More stories

  • in

    Passion projects prepare to launch

    At the start of the sixth annual MITdesignX “Pitch Day,” Svafa Grönfeldt, the program’s faculty director, made a point of noting that many of the teams about to showcase their ventures had changed direction multiple times on their projects.

    “Some of you have pivoted more times than we can count,” Grönfeldt said in her welcoming address. “This makes for a fantastic idea because you have the courage to actually question if your ideas are the right ones. In the true spirit of human-centered design, you actually try to understand the problem before you solve it!”

    MITdesignX, a venture accelerator based in the School of Architecture and Planning, is an interdisciplinary academic program operating at the intersection of design, business, and technology. The launching pad for startups focuses on applying design to engage complex problems and discovering high-impact solutions to address critical challenges facing the future of design, cities, and the global environment. The program reflects a new approach to entrepreneurship education, drawing on business theory, design thinking, and entrepreneurial practices.

    At this year’s event, 11 teams pitched their ideas before a panel of three judges, an on-site audience, and several hundred viewers watching the livestream event.

    “These teams have been working hard on solutions,” Gilad Rosenzweig, executive director of MITdesignX, told the audience. “They’re not designing solutions for people. They’re designing solutions with people.”

    Solving urgent problems

    Some of the issues addressed by the teams were lack of adequate housing, endangered food supplies, toxic pollution, and threats to democracy. Many of the students were inspired to create their venture because of problems they encountered in their careers or concerns impacting their home countries. The 25 team members in this year’s cohort represent work on five continents.

    “We’re very proud of our international representation because we want our impact to be felt outside of Cambridge,” said Rosenzweig. “We want to make an impact around the country and around the world.”

    John Devine, a JD/Masters in City Planning (MCP) candidate in the Department of Urban Studies and Planning, created a new software platform, “Civic Atlas.” In his pitch, he explained that having worked in city planning in Texas for a decade before coming to MIT, he saw how difficult it was for communities to wade through and comprehend the dense, technical language in city council agendas. Zoning cases, bond projects, and transportation investments are just some of the significant projects that affect a community, and Devine saw many instances where decisions were being made without community awareness as a result of inadequate communication.

    “When communities don’t have access to clear, accessible information, we have poor outcomes,” Devine told the audience. “I realized the solution to this is to make accessible and inclusive digital experiences that really facilitate communication between planners, developers, and members of the community.”

    Seizing the opportunity, Devine taught himself how to code and built a fully automated web tool for the Dallas City Planning Commission. The tool checks the city’s website daily and translates documents into interactive maps, allowing residents to view plans in their community. Devine is starting in Dallas, but says that there are more than 800 cities across the United States with a population greater than 50,000 that present an excellent target market for this product.

    “I think cities have a ton to gain from working with us, including building trust and communication with constituents — something that’s vital for city halls to function,” says Devine.

    Next steps for the cohort

    The judges for this year’s event — Yscaira Jimenez, founder of LaborX; Magnus Ingi Oskarsson of Eyrir Venture Management in Reykjavik, Iceland; and Frank Pawlitschek, director, HPI School of Entrepreneurship in Potsdam, Germany — deliberated to identify the best teams based on three criteria: most innovative, greatest impact, and best presentation. The competition was so strong that the judges decided to award two honorable mentions. This year’s awardees are:

    Atacama, a company that is developing biomaterials to replace plastics, received the “Most Innovative” award and $5,000. The company accelerates the adoption of renewable and sustainable materials through machine learning and robotics, ensuring performance, cost-effectiveness, and environmental impact. Its founders are Paloma Gonzalez-Rojas PhD ’21, Jose Tomas Dominguez, and Jose Antonio Gonzalez.
    Grain Box, a startup focusing on optimizing the post-harvest supply chain for smallholder farmers in rural India, was awarded “Greatest Impact” and a $5,000 award. Its founders are Mona Vijaykumar SMArchS ’22 and T.R. (Radha) Radhakrishnan.
    Lamarr.AI, which offers an autonomous solution for rapid building envelope diagnostics using AI and cloud computing, was recognized for “Best Presentation” and awarded $2,500. Its founders are Norhan Bayomi PhD ’22, Tarek Rakha, PhD ’15, and John E. Fernandez ’85, professor and director of the MIT Environmental Solutions Initiative.
    Honorable Mention: “News Detective,” a platform combining moderated, professional fact-checking and AI to fight misinformation on social media, created by rising senior Ilana Strauss.
    Honorable Mention: “La Firme,” which digitizes architectural services to reach families who self-build their homes in Latin America, created by Mora Orensanz MCP ’21, Fiorella Belli Ferro MCP ’21, and rising senior Raul Briceno Brignole.
    Following the award ceremony, Rosenzweig told the students that the process was not yet over because MITdesignX faculty and staff would always be available to continue guiding and supporting their journeys as they launch and grow their ventures.

    “You’re going to become alumni of MITdesignX,” he said. “You’re going to be joining over 50 teams that are working around the world, making an impact. They’re being recognized as leaders in innovation. They’re being recognized by investors who are helping them make an impact. This is your next step.” More

  • in

    MIT Climate and Sustainability Consortium announces recipients of inaugural MCSC Seed Awards

    The MIT Climate and Sustainability Consortium (MCSC) has awarded 20 projects a total of $5 million over two years in its first-ever 2022 MCSC Seed Awards program. The winning projects are led by principal investigators across all five of MIT’s schools.

    The goal of the MCSC Seed Awards is to engage MIT researchers and link the economy-wide work of the consortium to ongoing and emerging climate and sustainability efforts across campus. The program offers further opportunity to build networks among the awarded projects to deepen the impact of each and ensure the total is greater than the sum of its parts.

    For example, to drive progress under the awards category Circularity and Materials, the MCSC can facilitate connections between the technologists at MIT who are developing recovery approaches for metals, plastics, and fiber; the urban planners who are uncovering barriers to reuse; and the engineers, who will look for efficiency opportunities in reverse supply chains.

    “The MCSC Seed Awards are designed to complement actions previously outlined in Fast Forward: MIT’s Climate Action Plan for the Decade and, more specifically, the Climate Grand Challenges,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MIT Climate and Sustainability Consortium. “In collaboration with seed award recipients and MCSC industry members, we are eager to engage in interdisciplinary exploration and propel urgent advancements in climate and sustainability.” 

    By supporting MIT researchers with expertise in economics, infrastructure, community risk assessment, mobility, and alternative fuels, the MCSC will accelerate implementation of cross-disciplinary solutions in the awards category Decarbonized and Resilient Value Chains. Enhancing Natural Carbon Sinks and building connections to local communities will require associations across experts in ecosystem change, biodiversity, improved agricultural practice and engagement with farmers, all of which the consortium can begin to foster through the seed awards.

    “Funding opportunities across campus has been a top priority since launching the MCSC,” says Jeremy Gregory, MCSC executive director. “It is our honor to support innovative teams of MIT researchers through the inaugural 2022 MCSC Seed Awards program.”

    The winning projects are tightly aligned with the MCSC’s areas of focus, which were derived from a year of highly engaged collaborations with MCSC member companies. The projects apply across the member’s climate and sustainability goals.

    The MCSC’s 16 member companies span many industries, and since early 2021, have met with members of the MIT community to define focused problem statements for industry-specific challenges, identify meaningful partnerships and collaborations, and develop clear and scalable priorities. Outcomes from these collaborations laid the foundation for the focus areas, which have shaped the work of the MCSC. Specifically, the MCSC Industry Advisory Board engaged with MIT on key strategic directions, and played a critical role in the MCSC’s series of interactive events. These included virtual workshops hosted last summer, each on a specific topic that allowed companies to work with MIT and each other to align key assumptions, identify blind spots in corporate goal-setting, and leverage synergies between members, across industries. The work continued in follow-up sessions and an annual symposium.

    “We are excited to see how the seed award efforts will help our member companies reach or even exceed their ambitious climate targets, find new cross-sector links among each other, seek opportunities to lead, and ripple key lessons within their industry, while also deepening the Institute’s strong foundation in climate and sustainability research,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.

    As the seed projects take shape, the MCSC will provide ongoing opportunities for awardees to engage with the Industry Advisory Board and technical teams from the MCSC member companies to learn more about the potential for linking efforts to support and accelerate their climate and sustainability goals. Awardees will also have the chance to engage with other members of the MCSC community, including its interdisciplinary Faculty Steering Committee.

    “One of our mantras in the MCSC is to ‘amplify and extend’ existing efforts across campus; we’re always looking for ways to connect the collaborative industry relationships we’re building and the work we’re doing with other efforts on campus,” notes Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. “We feel the urgency as well as the potential, and we don’t want to miss opportunities to do more and go faster.”

    The MCSC Seed Awards complement the Climate Grand Challenges, a new initiative to mobilize the entire MIT research community around developing the bold, interdisciplinary solutions needed to address difficult, unsolved climate problems. The 27 finalist teams addressed four broad research themes, which align with the MCSC’s focus areas. From these finalist teams, five flagship projects were announced in April 2022.

    The parallels between MCSC’s focus areas and the Climate Grand Challenges themes underscore an important connection between the shared long-term research interests of industry and academia. The challenges that some of the world’s largest and most influential companies have identified are complementary to MIT’s ongoing research and innovation — highlighting the tremendous opportunity to develop breakthroughs and scalable solutions quickly and effectively. Special Presidential Envoy for Climate John Kerry underscored the importance of developing these scalable solutions, including critical new technology, during a conversation with MIT President L. Rafael Reif at MIT’s first Climate Grand Challenges showcase event last month.

    Both the MCSC Seed Awards and the Climate Grand Challenges are part of MIT’s larger commitment and initiative to combat climate change; this was underscored in “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021.

    The project titles and research leads for each of the 20 awardees listed below are categorized by MCSC focus area.

    Decarbonized and resilient value chains

    “Collaborative community mapping toolkit for resilience planning,” led by Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on Climate Grand Challenges flagship project) and Nicholas de Monchaux, professor and department head in the Department of Architecture
    “CP4All: Fast and local climate projections with scientific machine learning — towards accessibility for all of humanity,” led by Chris Hill, principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences and Dava Newman, director of the MIT Media Lab and the Apollo Program Professor in the Department of Aeronautics and Astronautics
    “Emissions reductions and productivity in U.S. manufacturing,” led by Mert Demirer, assistant professor of applied economics at the MIT Sloan School of Management and Jing Li, assistant professor and William Barton Rogers Career Development Chair of Energy Economics in the MIT Sloan School of Management
    “Logistics electrification through scalable and inter-operable charging infrastructure: operations, planning, and policy,” led by Alex Jacquillat, the 1942 Career Development Professor and assistant professor of operations research and statistics in the MIT Sloan School of Management
    “Powertrain and system design for LOHC-powered long-haul trucking,” led by William Green, the Hoyt Hottel Professor in Chemical Engineering in the Department of Chemical Engineering and postdoctoral officer, and Wai K. Cheng, professor in the Department of Mechanical Engineering and director of the Sloan Automotive Laboratory
    “Sustainable Separation and Purification of Biochemicals and Biofuels using Membranes,” led by John Lienhard, the Abdul Latif Jameel Professor of Water in the Department of Mechanical Engineering, director of the Abdul Latif Jameel Water and Food Systems Lab, and director of the Rohsenow Kendall Heat Transfer Laboratory; and Nicolas Hadjiconstantinou, professor in the Department of Mechanical Engineering, co-director of the Center for Computational Science and Engineering, associate director of the Center for Exascale Simulation of Materials in Extreme Environments, and graduate officer
    “Toolkit for assessing the vulnerability of industry infrastructure siting to climate change,” led by Michael Howland, assistant professor in the Department of Civil and Environmental Engineering

    Circularity and Materials

    “Colorimetric Sulfidation for Aluminum Recycling,” led by Antoine Allanore, associate professor of metallurgy in the Department of Materials Science and Engineering
    “Double Loop Circularity in Materials Design Demonstrated on Polyurethanes,” led by Brad Olsen, the Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering, and Kristala Prather, the Arthur Dehon Little Professor and department executive officer in the Department of Chemical Engineering
    “Engineering of a microbial consortium to degrade and valorize plastic waste,” led by Otto Cordero, associate professor in the Department of Civil and Environmental Engineering, and Desiree Plata, the Gilbert W. Winslow (1937) Career Development Professor in Civil Engineering and associate professor in the Department of Civil and Environmental Engineering
    “Fruit-peel-inspired, biodegradable packaging platform with multifunctional barrier properties,” led by Kripa Varanasi, professor in the Department of Mechanical Engineering
    “High Throughput Screening of Sustainable Polyesters for Fibers,” led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Brad Olsen, Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering
    “Short-term and long-term efficiency gains in reverse supply chains,” led by Yossi Sheffi, the Elisha Gray II Professor of Engineering Systems, professor in the Department of Civil and Environmental Engineering, and director of the Center for Transportation and Logistics
    The costs and benefits of circularity in building construction, led by Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at the MIT Center for Real Estate and Department of Urban Studies and Planning, faculty director of the MIT Center for Real Estate, and faculty director for the MIT Sustainable Urbanization Lab; and Randolph Kirchain, principal research scientist and co-director of MIT Concrete Sustainability Hub

    Natural carbon sinks

    “Carbon sequestration through sustainable practices by smallholder farmers,” led by Joann de Zegher, the Maurice F. Strong Career Development Professor and assistant professor of operations management in the MIT Sloan School of Management, and Karen Zheng the George M. Bunker Professor and associate professor of operations management in the MIT Sloan School of Management
    “Coatings to protect and enhance diverse microbes for improved soil health and crop yields,” led by Ariel Furst, the Raymond A. (1921) And Helen E. St. Laurent Career Development Professor of Chemical Engineering in the Department of Chemical Engineering, and Mary Gehring, associate professor of biology in the Department of Biology, core member of the Whitehead Institute for Biomedical Research, and graduate officer
    “ECO-LENS: Mainstreaming biodiversity data through AI,” led by John Fernández, professor of building technology in the Department of Architecture and director of MIT Environmental Solutions Initiative
    “Growing season length, productivity, and carbon balance of global ecosystems under climate change,” led by Charles Harvey, professor in the Department of Civil and Environmental Engineering, and César Terrer, assistant professor in the Department of Civil and Environmental Engineering

    Social dimensions and adaptation

    “Anthro-engineering decarbonization at the million-person scale,” led by Manduhai Buyandelger, professor in the Anthropology Section, and Michael Short, the Class of ’42 Associate Professor of Nuclear Science and Engineering in the Department of Nuclear Science and Engineering
    “Sustainable solutions for climate change adaptation: weaving traditional ecological knowledge and STEAM,” led by Janelle Knox-Hayes, the Lister Brothers Associate Professor of Economic Geography and Planning and head of the Environmental Policy and Planning Group in the Department of Urban Studies and Planning, and Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on a Climate Grand Challenges flagship project) More

  • in

    MIT J-WAFS announces 2022 seed grant recipients

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT has awarded eight MIT principal investigators with 2022 J-WAFS seed grants. The grants support innovative MIT research that has the potential to have significant impact on water- and food-related challenges.

    The only program at MIT that is dedicated to water- and food-related research, J-WAFS has offered seed grant funding to MIT principal investigators and their teams for the past eight years. The grants provide up to $75,000 per year, overhead-free, for two years to support new, early-stage research in areas such as water and food security, safety, supply, and sustainability. Past projects have spanned many diverse disciplines, including engineering, science, technology, and business innovation, as well as social science and economics, architecture, and urban planning. 

    Seven new projects led by eight researchers will be supported this year. With funding going to four different MIT departments, the projects address a range of challenges by employing advanced materials, technology innovations, and new approaches to resource management. The new projects aim to remove harmful chemicals from water sources, develop drought monitoring systems for farmers, improve management of the shellfish industry, optimize water purification materials, and more.

    “Climate change, the pandemic, and most recently the war in Ukraine have exacerbated and put a spotlight on the serious challenges facing global water and food systems,” says J-WAFS director John H. Lienhard. He adds, “The proposals chosen this year have the potential to create measurable, real-world impacts in both the water and food sectors.”  

    The 2022 J-WAFS seed grant researchers and their projects are:

    Gang Chen, the Carl Richard Soderberg Professor of Power Engineering in MIT’s Department of Mechanical Engineering, is using sunlight to desalinate water. The use of solar energy for desalination is not a new idea, particularly solar thermal evaporation methods. However, the solar thermal evaporation process has an overall low efficiency because it relies on breaking hydrogen bonds among individual water molecules, which is very energy-intensive. Chen and his lab recently discovered a photomolecular effect that dramatically lowers the energy required for desalination. 

    The bonds among water molecules inside a water cluster in liquid water are mostly hydrogen bonds. Chen discovered that a photon with energy larger than the bonding energy between the water cluster and the remaining water liquids can cleave off the water cluster at the water-air interface, colliding with air molecules and disintegrating into 60 or even more individual water molecules. This effect has the potential to significantly boost clean water production via new desalination technology that produces a photomolecular evaporation rate that exceeds pure solar thermal evaporation by at least ten-fold. 

    John E. Fernández is the director of the MIT Environmental Solutions Initiative (ESI) and a professor in the Department of Architecture, and also affiliated with the Department of Urban Studies and Planning. Fernández is working with Scott D. Odell, a postdoc in the ESI, to better understand the impacts of mining and climate change in water-stressed regions of Chile.

    The country of Chile is one of the world’s largest exporters of both agricultural and mineral products; however, little research has been done on climate change effects at the intersection of these two sectors. Fernández and Odell will explore how desalination is being deployed by the mining industry to relieve pressure on continental water supplies in Chile, and with what effect. They will also research how climate change and mining intersect to affect Andean glaciers and agricultural communities dependent upon them. The researchers intend for this work to inform policies to reduce social and environmental harms from mining, desalination, and climate change.

    Ariel L. Furst is the Raymond (1921) and Helen St. Laurent Career Development Professor of Chemical Engineering at MIT. Her 2022 J-WAFS seed grant project seeks to effectively remove dangerous and long-lasting chemicals from water supplies and other environmental areas. 

    Perfluorooctanoic acid (PFOA), a component of Teflon, is a member of a group of chemicals known as per- and polyfluoroalkyl substances (PFAS). These human-made chemicals have been extensively used in consumer products like nonstick cooking pans. Exceptionally high levels of PFOA have been measured in water sources near manufacturing sites, which is problematic as these chemicals do not readily degrade in our bodies or the environment. The majority of humans have detectable levels of PFAS in their blood, which can lead to significant health issues including cancer, liver damage, and thyroid effects, as well as developmental effects in infants. Current remediation methods are limited to inefficient capture and are mostly confined to laboratory settings. Furst’s proposed method utilizes low-energy, scaffolded enzyme materials to move beyond simple capture to degrade these hazardous pollutants.

    Heather J. Kulik is an associate professor in the Department of Chemical Engineering at MIT who is developing novel computational strategies to identify optimal materials for purifying water. Water treatment requires purification by selectively separating small ions from water. However, human-made, scalable materials for water purification and desalination are often not stable in typical operating conditions and lack precision pores for good separation. 

    Metal-organic frameworks (MOFs) are promising materials for water purification because their pores can be tailored to have precise shapes and chemical makeup for selective ion affinity. Yet few MOFs have been assessed for their properties relevant to water purification. Kulik plans to use virtual high-throughput screening accelerated by machine learning models and molecular simulation to accelerate discovery of MOFs. Specifically, Kulik will be looking for MOFs with ultra-stable structures in water that do not break down at certain temperatures. 

    Gregory C. Rutledge is the Lammot du Pont Professor of Chemical Engineering at MIT. He is leading a project that will explore how to better separate oils from water. This is an important problem to solve given that industry-generated oil-contaminated water is a major source of pollution to the environment.

    Emulsified oils are particularly challenging to remove from water due to their small droplet sizes and long settling times. Microfiltration is an attractive technology for the removal of emulsified oils, but its major drawback is fouling, or the accumulation of unwanted material on solid surfaces. Rutledge will examine the mechanism of separation behind liquid-infused membranes (LIMs) in which an infused liquid coats the surface and pores of the membrane, preventing fouling. Robustness of the LIM technology for removal of different types of emulsified oils and oil mixtures will be evaluated. César Terrer is an assistant professor in the Department of Civil and Environmental Engineering whose J-WAFS project seeks to answer the question: How can satellite images be used to provide a high-resolution drought monitoring system for farmers? 

    Drought is recognized as one of the world’s most pressing issues, with direct impacts on vegetation that threaten water resources and food production globally. However, assessing and monitoring the impact of droughts on vegetation is extremely challenging as plants’ sensitivity to lack of water varies across species and ecosystems. Terrer will leverage a new generation of remote sensing satellites to provide high-resolution assessments of plant water stress at regional to global scales. The aim is to provide a plant drought monitoring product with farmland-specific services for water and socioeconomic management.

    Michael Triantafyllou is the Henry L. and Grace Doherty Professor in Ocean Science and Engineering in the Department of Mechanical Engineering. He is developing a web-based system for natural resources management that will deploy geospatial analysis, visualization, and reporting to better manage and facilitate aquaculture data.  By providing value to commercial fisheries’ permit holders who employ significant numbers of people and also to recreational shellfish permit holders who contribute to local economies, the project has attracted support from the Massachusetts Division of Marine Fisheries as well as a number of local resource management departments.

    Massachusetts shell fisheries generated roughly $339 million in 2020, accounting for 17 percent of U.S. East Coast production. Managing such a large industry is a time-consuming process, given there are thousands of acres of coastal areas grouped within over 800 classified shellfish growing areas. Extreme climate events present additional challenges. Triantafyllou’s research will help efforts to enforce environmental regulations, support habitat restoration efforts, and prevent shellfish-related food safety issues. More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    Architecture isn’t just for humans anymore

    In a rural valley of northwestern Nevada, home to stretches of wetlands, sagebrush-grassland, and dozens of natural springs, is a 3,800-acre parcel of off-grid land known as Fly Ranch. Owned by Burning Man, the community that yearly transforms the neighboring playa into a colorful free-wheeling temporary city, Fly Ranch is part of a long-term project to extend the festival’s experimental ethos beyond the one-week event. In 2018, the group, in conjunction with The Land Art Generator Initiative, invited proposals for sustainable systems for energy, water, food, shelter, and regenerative waste management on the site. 

    For recent MIT alumni Zhicheng Xu MArch ’22 and Mengqi Moon He SMArchS ’20, Fly Ranch presented a new challenge. Xu and He, who have backgrounds in landscape design, urbanism, and architecture, had been in the process of researching the use of timber as a building material, and thought the competition would be a good opportunity to experiment and showcase some of their initial research. “But because of our MIT education, we approached the problem with a very critical lens,” says Xu, “We were asking ourselves: Who are we designing for? What do we mean by shelter? Sheltering whom?” 

    Architecture for other-than-human worlds

    Their winning proposal, “Lodgers,” selected among 185 entries and currently on view at the Weisner Student Art Gallery, asks how to design a structure that will accommodate not only the land’s human inhabitants, but also the over 100 plant and animal species that call the desert home. In other words, what would an architecture look like that centered not only human needs, but also those of the broader ecosystem? 

    Developing the project during the pandemic lockdowns, Xu and He pored over a long list of hundreds of local plants and animals — from red-tailed hawks to desert rats to bullfrogs — and designed the project with these species in mind. Combining new computational tools with the traditional Western Shoshone and Northern Paiute designs found in brush shelters and woven baskets, the thatched organic structures called “lodgers” feature bee towers, nesting platforms for birds, sugar-glazed logs for breeding beetle larvae, and composting toilets and environmental education classrooms for humans. 

    But it wasn’t until they visited Fly Ranch, in the spring of 2021, that Xu and He’s understanding of the project deepened. For several nights, they camped onsite with other competition finalists, alongside park rangers and longtime Burners, eating community meals together and learning first-hand the complexities of the desert. At one point during the trip, they were caught in a sandstorm while driving a trailer-load of supplies down a dirt road. The experience, they say, was an important lesson in humility, and how such extremes made the landscape what it was. “That’s why we later came to the term ‘coping with the friction’ because it’s always there,” He says, “There’s no solution.” Xu adds, “The different elements from the land — the water, the heat, the sound, the wind — are the elements we have to cope with in the project. Those little moments made us realize we need to reposition ourselves, stay humble, and try to understand the land.” 

    Leave no trace

    While the deserts of the American West have long been vulnerable to human hubris — from large-scale military procedures to mining operations that have left deep scars on the landscape — Xu and He designed the “lodgers” to leave a light footprint. Instead of viewing buildings as permanent solutions, with the environment perceived as an obstacle to be overcome, Xu and He see their project as a “temporary inhabitant.” 

    To reduce carbon emissions, their goal was to adopt low-cost, low-tech, recycled materials that could be used without the need for special training or heavy equipment, so that the construction itself could be open to everyone in the community. In addition to scrap wood collected onsite, the project uses two-by-four lumber, among the most common and cheapest materials in American construction, and thatching for the facades created from the dry reeds and bulrush that grow abundantly in the region. If the structures are shut down, the use of renewable materials allows them to decompose naturally. 

    Fly Ranch at MIT 

    Now, the MIT community has the opportunity to experience part of the Nevada desert — and be part of the process of participatory design. “We are very fortunate to be funded by the Council of the Arts at MIT,” says Xu. “With that funding, we were able to expand the team, so the format of the exhibition was more democratic than just designing and building.” With the help of their classmates Calvin Zhong ’18 and Wuyahuang Li SMArchS ’21, Xu and He have brought their proposal to life. The ambitious immersive installation includes architectural models, field recordings, projections, and artifacts such as the skeletons of turtles and fish collected at Fly Ranch. Inside the structure is a large communal table, where Xu and He hope to host workshops and conversations to encourage more dialogue and collaboration. Having learned from the design build, Xu and He are now collecting feedback from MIT professors and colleagues to bring the project to the next level. In the fall, they will debut the “lodgers” at the Lisbon Architectural Triennale, and soon hope to build a prototype at Fly Ranch itself. 

    The structures, they hope, will inspire greater reflection on our entanglements with the other-than-human world, and the possibilities of an architecture designed to be impermanent. Humans, after all, are often only “occasional guests” in this landscape, and part of the greater cycles of emergence and decay. “To us, it’s a beautiful expression of how different species are entangled on the land. And us as humans is just another tiny piece in this entanglement,” says Xu. 

    Established as a gift from the MIT Class of 1983, the Wiesner Gallery honors the former president of MIT, Jerome Wiesner, for his support of the arts at the Institute. The gallery was fully renovated in fall 2016, thanks in part to the generosity of Harold ’44 and Arlene Schnitzer and the Council for the Arts at MIT, and now also serves as a central meeting space for MIT Student Arts Programming including the START Studio, Creative Arts Competition, Student Arts Advisory Board, and Arts Scholars. “Lodgers: Friction Between Neighbors” is on view in the Wiesner Student Art Gallery through April 29, and was funded in part by the Council for the Arts at MIT, a group of alumni and friends with a strong commitment to the arts and serving the MIT community. More

  • in

    Q&A: Climate Grand Challenges finalists on new pathways to decarbonizing industry

    Note: This is the third article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    The industrial sector is the backbone of today’s global economy, yet its activities are among the most energy-intensive and the toughest to decarbonize. Efforts to reach net-zero targets and avert runaway climate change will not succeed without new solutions for replacing sources of carbon emissions with low-carbon alternatives and developing scalable nonemitting applications of hydrocarbons.

    In conversations prepared for MIT News, faculty from three of the teams with projects in the competition’s “Decarbonizing complex industries and processes” category discuss strategies for achieving impact in hard-to-abate sectors, from long-distance transportation and building construction to textile manufacturing and chemical refining. The other Climate Grand Challenges research themes include using data and science to forecast climate-related risk, building equity and fairness into climate solutions, and removing, managing, and storing greenhouse gases. The following responses have been edited for length and clarity.

    Moving toward an all-carbon material approach to building

    Faced with the prospect of building stock doubling globally by 2050, there is a great need for sustainable alternatives to conventional mineral- and metal-based construction materials. Mark Goulthorpe, associate professor in the Department of Architecture, explains the methods behind Carbon >Building, an initiative to develop energy-efficient building materials by reorienting hydrocarbons from current use as fuels to environmentally benign products, creating an entirely new genre of lightweight, all-carbon buildings that could actually drive decarbonization.

    Q: What are all-carbon buildings and how can they help mitigate climate change?

    A: Instead of burning hydrocarbons as fuel, which releases carbon dioxide and other greenhouse gases that contribute to atmospheric pollution, we seek to pioneer a process that uses carbon materially to build at macro scale. New forms of carbon — carbon nanotube, carbon foam, etc. — offer salient properties for building that might effectively displace the current material paradigm. Only hydrocarbons offer sufficient scale to beat out the billion-ton mineral and metal markets, and their perilous impact. Carbon nanotube from methane pyrolysis is of special interest, as it offers hydrogen as a byproduct.

    Q: How will society benefit from the widespread use of all-carbon buildings?

    A: We anticipate reducing costs and timelines in carbon composite buildings, while increasing quality, longevity, and performance, and diminishing environmental impact. Affordability of buildings is a growing problem in all global markets as the cost of labor and logistics in multimaterial assemblies creates a burden that is very detrimental to economic growth and results in overcrowding and urban blight.

    Alleviating these challenges would have huge societal benefits, especially for those in lower income brackets who cannot afford housing, but the biggest benefit would be in drastically reducing the environmental footprint of typical buildings, which account for nearly 40 percent of global energy consumption.

    An all-carbon building sector will not only reduce hydrocarbon extraction, but can produce higher value materials for building. We are looking to rethink the building industry by greatly streamlining global production and learning from the low-labor methods pioneered by composite manufacturing such as wind turbine blades, which are quick and cheap to produce. This technology can improve the sustainability and affordability of buildings — and holds the promise of faster, cheaper, greener, and more resilient modes of dwelling.

    Emissions reduction through innovation in the textile industry

    Collectively, the textile industry is responsible for over 4 billion metric tons of carbon dioxide equivalent per year, or 5 to 10 percent of global greenhouse gas emissions — more than aviation and maritime shipping combined. And the problem is only getting worse with the industry’s rapid growth. Under the current trajectory, consumption is projected to increase 30 percent by 2030, reaching 102 million tons. A diverse group of faculty and researchers led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Yuly Fuentes-Medel, project manager for fiber technologies and research advisor to the MIT Innovation Initiative, is developing groundbreaking innovations to reshape how textiles are selected, sourced, designed, manufactured, and used, and to create the structural changes required for sustained reductions in emissions by this industry.

    Q: Why has the textile industry been difficult to decarbonize?

    A: The industry currently operates under a linear model that relies heavily on virgin feedstock, at roughly 97 percent, yet recycles or downcycles less than 15 percent. Furthermore, recent trends in “fast fashion” have led to massive underutilization of apparel, such that products are discarded on average after only seven to 10 uses. In an industry with high volume and low margins, replacement technologies must achieve emissions reduction at scale while maintaining performance and economic efficiency.

    There are also technical barriers to adopting circular business models, from the challenge of dealing with products comprising fiber blends and chemical additives to the low maturity of recycling technologies. The environmental impacts of textiles and apparel have been estimated using life cycle analysis, and industry-standard indexes are under development to assess sustainability throughout the life cycle of a product, but information and tools are needed to model how new solutions will alter those impacts and include the consumer as an active player to keep our planet safe. This project seeks to deliver both the new solutions and the tools to evaluate their potential for impact.

    Q: Describe the five components of your program. What is the anticipated timeline for implementing these solutions?

    A: Our plan comprises five programmatic sections, which include (1) enabling a paradigm shift to sustainable materials using nontraditional, carbon-negative polymers derived from biomass and additives that facilitate recycling; (2) rethinking manufacturing with processes to structure fibers and fabrics for performance, waste reduction, and increased material efficiency; (3) designing textiles for value by developing products that are customized, adaptable, and multifunctional, and that interact with their environment to reduce energy consumption; (4) exploring consumer behavior change through human interventions that reduce emissions by encouraging the adoption of new technologies, increased utilization of products, and circularity; and (5) establishing carbon transparency with systems-level analyses that measure the impact of these strategies and guide decision making.

    We have proposed a five-year timeline with annual targets for each project. Conservatively, we estimate our program could reduce greenhouse gas emissions in the industry by 25 percent by 2030, with further significant reductions to follow.

    Tough-to-decarbonize transportation

    Airplanes, transoceanic ships, and freight trucks are critical to transporting people and delivering goods, and the cornerstone of global commerce, manufacturing, and tourism. But these vehicles also emit 3.7 billion tons of carbon dioxide annually and, left unchecked, they could take up a quarter of the remaining carbon budget by 2050. William Green, the Hoyt C. Hottel Professor in the Department Chemical Engineering, co-leads a multidisciplinary team with Steven Barrett, professor of aeronautics and astronautics and director of the MIT Laboratory for Aviation and the Environment, that is working to identify and advance economically viable technologies and policies for decarbonizing heavy duty trucking, shipping, and aviation. The Tough to Decarbonize Transportation research program aims to design and optimize fuel chemistry and production, vehicles, operations, and policies to chart the course to net-zero emissions by midcentury.

    Q: What are the highest priority focus areas of your research program?

    A: Hydrocarbon fuels made from biomass are the least expensive option, but it seems impractical, and probably damaging to the environment, to harvest the huge amount of biomass that would be needed to meet the massive and growing energy demands from these sectors using today’s biomass-to-fuel technology. We are exploring strategies to increase the amount of useful fuel made per ton of biomass harvested, other methods to make low-climate-impact hydrocarbon fuels, such as from carbon dioxide, and ways to make fuels that do not contain carbon at all, such as with hydrogen, ammonia, and other hydrogen carriers.

    These latter zero-carbon options free us from the need for biomass or to capture gigatons of carbon dioxide, so they could be a very good long-term solution, but they would require changing the vehicles significantly, and the construction of new refueling infrastructure, with high capital costs.

    Q: What are the scientific, technological, and regulatory barriers to scaling and implementing potential solutions?

    A: Reimagining an aviation, trucking, and shipping sector that connects the world and increases equity without creating more environmental damage is challenging because these vehicles must operate disconnected from the electrical grid and have energy requirements that cannot be met by batteries alone. Some of the concepts do not even exist in prototype yet, and none of the appealing options have been implemented at anywhere near the scale required.

    In most cases, we do not know the best way to make the fuel, and for new fuels the vehicles and refueling systems all need to be developed. Also, new fuels, or large-scale use of biomass, will introduce new environmental problems that need to be carefully considered, to ensure that decarbonization solutions do not introduce big new problems.

    Perhaps most difficult are the policy, economic, and equity issues. A new long-haul transportation system will be expensive, and everyone will be affected by the increased cost of shipping freight. To have the desired climate impact, the transport system must change in almost every country. During the transition period, we will need both the existing vehicle and fuel system to keep running smoothly, even as a new low-greenhouse system is introduced. We will also examine what policies could make that work and how we can get countries around the world to agree to implement them. More

  • in

    Using nature’s structures in wooden buildings

    Concern about climate change has focused significant attention on the buildings sector, in particular on the extraction and processing of construction materials. The concrete and steel industries together are responsible for as much as 15 percent of global carbon dioxide emissions. In contrast, wood provides a natural form of carbon sequestration, so there’s a move to use timber instead. Indeed, some countries are calling for public buildings to be made at least partly from timber, and large-scale timber buildings have been appearing around the world.

    Observing those trends, Caitlin Mueller ’07, SM ’14, PhD ’14, an associate professor of architecture and of civil and environmental engineering in the Building Technology Program at MIT, sees an opportunity for further sustainability gains. As the timber industry seeks to produce wooden replacements for traditional concrete and steel elements, the focus is on harvesting the straight sections of trees. Irregular sections such as knots and forks are turned into pellets and burned, or ground up to make garden mulch, which will decompose within a few years; both approaches release the carbon trapped in the wood to the atmosphere.

    For the past four years, Mueller and her Digital Structures research group have been developing a strategy for “upcycling” those waste materials by using them in construction — not as cladding or finishes aimed at improving appearance, but as structural components. “The greatest value you can give to a material is to give it a load-bearing role in a structure,” she says. But when builders use virgin materials, those structural components are the most emissions-intensive parts of buildings due to their large volume of high-strength materials. Using upcycled materials in place of those high-carbon systems is therefore especially impactful in reducing emissions.

    Mueller and her team focus on tree forks — that is, spots where the trunk or branch of a tree divides in two, forming a Y-shaped piece. In architectural drawings, there are many similar Y-shaped nodes where straight elements come together. In such cases, those units must be strong enough to support critical loads.

    “Tree forks are naturally engineered structural connections that work as cantilevers in trees, which means that they have the potential to transfer force very efficiently thanks to their internal fiber structure,” says Mueller. “If you take a tree fork and slice it down the middle, you see an unbelievable network of fibers that are intertwining to create these often three-dimensional load transfer points in a tree. We’re starting to do the same thing using 3D printing, but we’re nowhere near what nature does in terms of complex fiber orientation and geometry.”

    She and her team have developed a five-step “design-to-fabrication workflow” that combines natural structures such as tree forks with the digital and computational tools now used in architectural design. While there’s long been a “craft” movement to use natural wood in railings and decorative features, the use of computational tools makes it possible to use wood in structural roles — without excessive cutting, which is costly and may compromise the natural geometry and internal grain structure of the wood.

    Given the wide use of digital tools by today’s architects, Mueller believes that her approach is “at least potentially scalable and potentially achievable within our industrialized materials processing systems.” In addition, by combining tree forks with digital design tools, the novel approach can also support the trend among architects to explore new forms. “Many iconic buildings built in the past two decades have unexpected shapes,” says Mueller. “Tree branches have a very specific geometry that sometimes lends itself to an irregular or nonstandard architectural form — driven not by some arbitrary algorithm but by the material itself.”

    Step 0: Find a source, set goals

    Before starting their design-to-fabrication process, the researchers needed to locate a source of tree forks. Mueller found help in the Urban Forestry Division of the City of Somerville, Massachusetts, which maintains a digital inventory of more than 2,000 street trees — including more than 20 species — and records information about the location, approximate trunk diameter, and condition of each tree.

    With permission from the forestry division, the team was on hand in 2018 when a large group of trees was cut down near the site of the new Somerville High School. Among the heavy equipment on site was a chipper, poised to turn all the waste wood into mulch. Instead, the workers obligingly put the waste wood into the researchers’ truck to be brought to MIT.

    In their project, the MIT team sought not only to upcycle that waste material but also to use it to create a structure that would be valued by the public. “Where I live, the city has had to take down a lot of trees due to damage from an invasive species of beetle,” Mueller explains. “People get really upset — understandably. Trees are an important part of the urban fabric, providing shade and beauty.” She and her team hoped to reduce that animosity by “reinstalling the removed trees in the form of a new functional structure that would recreate the atmosphere and spatial experience previously provided by the felled trees.”

    With their source and goals identified, the researchers were ready to demonstrate the five steps in their design-to-fabrication workflow for making spatial structures using an inventory of tree forks.

    Step 1: Create a digital material library

    The first task was to turn their collection of tree forks into a digital library. They began by cutting off excess material to produce isolated tree forks. They then created a 3D scan of each fork. Mueller notes that as a result of recent progress in photogrammetry (measuring objects using photographs) and 3D scanning, they could create high-resolution digital representations of the individual tree forks with relatively inexpensive equipment, even using apps that run on a typical smartphone.

    In the digital library, each fork is represented by a “skeletonized” version showing three straight bars coming together at a point. The relative geometry and orientation of the branches are of particular interest because they determine the internal fiber orientation that gives the component its strength.

    Step 2: Find the best match between the initial design and the material library

    Like a tree, a typical architectural design is filled with Y-shaped nodes where three straight elements meet up to support a critical load. The goal was therefore to match the tree forks in the material library with the nodes in a sample architectural design.

    First, the researchers developed a “mismatch metric” for quantifying how well the geometries of a particular tree fork aligned with a given design node. “We’re trying to line up the straight elements in the structure with where the branches originally were in the tree,” explains Mueller. “That gives us the optimal orientation for load transfer and maximizes use of the inherent strength of the wood fiber.” The poorer the alignment, the higher the mismatch metric.

    The goal was to get the best overall distribution of all the tree forks among the nodes in the target design. Therefore, the researchers needed to try different fork-to-node distributions and, for each distribution, add up the individual fork-to-node mismatch errors to generate an overall, or global, matching score. The distribution with the best matching score would produce the most structurally efficient use of the total tree fork inventory.

    Since performing that process manually would take far too long to be practical, they turned to the “Hungarian algorithm,” a technique developed in 1955 for solving such problems. “The brilliance of the algorithm is solving that [matching] problem very quickly,” Mueller says. She notes that it’s a very general-use algorithm. “It’s used for things like marriage match-making. It can be used any time you have two collections of things that you’re trying to find unique matches between. So, we definitely didn’t invent the algorithm, but we were the first to identify that it could be used for this problem.”

    The researchers performed repeated tests to show possible distributions of the tree forks in their inventory and found that the matching score improved as the number of forks available in the material library increased — up to a point. In general, the researchers concluded that the mismatch score was lowest, and thus best, when there were about three times as many forks in the material library as there were nodes in the target design.

    Step 3: Balance designer intention with structural performance

    The next step in the process was to incorporate the intention or preference of the designer. To permit that flexibility, each design includes a limited number of critical parameters, such as bar length and bending strain. Using those parameters, the designer can manually change the overall shape, or geometry, of the design or can use an algorithm that automatically changes, or “morphs,” the geometry. And every time the design geometry changes, the Hungarian algorithm recalculates the optimal fork-to-node matching.

    “Because the Hungarian algorithm is extremely fast, all the morphing and the design updating can be really fluid,” notes Mueller. In addition, any change to a new geometry is followed by a structural analysis that checks the deflections, strain energy, and other performance measures of the structure. On occasion, the automatically generated design that yields the best matching score may deviate far from the designer’s initial intention. In such cases, an alternative solution can be found that satisfactorily balances the design intention with a low matching score.

    Step 4: Automatically generate the machine code for fast cutting

    When the structural geometry and distribution of tree forks have been finalized, it’s time to think about actually building the structure. To simplify assembly and maintenance, the researchers prepare the tree forks by recutting their end faces to better match adjoining straight timbers and cutting off any remaining bark to reduce susceptibility to rot and fire.

    To guide that process, they developed a custom algorithm that automatically computes the cuts needed to make a given tree fork fit into its assigned node and to strip off the bark. The goal is to remove as little material as possible but also to avoid a complex, time-consuming machining process. “If we make too few cuts, we’ll cut off too much of the critical structural material. But we don’t want to make a million tiny cuts because it will take forever,” Mueller explains.

    The team uses facilities at the Autodesk Boston Technology Center Build Space, where the robots are far larger than any at MIT and the processing is all automated. To prepare each tree fork, they mount it on a robotic arm that pushes the joint through a traditional band saw in different orientations, guided by computer-generated instructions. The robot also mills all the holes for the structural connections. “That’s helpful because it ensures that everything is aligned the way you expect it to be,” says Mueller.

    Step 5: Assemble the available forks and linear elements to build the structure

    The final step is to assemble the structure. The tree-fork-based joints are all irregular, and combining them with the precut, straight wooden elements could be difficult. However, they’re all labeled. “All the information for the geometry is embedded in the joint, so the assembly process is really low-tech,” says Mueller. “It’s like a child’s toy set. You just follow the instructions on the joints to put all the pieces together.”

    They installed their final structure temporarily on the MIT campus, but Mueller notes that it was only a portion of the structure they plan to eventually build. “It had 12 nodes that we designed and fabricated using our process,” she says, adding that the team’s work was “a little interrupted by the pandemic.” As activity on campus resumes, the researchers plan to finish designing and building the complete structure, which will include about 40 nodes and will be installed as an outdoor pavilion on the site of the felled trees in Somerville.

    In addition, they will continue their research. Plans include working with larger material libraries, some with multibranch forks, and replacing their 3D-scanning technique with computerized tomography scanning technologies that can automatically generate a detailed geometric representation of a tree fork, including its precise fiber orientation and density. And in a parallel project, they’ve been exploring using their process with other sources of materials, with one case study focusing on using material from a demolished wood-framed house to construct more than a dozen geodesic domes.

    To Mueller, the work to date already provides new guidance for the architectural design process. With digital tools, it has become easy for architects to analyze the embodied carbon or future energy use of a design option. “Now we have a new metric of performance: How well am I using available resources?” she says. “With the Hungarian algorithm, we can compute that metric basically in real time, so we can work rapidly and creatively with that as another input to the design process.”

    This research was supported by MIT’s School of Architecture and Planning via the HASS Award.

    This article appears in the Autumn 2021 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Q&A: Climate Grand Challenges finalists on building equity and fairness into climate solutions

    Note: This is the first in a four-part interview series that will highlight the work of the Climate Grand Challenges finalists, ahead of the April announcement of several multiyear, flagship projects.

    The finalists in MIT’s first-ever Climate Grand Challenges competition each received $100,000 to develop bold, interdisciplinary research and innovation plans designed to attack some of the world’s most difficult and unresolved climate problems. The 27 teams are addressing four Grand Challenge problem areas: building equity and fairness into climate solutions; decarbonizing complex industries and processes; removing, managing, and storing greenhouse gases; and using data and science for improved climate risk forecasting.  

    In a conversation prepared for MIT News, faculty from three of the teams in the competition’s “Building equity and fairness into climate solutions” category share their thoughts on the need for inclusive solutions that prioritize disadvantaged and vulnerable populations, and discuss how they are working to accelerate their research to achieve the greatest impact. The following responses have been edited for length and clarity.

    The Equitable Resilience Framework

    Any effort to solve the most complex global climate problems must recognize the unequal burdens borne by different groups, communities, and societies — and should be equitable as well as effective. Janelle Knox-Hayes, associate professor in the Department of Urban Studies and Planning, leads a team that is developing processes and practices for equitable resilience, starting with a local pilot project in Boston over the next five years and extending to other cities and regions of the country. The Equitable Resilience Framework (ERF) is designed to create long-term economic, social, and environmental transformations by increasing the capacity of interconnected systems and communities to respond to a broad range of climate-related events. 

    Q: What is the problem you are trying to solve?

    A: Inequity is one of the severe impacts of climate change and resonates in both mitigation and adaptation efforts. It is important for climate strategies to address challenges of inequity and, if possible, to design strategies that enhance justice, equity, and inclusion, while also enhancing the efficacy of mitigation and adaptation efforts. Our framework offers a blueprint for how communities, cities, and regions can begin to undertake this work.

    Q: What are the most significant barriers that have impacted progress to date?

    A: There is considerable inertia in policymaking. Climate change requires a rethinking, not only of directives but pathways and techniques of policymaking. This is an obstacle and part of the reason our project was designed to scale up from local pilot projects. Another consideration is that the private sector can be more adaptive and nimble in its adoption of creative techniques. Working with the MIT Climate and Sustainability Consortium there may be ways in which we could modify the ERF to help companies address similar internal adaptation and resilience challenges.

    Protecting and enhancing natural carbon sinks

    Deforestation and forest degradation of strategic ecosystems in the Amazon, Central Africa, and Southeast Asia continue to reduce capacity to capture and store carbon through natural systems and threaten even the most aggressive decarbonization plans. John Fernandez, professor in the Department of Architecture and director of the Environmental Solutions Initiative, reflects on his work with Daniela Rus, professor of electrical engineering and computer science and director of the Computer Science and Artificial Intelligence Laboratory, and Joann de Zegher, assistant professor of Operations Management at MIT Sloan, to protect tropical forests by deploying a three-part solution that integrates targeted technology breakthroughs, deep community engagement, and innovative bioeconomic opportunities. 

    Q: Why is the problem you seek to address a “grand challenge”?

    A: We are trying to bring the latest technology to monitoring, assessing, and protecting tropical forests, as well as other carbon-rich and highly biodiverse ecosystems. This is a grand challenge because natural sinks around the world are threatening to release enormous quantities of stored carbon that could lead to runaway global warming. When combined with deep community engagement, particularly with indigenous and afro-descendant communities, this integrated approach promises to deliver substantially enhanced efficacy in conservation coupled to robust and sustainable local development.

    Q: What is known about this problem and what questions remain unanswered?

    A: Satellites, drones, and other technologies are acquiring more data about natural carbon sinks than ever before. The problem is well-described in certain locations such as the eastern Amazon, which has shifted from a net carbon sink to now a net positive carbon emitter. It is also well-known that indigenous peoples are the most effective stewards of the ecosystems that store the greatest amounts of carbon. One of the key questions that remains to be answered is determining the bioeconomy opportunities inherent within the natural wealth of tropical forests and other important ecosystems that are important to sustained protection and conservation.

    Reducing group-based disparities in climate adaptation

    Race, ethnicity, caste, religion, and nationality are often linked to vulnerability to the adverse effects of climate change, and if left unchecked, threaten to exacerbate long standing inequities. A team led by Evan Lieberman, professor of political science and director of the MIT Global Diversity Lab and MIT International Science and Technology Initiatives, Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics, and Siqi Zheng, professor of urban and real estate sustainability in the Center for Real Estate and the Department of Urban Studies and Planning, is seeking to  reduce ethnic and racial group-based disparities in the capacity of urban communities to adapt to the changing climate. Working with partners in nine coastal cities, they will measure the distribution of climate-related burdens and resiliency through satellites, a custom mobile app, and natural language processing of social media, to help design and test communication campaigns that provide accurate information about risks and remediation to impacted groups. 

    Q: How has this problem evolved?

    A: Group-based disparities continue to intensify within and across countries, owing in part to some randomness in the location of adverse climate events, as well as deep legacies of unequal human development. In turn, economically and politically privileged groups routinely hoard resources for adaptation. In a few cases — notably the United States, Brazil, and with respect to climate-related migrancy, in South Asia — there has been a great deal of research documenting the extent of such disparities. However, we lack common metrics, and for the most part, such disparities are only understood where key actors have politicized the underlying problems. In much of the world, relatively vulnerable and excluded groups may not even be fully aware of the nature of the challenges they face or the resources they require.

    Q: Who will benefit most from your research? 

    A: The greatest beneficiaries will be members of those vulnerable groups who lack the resources and infrastructure to withstand adverse climate shocks. We believe that it will be important to develop solutions such that relatively privileged groups do not perceive them as punitive or zero-sum, but rather as long-term solutions for collective benefit that are both sound and just. More