiculturalism, and high achievement. This fall Khotimsky will enter the master’s program in international energy, which is part of Sciences Po’s Paris School of International Affairs. The program aims to provide a holistic understanding of energy issues, across disciplines and across all energy sources.

    Khotimsky graduated this year from MIT with a major in materials science and engineering, and minors in energy studies and in French.

    Asked what drew her to her major, Khotimsky talked about her love of the outdoors. Seeing effects of climate change on the world around made her made her want to explore solutions. “I settled on material science and engineering because there’s so many different applications: whether it be solar power, developing different battery materials and chemistries, or some other technology. Getting that technical background at MIT can help me understand how we can implement solutions around the world, with diverse cultures in mind.”

    One of Khotimsky’s material sciences professors, Polina Anikeeva, observes that “Arina possesses the spirit of creativity, optimism, and unparalleled work ethic — all necessary ingredients to solve energy and climate challenges of our century.”

    Khotimsky is well aware of the big stakes in discussions around energy policy. She explains, “We have to cooperate internationally to make a dent in carbon emissions. The United States is historically the biggest CO2 emitter and has a large role to play to transition to a more sustainable future.”

    Her interest in studying climate change solutions on a world scale also converged with her interest in studying other languages and cultures. Her main language studies at MIT have been in French, although she also speaks Russian and beginner Chinese.

    Due to her achievement in MIT French classes, Khotimsky was one of nine students selected for a two-week cultural immersion program in Paris last June, led by MIT Professor Bruno Perreau. Perreau also had her in class last fall, and spoke about the energy and commitment she brought to class, describing her as “one of my very best students since I started to teach 22 years ago.” Khotimsky is excited to be living in France for her master’s program and putting her French skills to work.

    Khotimsky’s impressive undergraduate career has also included being co-president of the MIT Energy and Climate Club, and participating in the MIT delegation to 2022 Conference of the Parties summit (COP27) of the United Nations in Egypt last November. She also participated in the NEET Decarbonizing Ulaanbaatar project, traveling to Mongolia in Independent Activities Period 2023 with a group of students and instructors to work on clean heating technologies for traditional ger homes.

    In addition to her academic work and other extracurricular activities, Khotimsky was also a member of the MIT women’s rowing team. She walked onto the team as a first-year student, making it into the Varsity 8 boat for her senior season. Holly Metcalf, MIT women’s varsity openweight rowing coach, explains, “Being on the rowing team has in many ways become a metaphor for what Arina has come to study … She realized that rowing is about so much more than physics — it is about who one must become as an individual to contribute to the sum of mental and physical strength of the entire team.” Khotimsky was recognized on May 22 by the Patriot League, who named her the 2023 Patriot League Women’s Rowing Scholar-Athlete of the Year.

    Looking ahead, Khotimsky envisions her future involving international energy negotiations or policy. “The master’s degree I’m pursuing in international relations will help me develop skills to communicate with stakeholders from around the world and figure out how to implement solutions globally.” More

  • in

    Civil discourse project to launch at MIT

    A new project on civil discourse aims to promote open and civil discussion of difficult topics on the MIT campus.

    The project, which will launch this fall, includes a speaker series and curricular activities in MIT’s Concourse program for first-year students. MIT philosophers Alex Byrne and Brad Skow from the Department of Linguistics and Philosophy lead the project, in close coordination with Anne McCants, professor of history and director of Concourse, and Linda Rabieh, a Concourse lecturer. 

    The Arthur Vining Davis Foundations provided a substantial grant to help fund the project. Promoting civil discourse on college campuses is an area of focus for AVDF — they sponsor related projects at many schools, including Duke University and Davidson College.

    The first event in the speaker series is planned for the evening of Oct. 24, on the question of how we should respond to climate change. The two speakers are Professor Steven Koonin (New York University, ex-provost of Caltech, and an MIT alum) and MIT Professor Kerry Emanuel from the Department of Earth, Atmospheric, and Planetary Sciences. Eight such events are planned over two years. Each will feature speakers discussing difficult or controversial topics, and will aim to model civil debate and dialogue involving experts from inside and outside the MIT community. 

    Byrne and Skow said that the project is meant to counterbalance a growing unwillingness to listen to others or to tolerate the expression of certain ideas. But the goal, says Byrne, “is not to platform heterodox views for their own sake, or to needlessly provoke. Rather, we want to platform collegial, informed conversations on important matters about which there is reasonable disagreement.” 

    Faculty at MIT voted last fall to adopt a statement on free expression, following a report written by an MIT working group. The project organizers want to build on that vote and the report. “The free expression statement says that discussion of controversial topics should not be prohibited or punished,” Skow says, “but the longer working-group report goes farther, urging MIT to promote free expression. This project is an attempt to do that — to show that open discussion and open inquiry are valuable.” 

    “It has the potential to generate lively, constructive, respectful discussion on campus and to show by example both that controversial views are not suppressed at MIT and that we learn by engaging with them openly,” says Kieran Setiya, the head of MIT Philosophy. Agustín Rayo, dean of the School of Humanities and Social Sciences, thinks that the project can “play a critical role in demonstrating — to faculty, students, staff, alumni, and friends — the Institute’s commitment to free speech and civil discourse.”

    Apart from climate change, topics for the first series of events include feminism and progress (Nov. 9, with Mary Harrington, author of “Feminism against Progress”), and Covid public health policy (Feb. 26, with Vinay Prasad, professor of epidemiology and biostatistics at the University of California at San Francisco). Organizers say they hope the speaker series becomes a permanent part of MIT’s intellectual life after the grant period. To amplify the work to an audience beyond MIT, the project organizers have partnered with the Johns Hopkins University political scientist Yascha Mounk and his team at Persuasion to produce podcast episodes around the speaker events. They will air as special episodes of Mounk’s podcast “The Good Fight.” 

    The Concourse component of the project will take advantage of the small learning community setting to develop the tools and experience for productive disagreement. 

    “The core mission of Concourse depends on both the principle of free expression and the practice of civil discourse,” says McCants, “making it a natural springboard for promoting both across the intellectual culture of MIT.”  

    Concourse will experiment with, among other things, seminars discussing the history and practice of freedom of expression, roundtable discussions, and student-led debates. Braver Angels, an organization with the mission of reducing political polarization, is another partner, along with Persuasion. 

    “Our goal,” says Rabieh, “is to facilitate, in collaboration with Braver Angels, the probing, intense, and often difficult conversations that lie at the heart of the Concourse program and that are the hallmark of education.” More

  • in

    Will the charging networks arrive in time?

    For many owners of electric vehicles (EVs), or for prospective EV owners, a thorny problem is where to charge them. Even as legacy automakers increasingly invest in manufacturing more all-electric cars and trucks, there is not a dense network of charging stations serving many types of vehicles, which would make EVs more convenient to use.

    “We’re going to have the ability to produce and deliver millions of EVs,” said MIT Professor Charles Fine at the final session this semester of the MIT Mobility Forum. “It’s not clear we’re going to have the ability to charge them. That’s a huge, huge mismatch.”

    Indeed, making EV charging stations as ubiquitous as gas stations could spur a major transition within the entire U.S. vehicle fleet. While the automaker Tesla has built a network of almost 2,000 charging stations across the U.S., and might make some interoperable with other makes of vehicles, independent companies trying to develop a business out of it are still trying to gain significant traction.

    “They don’t have a business model that works yet,” said Fine, the Chrysler Leaders for Global Operations Professor of Management at the MIT Sloan School of Management, speaking of startup firms. “They haven’t figured out their supply chains. They haven’t figured out the customer value proposition. They haven’t figured out their technology standards. It’s a very, very immature domain.”

    The May 12 event drew nearly 250 people as well as an online audience. The MIT Mobility Forum is a weekly set of talks and discussions during the academic year, ranging widely across the field of transportation and design. It is hosted by the MIT Mobility Initiative, which works to advance sustainable, accessible, and safe forms of transportation.

    Fine is a prominent expert in the areas of operations strategy, entrepreneurship, and supply chain management. He has been at MIT Sloan for over 30 years; from 2015 to 2022, he also served as the founding president, dean, and CEO of the Asia School of Business in Kuala Lumpur, Malaysia, a collaboration between MIT Sloan and Bank Negara Malaysia. Fine is also author of “Faster, Smarter, Greener: The Future of the Car and Urban Mobility” (MIT Press, 2017).

    In Fine’s remarks, he discussed the growth stages of startup companies, highlighting three phases where firms try to “nail it, scale it, and sail it” — that is, figure out the concept and workability of their enterprise, try to expand it, and then operate as a larger company. The charging-business startups are still somewhere within the first of these phases.

    At the same time, the established automakers have announced major investments in EVs — a collective $860 billion over the next decade, Fine noted. Among others, Ford says it will invest $50 billion in EV production by 2026; General Motors plans to spend $35 billion on EVs by 2025; and Toyota has announced it will invest $35 billion in EV manufacturing by 2030.

    With all these vehicles potentially coming to market, Fine suggested, the crux of the issue is a kind of “chicken and egg” problem between EVs and the network needed to support them.

    “If you’re a startup company in the charging business, if there aren’t many EVs out there, you’re not going to be making much money, and that doesn’t give you the capital to continue to invest and grow,” Fine said. “So, they need to wait until they have revenue before they can grow further. On the other hand, why should anybody buy an electric car if they don’t think they’re going to be able to charge it?”

    Those living in single-family homes can install chargers. But many others are not in that situation, Fine noted: “For people who don’t have fixed parking spaces and have to rely on the public network, there is this chicken-and-egg problem. They can’t buy an EV unless they know how they’re going to be able to charge it, and charging companies can’t build out their networks unless they know how they’re going to get their revenue.”

    The event featured a question-and-answer session and audience discussion, with a range of questions, and comments from some industry veterans, including Robin Chase SM ’86, the co-founder and former CEO of Zipcar. She expressed some optimism that startup charging companies will be able to get traction in the nascent market before long.

    “The right companies can learn very fast,” Chase said. “There’s no reason why they can’t correct those scaling problems in short-ish order.”

    In answer to other audience questions, Fine noted some of the challenges that will have to be addressed by independent charging firms, such as unified standards and interoperability among automakers and charging stations.

    “For a driver to have to have six different apps, or [their] car doesn’t fit in the plug here or there, or my software doesn’t talk to my credit card … connectivity, standards, technical issues need to be worked out as well,” Fine said.

    There are also varying regulatory issues, including grid policies and what consumers can be billed for, which have to be worked out on a state-by-state basis, meaning that even modest-size startups will have to have knowledgeable and productive legal departments.

    All of which makes it possible, as Fine suggested, that the large legacy automakers will start investing more heavily in the charging business in the near future. Mercedes, he noted, just announced in January that it is entering into a partnership with charging firms ChargePoint and MN8 Energy to develop about 400 charging stations across North America by 2027. By necessity, others might have to follow suit if they want to protect their massive planned investments in the EV sector.

    “I’m not in the business of telling [automakers] what to do, but I do think they have a lot at risk,” Fine said. “They’re spending billions and billions of dollars to produce these cars, and I don’t think they can afford an epic failure [if] people don’t buy them because there’s no charging infrastructure. If they’re waiting for the startups to build out rapidly, then they may be waiting longer than they hope to wait.” More

  • in

    Paula Hammond wins faculty’s Killian Award for 2023-24

    Paula Hammond, a leading innovator in nanotechnology and head of MIT’s Department of Chemical Engineering, has been named the recipient of the 2023-2024 James R. Killian Jr. Faculty Achievement Award.

    Hammond, an MIT Institute Professor, was honored for her work designing novel polymers and nanomaterials, which have extensive applications in fields including medicine and energy.

    “Professor Hammond is a pioneer in nanotechnology research, with a program that spans from basic science to translational research in medicine and energy. She has introduced new approaches for the design and development of complex drug delivery systems for cancer treatment and non-invasive imaging,” according to the award citation, which was read at the May 17 faculty meeting by Laura Kiessling, the chair of the Killian Award Selection Committee and the Novartis Professor of Chemistry at MIT.

    Established in 1971 to honor MIT’s 10th president, James Killian, the Killian Award recognizes extraordinary professional achievements by an MIT faculty member.

    “I’ve been to past Killian Award lectures, and I’ve always thought these were the ultimate achievers at MIT in terms of their work and their science,” Hammond says. “I am incredibly honored and overwhelmed to be considered even close to a part of that group.”

    Hammond, who earned her bachelor’s degree from MIT in 1984, worked as an engineer before returning to the Institute four years later to earn a PhD, which she received in 1993. After two years as a postdoc at Harvard University, she returned to MIT again as a faculty member in 1995.

    “In a world where it isn’t always cool to be heavy into your science and your work, MIT was a place where I felt like I could just be completely myself, and that was an amazing thing,” she says.

    Since joining the faculty, Hammond has pioneered techniques for creating thin polymer films and other materials using layer-by-layer assembly. This approach can be used to build polymers with highly controlled architectures by alternately exposing a surface to positively and negatively charged particles.

    Hammond’s lab uses this technique to design materials for many different applications, including drug delivery, regenerative medicine, noninvasive imaging, and battery technology.

    Her accomplishments include designing nanoparticles that can zoom in on tumors and release their cargo when they associate with cancer cells. She has also developed nanoparticles and thin polymer films that can carry multiple drugs to a specific site and release the drugs in a controlled or staggered fashion. In recent years, much of that work has focused on potential treatments and diagnostics for ovarian cancer.

    “We’ve really had a focus on ovarian cancer over the past several years. My hope is that our work will move us in the direction of understanding how we can treat ovarian cancer, and, in collaboration with my colleagues, how we can detect it more effectively,” says Hammond, who is a member of MIT’s Koch Institute for Integrative Cancer Research.

    The award committee also cited Hammond’s record of service, both to MIT and the national scientific community. She currently serves on the President’s Council of Advisors on Science and Technology, and she is a former member of the U.S. Secretary of Energy Scientific Advisory Board. At MIT, Hammond chaired the Initiative on Faculty Race and Diversity, and co-chaired the Academic and Professional Relationships Working Group and the Implementation Team of the MIT response to the National Academies’ report entitled “Sexual Harassment of Women.”

    Among her many honors, Hammond is one of only 25 scientists who have been elected to the National Academies of Engineering, Sciences, and Medicine.

    Hammond has also been recognized for her dedication to teaching and mentoring. As a reflection of her excellence in those areas, Hammond was awarded the Irwin Sizer Award for Significant Improvements to MIT Education, the Henry Hill Lecturer Award in 2002, and the Junior Bose Faculty Award in 2000. She also co-chaired the recent Ad Hoc Committee on Faculty Advising and Mentoring, and has been selected as a “Committed to Caring” honoree for her work mentoring students and postdocs in her research group.

    “The Selection Committee is delighted to have this opportunity to honor Professor Paula Hammond, not only for her tremendous professional achievements and contributions, but also for her genuine warmth and humanity, her thoughtfulness and effective leadership, and her empathy and ethics. She is someone worth emulating. Indeed, simply put, she is the best of us,” the award committee wrote in its citation. More

  • in

    Four researchers with MIT ties earn 2023 Schmidt Science Fellowships

    Four researchers with ties to MIT have been named Schmidt Science Fellows this year. Lillian Chin ’17, SM ’19; Neil Dalvie PD ’22, PhD ’22; Suong Nguyen, and Yirui Zhang SM ’19, PhD ’23 are among the 32 exceptional early-career scientists worldwide chosen to receive the prestigious fellowships.

    “History provides powerful examples of what happens when scientists are given the freedom to ask big questions which can achieve real breakthroughs across disciplines,” says Wendy Schmidt, co-founder of Schmidt Futures and president of the Schmidt Family Foundation. “Schmidt Science Fellows are tackling climate destruction, discovering new drugs against disease, developing novel materials, using machine learning to understand the drivers of human health, and much more. This new cohort will add to this legacy in applying scientific discovery to improve human health and opportunity, and preserve and restore essential planetary systems.”

    Schmidt Futures is a philanthropic initiative that brings talented people together in networks to prove out their ideas and solve hard problems in science and society. Schmidt Science Fellows receive a stipend of $100,000 a year for up to two years of postdoctoral research in a discipline different from their PhD at a world-leading lab anywhere across the globe.

    Lillian Chin ’17, SM ’19 is currently pursuing her PhD in the Department of Electrical Engineering and Computer Science. Her research focuses on creating new materials for robots. By designing the geometry of a material, Chin creates new “meta-materials” that have different properties from the original. Using this technique, she has created robot balls that dramatically expand in volume and soft grippers that can work in dangerous environments. All of these robots are built out of a single material, letting the researchers 3D print them with extra internal features like channels. These channels help to measure the deformation of metamaterials, enabling Chin and her collaborators to create robots that are strong, can move, and sense their own shape, like muscles do.

    “I feel very honored to have been chosen for this fellowship,” says Chin. “I feel like I proposed a very risky pivot, since my background is only in engineering, with very limited exposure to neuroscience. I’m very excited to be given the opportunity to learn best practices for interacting with patients and be able to translate my knowledge from robotics to biology.”

    With the Schmidt Fellowship, Chin plans to pursue new frontiers for custom materials with internal sensors, which can measure force and deformation and can be placed anywhere within the material. “I want to use these materials to make tools for clinicians and neuroscientists to better understand how humans touch and grasp objects around them,” says Chin. “I’m especially interested in seeing how my materials could help in diagnosis motor-related diseases or improve rehab outcomes by providing the patient with feedback. This will help me create robots that have a better sense of touch and learn how to move objects around like humans do.”

    Neil Dalvie PD ’22, PhD ’22 is a graduate of the Department of Chemical Engineering, where he worked with Professor J. Christopher Love on manufacturing of therapeutic proteins. Dalvie developed molecular biology techniques for manufacturing high-quality proteins in yeast, which enables rapid testing of new products and low-cost manufacturing and large scales. During the pandemic, he led a team that applied these learnings to develop a Covid-19 vaccine that was deployed in multiple low-income countries. After graduating, Dalvie wanted to apply the precision biological engineering that is routinely deployed in medicinal manufacturing to other large-scale bioprocesses.

    “It’s rare for scientists to cross large technical gaps after so many years of specific training to get a PhD — you get comfy being an expert in your field,” says Dalvie. “I was definitely intimidated by the giant leap from vaccine manufacturing to the natural rock cycle. The fellowship has allowed me to dive into the new field by removing immediate pressure to publish or find my next job. I am excited for what commonalities we will find between biomanufacturing and biogeochemistry.”

    As a Schmidt Science Fellow, Dalvie will work with Professor Pamela Silver at Harvard Medical School on engineering microorganisms for enhanced rock weathering and carbon sequestration to combat climate change. They are applying modern molecular biology to enhance natural biogeochemical processes at gigaton scales.

    Suong (Su) Nguyen, a postdoctoral researcher in Professor Jeremiah Johnson’s lab in the Department of Chemistry, earned her PhD from Princeton University, where she developed light-driven, catalytic methodologies for organic synthesis, biomass valorization, plastic waste recycling, and functionalization of quantum sensing materials.

    As a Schmidt Science fellow, Nguyen will pivot from organic chemistry to nanomaterials. Biological systems are able to synthesize macromolecules with precise structure essential for their biological function. Scientists have long dreamed of achieving similar control over synthetic materials, but existing methods are inefficient and limited in scope. Nguyen hopes to develop new strategies to achieve such high level of control over the structure and properties of nanomaterials and explore their potential for use in therapeutic applications.

    “I feel extremely honored and grateful to receive the Schmidt Science Fellowship,” says Nguyen. “The fellowship will provide me with a unique opportunity to engage with scientists from a very wide range of research backgrounds. I believe this will significantly shape the research objectives for my future career.”

    Yirui Zhang SM ’19, PhD ’22 is a graduate of the Department of Mechanical Engineering. Zhang’s research focuses on electrochemical energy storage and conversion, including lithium-ion batteries and electrocatalysis. She has developed in situ spectroscopy and electrochemical methods to probe the electrode-electrolyte interface, understand the interfacial molecular structures, and unravel the fundamental thermodynamics and kinetics of (electro)chemical reactions in energy storage. Further, she has leveraged the physical chemistry of liquids and tuned the molecular structures at the interface to improve the stability and kinetics of electrochemical reactions. 

    “I am honored and thrilled to have been named a Schmidt Science Fellow,” says Zhang. “The fellowship will not only provide me with the unique opportunity to broaden my scientific perspectives and pursue pivoting research, but also create a lifelong network for us to collaborate across diverse fields and become scientific and societal thought leaders. I look forward to pushing the boundaries of my research and advancing technologies to tackle global challenges in energy storage and health care with interdisciplinary efforts!”

    As a Schmidt Science Fellow, Zhang will work across disciplines and pivot to biosensing. She plans to combine spectroscopy, electrokinetics, and machine learning to develop a fast and cost-effective technique for monitoring and understanding infectious disease. The innovations will benefit next-generation point-of-care medical devices and wastewater-based epidemiology to provide timely diagnosis and help protect humans against deadly infections and antimicrobial resistance. More

  • in

    Responding to Ukraine’s “ocean of suffering”

    Within 72 hours of the first Russian missiles striking Kyiv, Ukraine, in February 2022, Ian Miller SM ’19 boarded a flight for Poland.

    Later, he’d say he felt motivated by Kyiv’s “tragic ocean of suffering” and Ukrainian President Zelensky’s pleas for help. But he arrived with little notion of what to do.

    As he’d anticipated, his hotel in Rzeszów turned out to be a hub for aid workers and journalists. Miller was on his laptop, using the lobby Wi-Fi to work remotely as an MIT Energy Initiative (MITEI) project manager, when he overheard a reporter interviewing a Finnish man about his efforts to get bulletproof vests and helmets to the front lines.

    Miller soon found himself loading supplies onto trains that had brought huge numbers of refugees — mostly women, children, and the elderly — to the station in Rzeszów. The trains ran back at night, their empty seats filled with medical supplies, generators, and baby food, their lights dimmed to reduce the chances of attack.

    In April 2022, Miller and volunteers from a half-dozen countries planned and drove a convoy of trucks packed with tourniquets, bandages, and bulletproof vests across the border, arriving at the site of the Bucha massacre soon after the Russians retreated.

    Miller peered into a mass grave. “They were still excavating it, and those weren’t soldiers, you know?” he says. “I try to avoid looking at things like that too often, because it doesn’t help us save lives to be horrified all the time.” He downplays any potential danger to himself, telling his family he’s safer where he is than in parts of the United States.

    Soon after his first trip across the border, Miller convinced his former MIT roommate, Evan Platt SM ’20, to come help. “Just for a week,” he told Platt.

    Inspired by energy

    Miller and Platt met in 2008 in Washington, where Platt was interning at the White House and Miller was about to start his senior year at Georgetown University.

    Miller majored in government, but his interest in energy policy and technology grew during the years after graduation he spent teaching science to primary and secondary school students in New York, where he’d grown up; in Boston; and in Kampala, Uganda. “Some of the most fun, inspiring, engaging lessons and modules I did with the kids were focused on energy,” he recalls.

    While pursuing an MIT master of science in chemical engineering from 2016 to 2018, he started researching photovoltaics and wind power. He held leadership positions with the MIT Energy Conference and the MIT Energy Club.

    After joining MITEI, Miller worked on electric vehicles (EVs), EV charging patterns, and other applications. He became project manager and research specialist for the Sustainable Energy System Analysis Modeling Environment (SESAME), which models the levels of greenhouse gas emissions from multiple energy sectors in future scenarios.

    Miller and Platt reconnected and shared an apartment for three years. Platt studied systems design and management through a joint MIT School of Engineering and Sloan School of Management program, then stayed on to work for the MIT Technology Licensing Office.

    Platt left MIT to pursue other interests in 2020. The next time the two would see each other would be in Poland.

    “It’s not easy living and working in an active combat zone,” Platt says. “There is nobody on Earth I would rather be navigating this environment with than Ian.”

    Navigating the last mile

    In Rzeszów and Ukraine, Miller and U.S. Air Force veteran Mark Lindquist oversaw fulfillment for the new team. With the help of Google Translate, their phones lit up with encrypted texts to and from Polish customs agents and Ukrainian warehouse operators.

    Platt and two Ukrainian team members took the lead on a needs analysis of what was most in demand at the front. Another team member led procurement. Their efforts crystallized in the creation of Zero Line, a tax-exempt nonprofit that works closely with the Ukrainian government at the front line (a.k.a. “the zero line”).

    With Platt on board, “we got more rigorous and quantitative in terms of lives-saved-per-dollar,” Miller says. A hundred dollars buys four tourniquets. A thousand dollars adds crude steel armor to a Jeep. Two thousand dollars provides a small observation drone or a satellite phone, equipment that locates Russian artillery and detects Russian attacks.

    “Russian artillery shells are the No. 1 killer of Ukrainians, causing around 80 percent of casualties,” he says. “Tourniquets save people injured by Russian shells, vehicles help evacuate them, and communications equipment prevents deadly injuries from occurring in the first place.”

    Miller’s skills in transportation and power system modeling, developed at MITEI under Principal Research Scientist Emre Gençer, helped the team transport more than 150 used vehicles — Nissan Pathfinders and vans for moving civilians away from the front, Ford pickups for transporting anti-missile defense systems — and hundreds of batteries, generators, drones, bulletproof vests, and helmets to the front through nightmarish logistical bottlenecks.

    Typically, supplies from the United States, Asia, and elsewhere in Europe move through Gdansk and Warsaw, then proceed via train or vehicle to warehouses in Lviv, around 70 kilometers east of the border. Next is the seven-hour trip to Kyiv or the 12-hour drive to Dnipro (the current southern edge of the safe “green zone”) and the final 200 kilometers to the front. Here, says Miller, drivers with training and protective gear, often members of the Ukrainian military, take vehicles and supplies to front-line end users.

    “From day one, we asked our Ukrainian members and partners for introductions, and we’re constantly looking for more,” Miller says. “When our vehicles reach the front lines, Evan’s team always does interviews about needs, and what’s working, what’s not. What’s saving the most lives.”

    “From my early days with Ian, it’s clear he was always looking for ways to help people. Connections were really important to him,” says MITEI Director Robert C. Armstrong. “When war broke out, he found the call to answer human need irresistible. I think many of us think of doing that, but we get bogged down in the mechanics of everyday life. He just picked up and went.

    “Ian is just a terrific person and a great role model,” Armstrong says.

    Accelerating peace

    From the time Miller arrived in late February through October 2022, he continued working remotely for MITEI. He now works full time as co-director of Zero Line. For the foreseeable future, Miller will remain in Ukraine and Poland.

    He wants to see Ukrainians “follow in the happy, free, prospering footsteps of other ex-Soviet states, like the Baltics,” he says. He’d like to see the supply-chain innovations he and Platt achieved applied to humanitarian crises elsewhere.

    To date, Zero Line has raised more than $5 million in donations and delivered hundreds of tons of high-impact aid. “A key part of our approach has always been to support Ukrainians who excel in saving lives,” Miller says. To that end, the group works with Ukrainian software programmers and military units to create digital maps and processes to replace paper maps and operations “reminiscent of World War II,” Platt says. “Modernizing the intelligence infrastructure to facilitate better military operations is an important part of how a smaller military can beat a larger, more powerful military.”

    The fact that energy underlies so many aspects of the war is never far from Miller’s mind. Russia cut off energy supplies to Europe, then targeted Ukraine’s energy infrastructure. On one hand, he understands that billions of people in developing countries such as India need and deserve affordable energy. On the other hand, he says, oil and gas purchases by those countries are directly funding Russia’s war machine.

    “Everyone wants cheap renewables and we’re getting there, but it’s taking time. Lowering the costs of renewables and energy storage and supporting nascent commercial fusion — that’s a very important focus of MITEI. In the long run, that’ll help us reach a more peaceful world, without a doubt.”

    Work at MITEI and at Zero Line, Miller says, “truly could accelerate peace.” More