More stories

  • in

    Nanoscale transistors could enable more efficient electronics

    Silicon transistors, which are used to amplify and switch signals, are a critical component in most electronic devices, from smartphones to automobiles. But silicon semiconductor technology is held back by a fundamental physical limit that prevents transistors from operating below a certain voltage.This limit, known as “Boltzmann tyranny,” hinders the energy efficiency of computers and other electronics, especially with the rapid development of artificial intelligence technologies that demand faster computation.In an effort to overcome this fundamental limit of silicon, MIT researchers fabricated a different type of three-dimensional transistor using a unique set of ultrathin semiconductor materials.Their devices, featuring vertical nanowires only a few nanometers wide, can deliver performance comparable to state-of-the-art silicon transistors while operating efficiently at much lower voltages than conventional devices.“This is a technology with the potential to replace silicon, so you could use it with all the functions that silicon currently has, but with much better energy efficiency,” says Yanjie Shao, an MIT postdoc and lead author of a paper on the new transistors.The transistors leverage quantum mechanical properties to simultaneously achieve low-voltage operation and high performance within an area of just a few square nanometers. Their extremely small size would enable more of these 3D transistors to be packed onto a computer chip, resulting in fast, powerful electronics that are also more energy-efficient.“With conventional physics, there is only so far you can go. The work of Yanjie shows that we can do better than that, but we have to use different physics. There are many challenges yet to be overcome for this approach to be commercial in the future, but conceptually, it really is a breakthrough,” says senior author Jesús del Alamo, the Donner Professor of Engineering in the MIT Department of Electrical Engineering and Computer Science (EECS).They are joined on the paper by Ju Li, the Tokyo Electric Power Company Professor in Nuclear Engineering and professor of materials science and engineering at MIT; EECS graduate student Hao Tang; MIT postdoc Baoming Wang; and professors Marco Pala and David Esseni of the University of Udine in Italy. The research appears today in Nature Electronics.Surpassing siliconIn electronic devices, silicon transistors often operate as switches. Applying a voltage to the transistor causes electrons to move over an energy barrier from one side to the other, switching the transistor from “off” to “on.” By switching, transistors represent binary digits to perform computation.A transistor’s switching slope reflects the sharpness of the “off” to “on” transition. The steeper the slope, the less voltage is needed to turn on the transistor and the greater its energy efficiency.But because of how electrons move across an energy barrier, Boltzmann tyranny requires a certain minimum voltage to switch the transistor at room temperature.To overcome the physical limit of silicon, the MIT researchers used a different set of semiconductor materials — gallium antimonide and indium arsenide — and designed their devices to leverage a unique phenomenon in quantum mechanics called quantum tunneling.Quantum tunneling is the ability of electrons to penetrate barriers. The researchers fabricated tunneling transistors, which leverage this property to encourage electrons to push through the energy barrier rather than going over it.“Now, you can turn the device on and off very easily,” Shao says.But while tunneling transistors can enable sharp switching slopes, they typically operate with low current, which hampers the performance of an electronic device. Higher current is necessary to create powerful transistor switches for demanding applications.Fine-grained fabricationUsing tools at MIT.nano, MIT’s state-of-the-art facility for nanoscale research, the engineers were able to carefully control the 3D geometry of their transistors, creating vertical nanowire heterostructures with a diameter of only 6 nanometers. They believe these are the smallest 3D transistors reported to date.Such precise engineering enabled them to achieve a sharp switching slope and high current simultaneously. This is possible because of a phenomenon called quantum confinement.Quantum confinement occurs when an electron is confined to a space that is so small that it can’t move around. When this happens, the effective mass of the electron and the properties of the material change, enabling stronger tunneling of the electron through a barrier.Because the transistors are so small, the researchers can engineer a very strong quantum confinement effect while also fabricating an extremely thin barrier.“We have a lot of flexibility to design these material heterostructures so we can achieve a very thin tunneling barrier, which enables us to get very high current,” Shao says.Precisely fabricating devices that were small enough to accomplish this was a major challenge.“We are really into single-nanometer dimensions with this work. Very few groups in the world can make good transistors in that range. Yanjie is extraordinarily capable to craft such well-functioning transistors that are so extremely small,” says del Alamo.When the researchers tested their devices, the sharpness of the switching slope was below the fundamental limit that can be achieved with conventional silicon transistors. Their devices also performed about 20 times better than similar tunneling transistors.“This is the first time we have been able to achieve such sharp switching steepness with this design,” Shao adds.The researchers are now striving to enhance their fabrication methods to make transistors more uniform across an entire chip. With such small devices, even a 1-nanometer variance can change the behavior of the electrons and affect device operation. They are also exploring vertical fin-shaped structures, in addition to vertical nanowire transistors, which could potentially improve the uniformity of devices on a chip.“This work definitively steps in the right direction, significantly improving the broken-gap tunnel field effect transistor (TFET) performance. It demonstrates steep-slope together with a record drive-current. It highlights the importance of small dimensions, extreme confinement, and low-defectivity materials and interfaces in the fabricated broken-gap TFET. These features have been realized through a well-mastered and nanometer-size-controlled process,” says Aryan Afzalian, a principal member of the technical staff at the nanoelectronics research organization imec, who was not involved with this work.This research is funded, in part, by Intel Corporation. More

  • in

    Proton-conducting materials could enable new green energy technologies

    As the name suggests, most electronic devices today work through the movement of electrons. But materials that can efficiently conduct protons — the nucleus of the hydrogen atom — could be key to a number of important technologies for combating global climate change.Most proton-conducting inorganic materials available now require undesirably high temperatures to achieve sufficiently high conductivity. However, lower-temperature alternatives could enable a variety of technologies, such as more efficient and durable fuel cells to produce clean electricity from hydrogen, electrolyzers to make clean fuels such as hydrogen for transportation, solid-state proton batteries, and even new kinds of computing devices based on iono-electronic effects.In order to advance the development of proton conductors, MIT engineers have identified certain traits of materials that give rise to fast proton conduction. Using those traits quantitatively, the team identified a half-dozen new candidates that show promise as fast proton conductors. Simulations suggest these candidates will perform far better than existing materials, although they still need to be conformed experimentally. In addition to uncovering potential new materials, the research also provides a deeper understanding at the atomic level of how such materials work.The new findings are described in the journal Energy and Environmental Sciences, in a paper by MIT professors Bilge Yildiz and Ju Li, postdocs Pjotrs Zguns and Konstantin Klyukin, and their collaborator Sossina Haile and her students from Northwestern University. Yildiz is the Breene M. Kerr Professor in the departments of Nuclear Science and Engineering, and Materials Science and Engineering.“Proton conductors are needed in clean energy conversion applications such as fuel cells, where we use hydrogen to produce carbon dioxide-free electricity,” Yildiz explains. “We want to do this process efficiently, and therefore we need materials that can transport protons very fast through such devices.”Present methods of producing hydrogen, for example steam methane reforming, emit a great deal of carbon dioxide. “One way to eliminate that is to electrochemically produce hydrogen from water vapor, and that needs very good proton conductors,” Yildiz says. Production of other important industrial chemicals and potential fuels, such as ammonia, can also be carried out through efficient electrochemical systems that require good proton conductors.But most inorganic materials that conduct protons can only operate at temperatures of 200 to 600 degrees Celsius (roughly 450 to 1,100 Fahrenheit), or even higher. Such temperatures require energy to maintain and can cause degradation of materials. “Going to higher temperatures is not desirable because that makes the whole system more challenging, and the material durability becomes an issue,” Yildiz says. “There is no good inorganic proton conductor at room temperature.” Today, the only known room-temperature proton conductor is a polymeric material that is not practical for applications in computing devices because it can’t easily be scaled down to the nanometer regime, she says.To tackle the problem, the team first needed to develop a basic and quantitative understanding of exactly how proton conduction works, taking a class of inorganic proton conductors, called solid acids. “One has to first understand what governs proton conduction in these inorganic compounds,” she says. While looking at the materials’ atomic configurations, the researchers identified a pair of characteristics that directly relates to the materials’ proton-carrying potential.As Yildiz explains, proton conduction first involves a proton “hopping from a donor oxygen atom to an acceptor oxygen. And then the environment has to reorganize and take the accepted proton away, so that it can hop to another neighboring acceptor, enabling long-range proton diffusion.” This process happens in many inorganic solids, she says. Figuring out how that last part works — how the atomic lattice gets reorganized to take the accepted proton away from the original donor atom — was a key part of this research, she says.The researchers used computer simulations to study a class of materials called solid acids that become good proton conductors above 200 degrees Celsius. This class of materials has a substructure called the polyanion group sublattice, and these groups have to rotate and take the proton away from its original site so it can then transfer to other sites. The researchers were able to identify the phonons that contribute to the flexibility of this sublattice, which is essential for proton conduction. Then they used this information to comb through vast databases of theoretically and experimentally possible compounds, in search of better proton conducting materials.As a result, they found solid acid compounds that are promising proton conductors and that have been developed and produced for a variety of different applications but never before studied as proton conductors; these compounds turned out to have just the right characteristics of lattice flexibility. The team then carried out computer simulations of how the specific materials they identified in their initial screening would perform under relevant temperatures, to confirm their suitability as proton conductors for fuel cells or other uses. Sure enough, they found six promising materials, with predicted proton conduction speeds faster than the best existing solid acid proton conductors.“There are uncertainties in these simulations,” Yildiz cautions. “I don’t want to say exactly how much higher the conductivity will be, but these look very promising. Hopefully this motivates the experimental field to try to synthesize them in different forms and make use of these compounds as proton conductors.”Translating these theoretical findings into practical devices could take some years, she says. The likely first applications would be for electrochemical cells to produce fuels and chemical feedstocks such as hydrogen and ammonia, she says.The work was supported by the U.S. Department of Energy, the Wallenberg Foundation, and the U.S. National Science Foundation. More

  • in

    AI method radically speeds predictions of materials’ thermal properties

    It is estimated that about 70 percent of the energy generated worldwide ends up as waste heat.If scientists could better predict how heat moves through semiconductors and insulators, they could design more efficient power generation systems. However, the thermal properties of materials can be exceedingly difficult to model.The trouble comes from phonons, which are subatomic particles that carry heat. Some of a material’s thermal properties depend on a measurement called the phonon dispersion relation, which can be incredibly hard to obtain, let alone utilize in the design of a system.A team of researchers from MIT and elsewhere tackled this challenge by rethinking the problem from the ground up. The result of their work is a new machine-learning framework that can predict phonon dispersion relations up to 1,000 times faster than other AI-based techniques, with comparable or even better accuracy. Compared to more traditional, non-AI-based approaches, it could be 1 million times faster.This method could help engineers design energy generation systems that produce more power, more efficiently. It could also be used to develop more efficient microelectronics, since managing heat remains a major bottleneck to speeding up electronics.“Phonons are the culprit for the thermal loss, yet obtaining their properties is notoriously challenging, either computationally or experimentally,” says Mingda Li, associate professor of nuclear science and engineering and senior author of a paper on this technique.Li is joined on the paper by co-lead authors Ryotaro Okabe, a chemistry graduate student; and Abhijatmedhi Chotrattanapituk, an electrical engineering and computer science graduate student; Tommi Jaakkola, the Thomas Siebel Professor of Electrical Engineering and Computer Science at MIT; as well as others at MIT, Argonne National Laboratory, Harvard University, the University of South Carolina, Emory University, the University of California at Santa Barbara, and Oak Ridge National Laboratory. The research appears in Nature Computational Science.Predicting phononsHeat-carrying phonons are tricky to predict because they have an extremely wide frequency range, and the particles interact and travel at different speeds.A material’s phonon dispersion relation is the relationship between energy and momentum of phonons in its crystal structure. For years, researchers have tried to predict phonon dispersion relations using machine learning, but there are so many high-precision calculations involved that models get bogged down.“If you have 100 CPUs and a few weeks, you could probably calculate the phonon dispersion relation for one material. The whole community really wants a more efficient way to do this,” says Okabe.The machine-learning models scientists often use for these calculations are known as graph neural networks (GNN). A GNN converts a material’s atomic structure into a crystal graph comprising multiple nodes, which represent atoms, connected by edges, which represent the interatomic bonding between atoms.While GNNs work well for calculating many quantities, like magnetization or electrical polarization, they are not flexible enough to efficiently predict an extremely high-dimensional quantity like the phonon dispersion relation. Because phonons can travel around atoms on X, Y, and Z axes, their momentum space is hard to model with a fixed graph structure.To gain the flexibility they needed, Li and his collaborators devised virtual nodes.They create what they call a virtual node graph neural network (VGNN) by adding a series of flexible virtual nodes to the fixed crystal structure to represent phonons. The virtual nodes enable the output of the neural network to vary in size, so it is not restricted by the fixed crystal structure.Virtual nodes are connected to the graph in such a way that they can only receive messages from real nodes. While virtual nodes will be updated as the model updates real nodes during computation, they do not affect the accuracy of the model.“The way we do this is very efficient in coding. You just generate a few more nodes in your GNN. The physical location doesn’t matter, and the real nodes don’t even know the virtual nodes are there,” says Chotrattanapituk.Cutting out complexitySince it has virtual nodes to represent phonons, the VGNN can skip many complex calculations when estimating phonon dispersion relations, which makes the method more efficient than a standard GNN. The researchers proposed three different versions of VGNNs with increasing complexity. Each can be used to predict phonons directly from a material’s atomic coordinates.Because their approach has the flexibility to rapidly model high-dimensional properties, they can use it to estimate phonon dispersion relations in alloy systems. These complex combinations of metals and nonmetals are especially challenging for traditional approaches to model.The researchers also found that VGNNs offered slightly greater accuracy when predicting a material’s heat capacity. In some instances, prediction errors were two orders of magnitude lower with their technique.A VGNN could be used to calculate phonon dispersion relations for a few thousand materials in just a few seconds with a personal computer, Li says.This efficiency could enable scientists to search a larger space when seeking materials with certain thermal properties, such as superior thermal storage, energy conversion, or superconductivity.Moreover, the virtual node technique is not exclusive to phonons, and could also be used to predict challenging optical and magnetic properties.In the future, the researchers want to refine the technique so virtual nodes have greater sensitivity to capture small changes that can affect phonon structure.“Researchers got too comfortable using graph nodes to represent atoms, but we can rethink that. Graph nodes can be anything. And virtual nodes are a very generic approach you could use to predict a lot of high-dimensional quantities,” Li says.“The authors’ innovative approach significantly augments the graph neural network description of solids by incorporating key physics-informed elements through virtual nodes, for instance, informing wave-vector dependent band-structures and dynamical matrices,” says Olivier Delaire, associate professor in the Thomas Lord Department of Mechanical Engineering and Materials Science at Duke University, who was not involved with this work. “I find that the level of acceleration in predicting complex phonon properties is amazing, several orders of magnitude faster than a state-of-the-art universal machine-learning interatomic potential. Impressively, the advanced neural net captures fine features and obeys physical rules. There is great potential to expand the model to describe other important material properties: Electronic, optical, and magnetic spectra and band structures come to mind.”This work is supported by the U.S. Department of Energy, National Science Foundation, a Mathworks Fellowship, a Sow-Hsin Chen Fellowship, the Harvard Quantum Initiative, and the Oak Ridge National Laboratory. More

  • in

    “They can see themselves shaping the world they live in”

    During the journey from the suburbs to the city, the tree canopy often dwindles down as skyscrapers rise up. A group of New England Innovation Academy students wondered why that is.“Our friend Victoria noticed that where we live in Marlborough there are lots of trees in our own backyards. But if you drive just 30 minutes to Boston, there are almost no trees,” said high school junior Ileana Fournier. “We were struck by that duality.”This inspired Fournier and her classmates Victoria Leeth and Jessie Magenyi to prototype a mobile app that illustrates Massachusetts deforestation trends for Day of AI, a free, hands-on curriculum developed by the MIT Responsible AI for Social Empowerment and Education (RAISE) initiative, headquartered in the MIT Media Lab and in collaboration with the MIT Schwarzman College of Computing and MIT Open Learning. They were among a group of 20 students from New England Innovation Academy who shared their projects during the 2024 Day of AI global celebration hosted with the Museum of Science.The Day of AI curriculum introduces K-12 students to artificial intelligence. Now in its third year, Day of AI enables students to improve their communities and collaborate on larger global challenges using AI. Fournier, Leeth, and Magenyi’s TreeSavers app falls under the Telling Climate Stories with Data module, one of four new climate-change-focused lessons.“We want you to be able to express yourselves creatively to use AI to solve problems with critical-thinking skills,” Cynthia Breazeal, director of MIT RAISE, dean for digital learning at MIT Open Learning, and professor of media arts and sciences, said during this year’s Day of AI global celebration at the Museum of Science. “We want you to have an ethical and responsible way to think about this really powerful, cool, and exciting technology.”Moving from understanding to actionDay of AI invites students to examine the intersection of AI and various disciplines, such as history, civics, computer science, math, and climate change. With the curriculum available year-round, more than 10,000 educators across 114 countries have brought Day of AI activities to their classrooms and homes.The curriculum gives students the agency to evaluate local issues and invent meaningful solutions. “We’re thinking about how to create tools that will allow kids to have direct access to data and have a personal connection that intersects with their lived experiences,” Robert Parks, curriculum developer at MIT RAISE, said at the Day of AI global celebration.Before this year, first-year Jeremie Kwapong said he knew very little about AI. “I was very intrigued,” he said. “I started to experiment with ChatGPT to see how it reacts. How close can I get this to human emotion? What is AI’s knowledge compared to a human’s knowledge?”In addition to helping students spark an interest in AI literacy, teachers around the world have told MIT RAISE that they want to use data science lessons to engage students in conversations about climate change. Therefore, Day of AI’s new hands-on projects use weather and climate change to show students why it’s important to develop a critical understanding of dataset design and collection when observing the world around them.“There is a lag between cause and effect in everyday lives,” said Parks. “Our goal is to demystify that, and allow kids to access data so they can see a long view of things.”Tools like MIT App Inventor — which allows anyone to create a mobile application — help students make sense of what they can learn from data. Fournier, Leeth, and Magenyi programmed TreeSavers in App Inventor to chart regional deforestation rates across Massachusetts, identify ongoing trends through statistical models, and predict environmental impact. The students put that “long view” of climate change into practice when developing TreeSavers’ interactive maps. Users can toggle between Massachusetts’s current tree cover, historical data, and future high-risk areas.Although AI provides fast answers, it doesn’t necessarily offer equitable solutions, said David Sittenfeld, director of the Center for the Environment at the Museum of Science. The Day of AI curriculum asks students to make decisions on sourcing data, ensuring unbiased data, and thinking responsibly about how findings could be used.“There’s an ethical concern about tracking people’s data,” said Ethan Jorda, a New England Innovation Academy student. His group used open-source data to program an app that helps users track and reduce their carbon footprint.Christine Cunningham, senior vice president of STEM Learning at the Museum of Science, believes students are prepared to use AI responsibly to make the world a better place. “They can see themselves shaping the world they live in,” said Cunningham. “Moving through from understanding to action, kids will never look at a bridge or a piece of plastic lying on the ground in the same way again.”Deepening collaboration on earth and beyondThe 2024 Day of AI speakers emphasized collaborative problem solving at the local, national, and global levels.“Through different ideas and different perspectives, we’re going to get better solutions,” said Cunningham. “How do we start young enough that every child has a chance to both understand the world around them but also to move toward shaping the future?”Presenters from MIT, the Museum of Science, and NASA approached this question with a common goal — expanding STEM education to learners of all ages and backgrounds.“We have been delighted to collaborate with the MIT RAISE team to bring this year’s Day of AI celebration to the Museum of Science,” says Meg Rosenburg, manager of operations at the Museum of Science Centers for Public Science Learning. “This opportunity to highlight the new climate modules for the curriculum not only perfectly aligns with the museum’s goals to focus on climate and active hope throughout our Year of the Earthshot initiative, but it has also allowed us to bring our teams together and grow a relationship that we are very excited to build upon in the future.”Rachel Connolly, systems integration and analysis lead for NASA’s Science Activation Program, showed the power of collaboration with the example of how human comprehension of Saturn’s appearance has evolved. From Galileo’s early telescope to the Cassini space probe, modern imaging of Saturn represents 400 years of science, technology, and math working together to further knowledge.“Technologies, and the engineers who built them, advance the questions we’re able to ask and therefore what we’re able to understand,” said Connolly, research scientist at MIT Media Lab.New England Innovation Academy students saw an opportunity for collaboration a little closer to home. Emmett Buck-Thompson, Jeff Cheng, and Max Hunt envisioned a social media app to connect volunteers with local charities. Their project was inspired by Buck-Thompson’s father’s difficulties finding volunteering opportunities, Hunt’s role as the president of the school’s Community Impact Club, and Cheng’s aspiration to reduce screen time for social media users. Using MIT App Inventor, ​their combined ideas led to a prototype with the potential to make a real-world impact in their community.The Day of AI curriculum teaches the mechanics of AI, ethical considerations and responsible uses, and interdisciplinary applications for different fields. It also empowers students to become creative problem solvers and engaged citizens in their communities and online. From supporting volunteer efforts to encouraging action for the state’s forests to tackling the global challenge of climate change, today’s students are becoming tomorrow’s leaders with Day of AI.“We want to empower you to know that this is a tool you can use to make your community better, to help people around you with this technology,” said Breazeal.Other Day of AI speakers included Tim Ritchie, president of the Museum of Science; Michael Lawrence Evans, program director of the Boston Mayor’s Office of New Urban Mechanics; Dava Newman, director of the MIT Media Lab; and Natalie Lao, executive director of the App Inventor Foundation. More

  • in

    Making climate models relevant for local decision-makers

    Climate models are a key technology in predicting the impacts of climate change. By running simulations of the Earth’s climate, scientists and policymakers can estimate conditions like sea level rise, flooding, and rising temperatures, and make decisions about how to appropriately respond. But current climate models struggle to provide this information quickly or affordably enough to be useful on smaller scales, such as the size of a city. Now, authors of a new open-access paper published in the Journal of Advances in Modeling Earth Systems have found a method to leverage machine learning to utilize the benefits of current climate models, while reducing the computational costs needed to run them. “It turns the traditional wisdom on its head,” says Sai Ravela, a principal research scientist in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS) who wrote the paper with EAPS postdoc Anamitra Saha. Traditional wisdomIn climate modeling, downscaling is the process of using a global climate model with coarse resolution to generate finer details over smaller regions. Imagine a digital picture: A global model is a large picture of the world with a low number of pixels. To downscale, you zoom in on just the section of the photo you want to look at — for example, Boston. But because the original picture was low resolution, the new version is blurry; it doesn’t give enough detail to be particularly useful. “If you go from coarse resolution to fine resolution, you have to add information somehow,” explains Saha. Downscaling attempts to add that information back in by filling in the missing pixels. “That addition of information can happen two ways: Either it can come from theory, or it can come from data.” Conventional downscaling often involves using models built on physics (such as the process of air rising, cooling, and condensing, or the landscape of the area), and supplementing it with statistical data taken from historical observations. But this method is computationally taxing: It takes a lot of time and computing power to run, while also being expensive. A little bit of both In their new paper, Saha and Ravela have figured out a way to add the data another way. They’ve employed a technique in machine learning called adversarial learning. It uses two machines: One generates data to go into our photo. But the other machine judges the sample by comparing it to actual data. If it thinks the image is fake, then the first machine has to try again until it convinces the second machine. The end-goal of the process is to create super-resolution data. Using machine learning techniques like adversarial learning is not a new idea in climate modeling; where it currently struggles is its inability to handle large amounts of basic physics, like conservation laws. The researchers discovered that simplifying the physics going in and supplementing it with statistics from the historical data was enough to generate the results they needed. “If you augment machine learning with some information from the statistics and simplified physics both, then suddenly, it’s magical,” says Ravela. He and Saha started with estimating extreme rainfall amounts by removing more complex physics equations and focusing on water vapor and land topography. They then generated general rainfall patterns for mountainous Denver and flat Chicago alike, applying historical accounts to correct the output. “It’s giving us extremes, like the physics does, at a much lower cost. And it’s giving us similar speeds to statistics, but at much higher resolution.” Another unexpected benefit of the results was how little training data was needed. “The fact that that only a little bit of physics and little bit of statistics was enough to improve the performance of the ML [machine learning] model … was actually not obvious from the beginning,” says Saha. It only takes a few hours to train, and can produce results in minutes, an improvement over the months other models take to run. Quantifying risk quicklyBeing able to run the models quickly and often is a key requirement for stakeholders such as insurance companies and local policymakers. Ravela gives the example of Bangladesh: By seeing how extreme weather events will impact the country, decisions about what crops should be grown or where populations should migrate to can be made considering a very broad range of conditions and uncertainties as soon as possible.“We can’t wait months or years to be able to quantify this risk,” he says. “You need to look out way into the future and at a large number of uncertainties to be able to say what might be a good decision.”While the current model only looks at extreme precipitation, training it to examine other critical events, such as tropical storms, winds, and temperature, is the next step of the project. With a more robust model, Ravela is hoping to apply it to other places like Boston and Puerto Rico as part of a Climate Grand Challenges project.“We’re very excited both by the methodology that we put together, as well as the potential applications that it could lead to,” he says.  More

  • in

    School of Engineering welcomes new faculty

    The School of Engineering welcomes 15 new faculty members across six of its academic departments. This new cohort of faculty members, who have either recently started their roles at MIT or will start within the next year, conduct research across a diverse range of disciplines.Many of these new faculty specialize in research that intersects with multiple fields. In addition to positions in the School of Engineering, a number of these faculty have positions at other units across MIT. Faculty with appointments in the Department of Electrical Engineering and Computer Science (EECS) report into both the School of Engineering and the MIT Stephen A. Schwarzman College of Computing. This year, new faculty also have joint appointments between the School of Engineering and the School of Humanities, Arts, and Social Sciences and the School of Science.“I am delighted to welcome this cohort of talented new faculty to the School of Engineering,” says Anantha Chandrakasan, chief innovation and strategy officer, dean of engineering, and Vannevar Bush Professor of Electrical Engineering and Computer Science. “I am particularly struck by the interdisciplinary approach many of these new faculty take in their research. They are working in areas that are poised to have tremendous impact. I look forward to seeing them grow as researchers and educators.”The new engineering faculty include:Stephen Bates joined the Department of Electrical Engineering and Computer Science as an assistant professor in September 2023. He is also a member of the Laboratory for Information and Decision Systems (LIDS). Bates uses data and AI for reliable decision-making in the presence of uncertainty. In particular, he develops tools for statistical inference with AI models, data impacted by strategic behavior, and settings with distribution shift. Bates also works on applications in life sciences and sustainability. He previously worked as a postdoc in the Statistics and EECS departments at the University of California at Berkeley (UC Berkeley). Bates received a BS in statistics and mathematics at Harvard University and a PhD from Stanford University.Abigail Bodner joined the Department of EECS and Department of Earth, Atmospheric and Planetary Sciences as an assistant professor in January. She is also a member of the LIDS. Bodner’s research interests span climate, physical oceanography, geophysical fluid dynamics, and turbulence. Previously, she worked as a Simons Junior Fellow at the Courant Institute of Mathematical Sciences at New York University. Bodner received her BS in geophysics and mathematics and MS in geophysics from Tel Aviv University, and her SM in applied mathematics and PhD from Brown University.Andreea Bobu ’17 will join the Department of Aeronautics and Astronautics as an assistant professor in July. Her research sits at the intersection of robotics, mathematical human modeling, and deep learning. Previously, she was a research scientist at the Boston Dynamics AI Institute, focusing on how robots and humans can efficiently arrive at shared representations of their tasks for more seamless and reliable interactions. Bobu earned a BS in computer science and engineering from MIT and a PhD in electrical engineering and computer science from UC Berkeley.Suraj Cheema will join the Department of Materials Science and Engineering, with a joint appointment in the Department of EECS, as an assistant professor in July. His research explores atomic-scale engineering of electronic materials to tackle challenges related to energy consumption, storage, and generation, aiming for more sustainable microelectronics. This spans computing and energy technologies via integrated ferroelectric devices. He previously worked as a postdoc at UC Berkeley. Cheema earned a BS in applied physics and applied mathematics from Columbia University and a PhD in materials science and engineering from UC Berkeley.Samantha Coday joins the Department of EECS as an assistant professor in July. She will also be a member of the MIT Research Laboratory of Electronics. Her research interests include ultra-dense power converters enabling renewable energy integration, hybrid electric aircraft and future space exploration. To enable high-performance converters for these critical applications her research focuses on the optimization, design, and control of hybrid switched-capacitor converters. Coday earned a BS in electrical engineering and mathematics from Southern Methodist University and an MS and a PhD in electrical engineering and computer science from UC Berkeley.Mitchell Gordon will join the Department of EECS as an assistant professor in July. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory. In his research, Gordon designs interactive systems and evaluation approaches that bridge principles of human-computer interaction with the realities of machine learning. He currently works as a postdoc at the University of Washington. Gordon received a BS from the University of Rochester, and MS and PhD from Stanford University, all in computer science.Kaiming He joined the Department of EECS as an associate professor in February. He will also be a member of the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL). His research interests cover a wide range of topics in computer vision and deep learning. He is currently focused on building computer models that can learn representations and develop intelligence from and for the complex world. Long term, he hopes to augment human intelligence with improved artificial intelligence. Before joining MIT, He was a research scientist at Facebook AI. He earned a BS from Tsinghua University and a PhD from the Chinese University of Hong Kong.Anna Huang SM ’08 will join the departments of EECS and Music and Theater Arts as assistant professor in September. She will help develop graduate programming focused on music technology. Previously, she spent eight years with Magenta at Google Brain and DeepMind, spearheading efforts in generative modeling, reinforcement learning, and human-computer interaction to support human-AI partnerships in music-making. She is the creator of Music Transformer and Coconet (which powered the Bach Google Doodle). She was a judge and organizer for the AI Song Contest. Anna holds a Canada CIFAR AI Chair at Mila, a BM in music composition, and BS in computer science from the University of Southern California, an MS from the MIT Media Lab, and a PhD from Harvard University.Yael Kalai PhD ’06 will join the Department of EECS as a professor in September. She is also a member of CSAIL. Her research interests include cryptography, the theory of computation, and security and privacy. Kalai currently focuses on both the theoretical and real-world applications of cryptography, including work on succinct and easily verifiable non-interactive proofs. She received her bachelor’s degree from the Hebrew University of Jerusalem, a master’s degree at the Weizmann Institute of Science, and a PhD from MIT.Sendhil Mullainathan will join the departments of EECS and Economics as a professor in July. His research uses machine learning to understand complex problems in human behavior, social policy, and medicine. Previously, Mullainathan spent five years at MIT before joining the faculty at Harvard in 2004, and then the University of Chicago in 2018. He received his BA in computer science, mathematics, and economics from Cornell University and his PhD from Harvard University.Alex Rives will join the Department of EECS as an assistant professor in September, with a core membership in the Broad Institute of MIT and Harvard. In his research, Rives is focused on AI for scientific understanding, discovery, and design for biology. Rives worked with Meta as a New York University graduate student, where he founded and led the Evolutionary Scale Modeling team that developed large language models for proteins. Rives received his BS in philosophy and biology from Yale University and is completing his PhD in computer science at NYU.Sungho Shin will join the Department of Chemical Engineering as an assistant professor in July. His research interests include control theory, optimization algorithms, high-performance computing, and their applications to decision-making in complex systems, such as energy infrastructures. Shin is a postdoc at the Mathematics and Computer Science Division at Argonne National Laboratory. He received a BS in mathematics and chemical engineering from Seoul National University and a PhD in chemical engineering from the University of Wisconsin-Madison.Jessica Stark joined the Department of Biological Engineering as an assistant professor in January. In her research, Stark is developing technologies to realize the largely untapped potential of cell-surface sugars, called glycans, for immunological discovery and immunotherapy. Previously, Stark was an American Cancer Society postdoc at Stanford University. She earned a BS in chemical and biomolecular engineering from Cornell University and a PhD in chemical and biological engineering at Northwestern University.Thomas John “T.J.” Wallin joined the Department of Materials Science and Engineering as an assistant professor in January. As a researcher, Wallin’s interests lay in advanced manufacturing of functional soft matter, with an emphasis on soft wearable technologies and their applications in human-computer interfaces. Previously, he was a research scientist at Meta’s Reality Labs Research working in their haptic interaction team. Wallin earned a BS in physics and chemistry from the College of William and Mary, and an MS and PhD in materials science and engineering from Cornell University.Gioele Zardini joined the Department of Civil and Environmental Engineering as an assistant professor in September. He will also join LIDS and the Institute for Data, Systems, and Society. Driven by societal challenges, Zardini’s research interests include the co-design of sociotechnical systems, compositionality in engineering, applied category theory, decision and control, optimization, and game theory, with society-critical applications to intelligent transportation systems, autonomy, and complex networks and infrastructures. He received his BS, MS, and PhD in mechanical engineering with a focus on robotics, systems, and control from ETH Zurich, and spent time at MIT, Stanford University, and Motional. More

  • in

    HPI-MIT design research collaboration creates powerful teams

    The recent ransomware attack on ChangeHealthcare, which severed the network connecting health care providers, pharmacies, and hospitals with health insurance companies, demonstrates just how disruptive supply chain attacks can be. In this case, it hindered the ability of those providing medical services to submit insurance claims and receive payments.This sort of attack and other forms of data theft are becoming increasingly common and often target large, multinational corporations through the small and mid-sized vendors in their corporate supply chains, enabling breaks in these enormous systems of interwoven companies.Cybersecurity researchers at MIT and the Hasso Plattner Institute (HPI) in Potsdam, Germany, are focused on the different organizational security cultures that exist within large corporations and their vendors because it’s that difference that creates vulnerabilities, often due to the lack of emphasis on cybersecurity by the senior leadership in these small to medium-sized enterprises (SMEs).Keri Pearlson, executive director of Cybersecurity at MIT Sloan (CAMS); Jillian Kwong, a research scientist at CAMS; and Christian Doerr, a professor of cybersecurity and enterprise security at HPI, are co-principal investigators (PIs) on the research project, “Culture and the Supply Chain: Transmitting Shared Values, Attitudes and Beliefs across Cybersecurity Supply Chains.”Their project was selected in the 2023 inaugural round of grants from the HPI-MIT Designing for Sustainability program, a multiyear partnership funded by HPI and administered by the MIT Morningside Academy for Design (MAD). The program awards about 10 grants annually of up to $200,000 each to multidisciplinary teams with divergent backgrounds in computer science, artificial intelligence, machine learning, engineering, design, architecture, the natural sciences, humanities, and business and management. The 2024 Call for Applications is open through June 3.Designing for Sustainability grants support scientific research that promotes the United Nations’ Sustainable Development Goals (SDGs) on topics involving sustainable design, innovation, and digital technologies, with teams made up of PIs from both institutions. The PIs on these projects, who have common interests but different strengths, create more powerful teams by working together.Transmitting shared values, attitudes, and beliefs to improve cybersecurity across supply chainsThe MIT and HPI cybersecurity researchers say that most ransomware attacks aren’t reported. Smaller companies hit with ransomware attacks just shut down, because they can’t afford the payment to retrieve their data. This makes it difficult to know just how many attacks and data breaches occur. “As more data and processes move online and into the cloud, it becomes even more important to focus on securing supply chains,” Kwong says. “Investing in cybersecurity allows information to be exchanged freely while keeping data safe. Without it, any progress towards sustainability is stalled.”One of the first large data breaches in the United States to be widely publicized provides a clear example of how an SME cybersecurity can leave a multinational corporation vulnerable to attack. In 2013, hackers entered the Target Corporation’s own network by obtaining the credentials of a small vendor in its supply chain: a Pennsylvania HVAC company. Through that breach, thieves were able to install malware that stole the financial and personal information of 110 million Target customers, which they sold to card shops on the black market.To prevent such attacks, SME vendors in a large corporation’s supply chain are required to agree to follow certain security measures, but the SMEs usually don’t have the expertise or training to make good on these cybersecurity promises, leaving their own systems, and therefore any connected to them, vulnerable to attack.“Right now, organizations are connected economically, but not aligned in terms of organizational culture, values, beliefs, and practices around cybersecurity,” explains Kwong. “Basically, the big companies are realizing the smaller ones are not able to implement all the cybersecurity requirements. We have seen some larger companies address this by reducing requirements or making the process shorter. However, this doesn’t mean companies are more secure; it just lowers the bar for the smaller suppliers to clear it.”Pearlson emphasizes the importance of board members and senior management taking responsibility for cybersecurity in order to change the culture at SMEs, rather than pushing that down to a single department, IT office, or in some cases, one IT employee.The research team is using case studies based on interviews, field studies, focus groups, and direct observation of people in their natural work environments to learn how companies engage with vendors, and the specific ways cybersecurity is implemented, or not, in everyday operations. The goal is to create a shared culture around cybersecurity that can be adopted correctly by all vendors in a supply chain.This approach is in line with the goals of the Charter of Trust Initiative, a partnership of large, multinational corporations formed to establish a better means of implementing cybersecurity in the supply chain network. The HPI-MIT team worked with companies from the Charter of Trust and others last year to understand the impacts of cybersecurity regulation on SME participation in supply chains and develop a conceptual framework to implement changes for stabilizing supply chains.Cybersecurity is a prerequisite needed to achieve any of the United Nations’ SDGs, explains Kwong. Without secure supply chains, access to key resources and institutions can be abruptly cut off. This could include food, clean water and sanitation, renewable energy, financial systems, health care, education, and resilient infrastructure. Securing supply chains helps enable progress on all SDGs, and the HPI-MIT project specifically supports SMEs, which are a pillar of the U.S. and European economies.Personalizing product designs while minimizing material wasteIn a vastly different Designing for Sustainability joint research project that employs AI with engineering, “Personalizing Product Designs While Minimizing Material Waste” will use AI design software to lay out multiple parts of a pattern on a sheet of plywood, acrylic, or other material, so that they can be laser cut to create new products in real time without wasting material.Stefanie Mueller, the TIBCO Career Development Associate Professor in the MIT Department of Electrical Engineering and Computer Science and a member of the Computer Science and Artificial Intelligence Laboratory, and Patrick Baudisch, a professor of computer science and chair of the Human Computer Interaction Lab at HPI, are co-PIs on the project. The two have worked together for years; Baudisch was Mueller’s PhD research advisor at HPI.Baudisch’s lab developed an online design teaching system called Kyub that lets students design 3D objects in pieces that are laser cut from sheets of wood and assembled to become chairs, speaker boxes, radio-controlled aircraft, or even functional musical instruments. For instance, each leg of a chair would consist of four identical vertical pieces attached at the edges to create a hollow-centered column, four of which will provide stability to the chair, even though the material is very lightweight.“By designing and constructing such furniture, students learn not only design, but also structural engineering,” Baudisch says. “Similarly, by designing and constructing musical instruments, they learn about structural engineering, as well as resonance, types of musical tuning, etc.”Mueller was at HPI when Baudisch developed the Kyub software, allowing her to observe “how they were developing and making all the design decisions,” she says. “They built a really neat piece for people to quickly design these types of 3D objects.” However, using Kyub for material-efficient design is not fast; in order to fabricate a model, the software has to break the 3D models down into 2D parts and lay these out on sheets of material. This takes time, and makes it difficult to see the impact of design decisions on material use in real-time.Mueller’s lab at MIT developed software based on a layout algorithm that uses AI to lay out pieces on sheets of material in real time. This allows AI to explore multiple potential layouts while the user is still editing, and thus provide ongoing feedback. “As the user develops their design, Fabricaide decides good placements of parts onto the user’s available materials, provides warnings if the user does not have enough material for a design, and makes suggestions for how the user can resolve insufficient material cases,” according to the project website.The joint MIT-HPI project integrates Mueller’s AI software with Baudisch’s Kyub software and adds machine learning to train the AI to offer better design suggestions that save material while adhering to the user’s design intent.“The project is all about minimizing the waste on these materials sheets,” Mueller says. She already envisions the next step in this AI design process: determining how to integrate the laws of physics into the AI’s knowledge base to ensure the structural integrity and stability of objects it designs.AI-powered startup design for the Anthropocene: Providing guidance for novel enterprisesThrough her work with the teams of MITdesignX and its international programs, Svafa Grönfeldt, faculty director of MITdesignX and professor of the practice in MIT MAD, has helped scores of people in startup companies use the tools and methods of design to ensure that the solution a startup proposes actually fits the problem it seeks to solve. This is often called the problem-solution fit.Grönfeldt and MIT postdoc Norhan Bayomi are now extending this work to incorporate AI into the process, in collaboration with MIT Professor John Fernández and graduate student Tyler Kim. The HPI team includes Professor Gerard de Melo; HPI School of Entrepreneurship Director Frank Pawlitschek; and doctoral student Michael Mansfeld.“The startup ecosystem is characterized by uncertainty and volatility compounded by growing uncertainties in climate and planetary systems,” Grönfeldt says. “Therefore, there is an urgent need for a robust model that can objectively predict startup success and guide design for the Anthropocene.”While startup-success forecasting is gaining popularity, it currently focuses on aiding venture capitalists in selecting companies to fund, rather than guiding the startups in the design of their products, services and business plans.“The coupling of climate and environmental priorities with startup agendas requires deeper analytics for effective enterprise design,” Grönfeldt says. The project aims to explore whether AI-augmented decision-support systems can enhance startup-success forecasting.“We’re trying to develop a machine learning approach that will give a forecasting of probability of success based on a number of parameters, including the type of business model proposed, how the team came together, the team members’ backgrounds and skill sets, the market and industry sector they’re working in and the problem-solution fit,” says Bayomi, who works with Fernández in the MIT Environmental Solutions Initiative. The two are co-founders of the startup Lamarr.AI, which employs robotics and AI to help reduce the carbon dioxide impact of the built environment.The team is studying “how company founders make decisions across four key areas, starting from the opportunity recognition, how they are selecting the team members, how they are selecting the business model, identifying the most automatic strategy, all the way through the product market fit to gain an understanding of the key governing parameters in each of these areas,” explains Bayomi.The team is “also developing a large language model that will guide the selection of the business model by using large datasets from different companies in Germany and the U.S. We train the model based on the specific industry sector, such as a technology solution or a data solution, to find what would be the most suitable business model that would increase the success probability of a company,” she says.The project falls under several of the United Nations’ Sustainable Development Goals, including economic growth, innovation and infrastructure, sustainable cities and communities, and climate action.Furthering the goals of the HPI-MIT Joint Research ProgramThese three diverse projects all advance the mission of the HPI-MIT collaboration. MIT MAD aims to use design to transform learning, catalyze innovation, and empower society by inspiring people from all disciplines to interweave design into problem-solving. HPI uses digital engineering concentrated on the development and research of user-oriented innovations for all areas of life.Interdisciplinary teams with members from both institutions are encouraged to develop and submit proposals for ambitious, sustainable projects that use design strategically to generate measurable, impactful solutions to the world’s problems. More

  • in

    Exploring frontiers of mechanical engineering

    From cutting-edge robotics, design, and bioengineering to sustainable energy solutions, ocean engineering, nanotechnology, and innovative materials science, MechE students and their advisors are doing incredibly innovative work. The graduate students highlighted here represent a snapshot of the great work in progress this spring across the Department of Mechanical Engineering, and demonstrate the ways the future of this field is as limitless as the imaginations of its practitioners.Democratizing design through AILyle RegenwetterHometown: Champaign, IllinoisAdvisor: Assistant Professor Faez AhmedInterests: Food, climbing, skiing, soccer, tennis, cookingLyle Regenwetter finds excitement in the prospect of generative AI to “democratize” design and enable inexperienced designers to tackle complex design problems. His research explores new training methods through which generative AI models can be taught to implicitly obey design constraints and synthesize higher-performing designs. Knowing that prospective designers often have an intimate knowledge of the needs of users, but may otherwise lack the technical training to create solutions, Regenwetter also develops human-AI collaborative tools that allow AI models to interact and support designers in popular CAD software and real design problems. Solving a whale of a problem Loïcka BailleHometown: L’Escale, FranceAdvisor: Daniel ZitterbartInterests: Being outdoors — scuba diving, spelunking, or climbing. Sailing on the Charles River, martial arts classes, and playing volleyballLoïcka Baille’s research focuses on developing remote sensing technologies to study and protect marine life. Her main project revolves around improving onboard whale detection technology to prevent vessel strikes, with a special focus on protecting North Atlantic right whales. Baille is also involved in an ongoing study of Emperor penguins. Her team visits Antarctica annually to tag penguins and gather data to enhance their understanding of penguin population dynamics and draw conclusions regarding the overall health of the ecosystem.Water, water anywhereCarlos Díaz-MarínHometown: San José, Costa RicaAdvisor: Professor Gang Chen | Former Advisor: Professor Evelyn WangInterests: New England hiking, biking, and dancingCarlos Díaz-Marín designs and synthesizes inexpensive salt-polymer materials that can capture large amounts of humidity from the air. He aims to change the way we generate potable water from the air, even in arid conditions. In addition to water generation, these salt-polymer materials can also be used as thermal batteries, capable of storing and reusing heat. Beyond the scientific applications, Díaz-Marín is excited to continue doing research that can have big social impacts, and that finds and explains new physical phenomena. As a LatinX person, Díaz-Marín is also driven to help increase diversity in STEM.Scalable fabrication of nano-architected materialsSomayajulu DhulipalaHometown: Hyderabad, IndiaAdvisor: Assistant Professor Carlos PortelaInterests: Space exploration, taekwondo, meditation.Somayajulu Dhulipala works on developing lightweight materials with tunable mechanical properties. He is currently working on methods for the scalable fabrication of nano-architected materials and predicting their mechanical properties. The ability to fine-tune the mechanical properties of specific materials brings versatility and adaptability, making these materials suitable for a wide range of applications across multiple industries. While the research applications are quite diverse, Dhulipala is passionate about making space habitable for humanity, a crucial step toward becoming a spacefaring civilization.Ingestible health-care devicesJimmy McRaeHometown: Woburn, MassachusettsAdvisor: Associate Professor Giovani TraversoInterests: Anything basketball-related: playing, watching, going to games, organizing hometown tournaments Jimmy McRae aims to drastically improve diagnostic and therapeutic capabilities through noninvasive health-care technologies. His research focuses on leveraging materials, mechanics, embedded systems, and microfabrication to develop novel ingestible electronic and mechatronic devices. This ranges from ingestible electroceutical capsules that modulate hunger-regulating hormones to devices capable of continuous ultralong monitoring and remotely triggerable actuations from within the stomach. The principles that guide McRae’s work to develop devices that function in extreme environments can be applied far beyond the gastrointestinal tract, with applications for outer space, the ocean, and more.Freestyle BMX meets machine learningEva NatesHometown: Narberth, Pennsylvania Advisor: Professor Peko HosoiInterests: Rowing, running, biking, hiking, bakingEva Nates is working with the Australian Cycling Team to create a tool to classify Bicycle Motocross Freestyle (BMX FS) tricks. She uses a singular value decomposition method to conduct a principal component analysis of the time-dependent point-tracking data of an athlete and their bike during a run to classify each trick. The 2024 Olympic team hopes to incorporate this tool in their training workflow, and Nates worked alongside the team at their facilities on the Gold Coast of Australia during MIT’s Independent Activities Period in January.Augmenting Astronauts with Wearable Limbs Erik BallesterosHometown: Spring, TexasAdvisor: Professor Harry AsadaInterests: Cosplay, Star Wars, Lego bricksErik Ballesteros’s research seeks to support astronauts who are conducting planetary extravehicular activities through the use of supernumerary robotic limbs (SuperLimbs). His work is tailored toward design and control manifestation to assist astronauts with post-fall recovery, human-leader/robot-follower quadruped locomotion, and coordinated manipulation between the SuperLimbs and the astronaut to perform tasks like excavation and sample handling.This article appeared in the Spring 2024 edition of the Department of Mechanical Engineering’s magazine, MechE Connects.  More