More stories

  • in

    An AI dataset carves new paths to tornado detection

    The return of spring in the Northern Hemisphere touches off tornado season. A tornado’s twisting funnel of dust and debris seems an unmistakable sight. But that sight can be obscured to radar, the tool of meteorologists. It’s hard to know exactly when a tornado has formed, or even why.

    A new dataset could hold answers. It contains radar returns from thousands of tornadoes that have hit the United States in the past 10 years. Storms that spawned tornadoes are flanked by other severe storms, some with nearly identical conditions, that never did. MIT Lincoln Laboratory researchers who curated the dataset, called TorNet, have now released it open source. They hope to enable breakthroughs in detecting one of nature’s most mysterious and violent phenomena.

    “A lot of progress is driven by easily available, benchmark datasets. We hope TorNet will lay a foundation for machine learning algorithms to both detect and predict tornadoes,” says Mark Veillette, the project’s co-principal investigator with James Kurdzo. Both researchers work in the Air Traffic Control Systems Group. 

    Along with the dataset, the team is releasing models trained on it. The models show promise for machine learning’s ability to spot a twister. Building on this work could open new frontiers for forecasters, helping them provide more accurate warnings that might save lives. 

    Swirling uncertainty

    About 1,200 tornadoes occur in the United States every year, causing millions to billions of dollars in economic damage and claiming 71 lives on average. Last year, one unusually long-lasting tornado killed 17 people and injured at least 165 others along a 59-mile path in Mississippi.  

    Yet tornadoes are notoriously difficult to forecast because scientists don’t have a clear picture of why they form. “We can see two storms that look identical, and one will produce a tornado and one won’t. We don’t fully understand it,” Kurdzo says.

    A tornado’s basic ingredients are thunderstorms with instability caused by rapidly rising warm air and wind shear that causes rotation. Weather radar is the primary tool used to monitor these conditions. But tornadoes lay too low to be detected, even when moderately close to the radar. As the radar beam with a given tilt angle travels further from the antenna, it gets higher above the ground, mostly seeing reflections from rain and hail carried in the “mesocyclone,” the storm’s broad, rotating updraft. A mesocyclone doesn’t always produce a tornado.

    With this limited view, forecasters must decide whether or not to issue a tornado warning. They often err on the side of caution. As a result, the rate of false alarms for tornado warnings is more than 70 percent. “That can lead to boy-who-cried-wolf syndrome,” Kurdzo says.  

    In recent years, researchers have turned to machine learning to better detect and predict tornadoes. However, raw datasets and models have not always been accessible to the broader community, stifling progress. TorNet is filling this gap.

    The dataset contains more than 200,000 radar images, 13,587 of which depict tornadoes. The rest of the images are non-tornadic, taken from storms in one of two categories: randomly selected severe storms or false-alarm storms (those that led a forecaster to issue a warning but that didn’t produce a tornado).

    Each sample of a storm or tornado comprises two sets of six radar images. The two sets correspond to different radar sweep angles. The six images portray different radar data products, such as reflectivity (showing precipitation intensity) or radial velocity (indicating if winds are moving toward or away from the radar).

    A challenge in curating the dataset was first finding tornadoes. Within the corpus of weather radar data, tornadoes are extremely rare events. The team then had to balance those tornado samples with difficult non-tornado samples. If the dataset were too easy, say by comparing tornadoes to snowstorms, an algorithm trained on the data would likely over-classify storms as tornadic.

    “What’s beautiful about a true benchmark dataset is that we’re all working with the same data, with the same level of difficulty, and can compare results,” Veillette says. “It also makes meteorology more accessible to data scientists, and vice versa. It becomes easier for these two parties to work on a common problem.”

    Both researchers represent the progress that can come from cross-collaboration. Veillette is a mathematician and algorithm developer who has long been fascinated by tornadoes. Kurdzo is a meteorologist by training and a signal processing expert. In grad school, he chased tornadoes with custom-built mobile radars, collecting data to analyze in new ways.

    “This dataset also means that a grad student doesn’t have to spend a year or two building a dataset. They can jump right into their research,” Kurdzo says.

    This project was funded by Lincoln Laboratory’s Climate Change Initiative, which aims to leverage the laboratory’s diverse technical strengths to help address climate problems threatening human health and global security.

    Chasing answers with deep learning

    Using the dataset, the researchers developed baseline artificial intelligence (AI) models. They were particularly eager to apply deep learning, a form of machine learning that excels at processing visual data. On its own, deep learning can extract features (key observations that an algorithm uses to make a decision) from images across a dataset. Other machine learning approaches require humans to first manually label features. 

    “We wanted to see if deep learning could rediscover what people normally look for in tornadoes and even identify new things that typically aren’t searched for by forecasters,” Veillette says.

    The results are promising. Their deep learning model performed similar to or better than all tornado-detecting algorithms known in literature. The trained algorithm correctly classified 50 percent of weaker EF-1 tornadoes and over 85 percent of tornadoes rated EF-2 or higher, which make up the most devastating and costly occurrences of these storms.

    They also evaluated two other types of machine-learning models, and one traditional model to compare against. The source code and parameters of all these models are freely available. The models and dataset are also described in a paper submitted to a journal of the American Meteorological Society (AMS). Veillette presented this work at the AMS Annual Meeting in January.

    “The biggest reason for putting our models out there is for the community to improve upon them and do other great things,” Kurdzo says. “The best solution could be a deep learning model, or someone might find that a non-deep learning model is actually better.”

    TorNet could be useful in the weather community for others uses too, such as for conducting large-scale case studies on storms. It could also be augmented with other data sources, like satellite imagery or lightning maps. Fusing multiple types of data could improve the accuracy of machine learning models.

    Taking steps toward operations

    On top of detecting tornadoes, Kurdzo hopes that models might help unravel the science of why they form.

    “As scientists, we see all these precursors to tornadoes — an increase in low-level rotation, a hook echo in reflectivity data, specific differential phase (KDP) foot and differential reflectivity (ZDR) arcs. But how do they all go together? And are there physical manifestations we don’t know about?” he asks.

    Teasing out those answers might be possible with explainable AI. Explainable AI refers to methods that allow a model to provide its reasoning, in a format understandable to humans, of why it came to a certain decision. In this case, these explanations might reveal physical processes that happen before tornadoes. This knowledge could help train forecasters, and models, to recognize the signs sooner. 

    “None of this technology is ever meant to replace a forecaster. But perhaps someday it could guide forecasters’ eyes in complex situations, and give a visual warning to an area predicted to have tornadic activity,” Kurdzo says.

    Such assistance could be especially useful as radar technology improves and future networks potentially grow denser. Data refresh rates in a next-generation radar network are expected to increase from every five minutes to approximately one minute, perhaps faster than forecasters can interpret the new information. Because deep learning can process huge amounts of data quickly, it could be well-suited for monitoring radar returns in real time, alongside humans. Tornadoes can form and disappear in minutes.

    But the path to an operational algorithm is a long road, especially in safety-critical situations, Veillette says. “I think the forecaster community is still, understandably, skeptical of machine learning. One way to establish trust and transparency is to have public benchmark datasets like this one. It’s a first step.”

    The next steps, the team hopes, will be taken by researchers across the world who are inspired by the dataset and energized to build their own algorithms. Those algorithms will in turn go into test beds, where they’ll eventually be shown to forecasters, to start a process of transitioning into operations.

    In the end, the path could circle back to trust.

    “We may never get more than a 10- to 15-minute tornado warning using these tools. But if we could lower the false-alarm rate, we could start to make headway with public perception,” Kurdzo says. “People are going to use those warnings to take the action they need to save their lives.” More

  • in

    Advancing technology for aquaculture

    According to the National Oceanic and Atmospheric Administration, aquaculture in the United States represents a $1.5 billion industry annually. Like land-based farming, shellfish aquaculture requires healthy seed production in order to maintain a sustainable industry. Aquaculture hatchery production of shellfish larvae — seeds — requires close monitoring to track mortality rates and assess health from the earliest stages of life. 

    Careful observation is necessary to inform production scheduling, determine effects of naturally occurring harmful bacteria, and ensure sustainable seed production. This is an essential step for shellfish hatcheries but is currently a time-consuming manual process prone to human error. 

    With funding from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS), MIT Sea Grant is working with Associate Professor Otto Cordero of the MIT Department of Civil and Environmental Engineering, Professor Taskin Padir and Research Scientist Mark Zolotas at the Northeastern University Institute for Experiential Robotics, and others at the Aquaculture Research Corporation (ARC), and the Cape Cod Commercial Fishermen’s Alliance, to advance technology for the aquaculture industry. Located on Cape Cod, ARC is a leading shellfish hatchery, farm, and wholesaler that plays a vital role in providing high-quality shellfish seed to local and regional growers.

    Two MIT students have joined the effort this semester, working with Robert Vincent, MIT Sea Grant’s assistant director of advisory services, through the Undergraduate Research Opportunities Program (UROP). 

    First-year student Unyime Usua and sophomore Santiago Borrego are using microscopy images of shellfish seed from ARC to train machine learning algorithms that will help automate the identification and counting process. The resulting user-friendly image recognition tool aims to aid aquaculturists in differentiating and counting healthy, unhealthy, and dead shellfish larvae, improving accuracy and reducing time and effort.

    Vincent explains that AI is a powerful tool for environmental science that enables researchers, industry, and resource managers to address challenges that have long been pinch points for accurate data collection, analysis, predictions, and streamlining processes. “Funding support from programs like J-WAFS enable us to tackle these problems head-on,” he says. 

    ARC faces challenges with manually quantifying larvae classes, an important step in their seed production process. “When larvae are in their growing stages they are constantly being sized and counted,” explains Cheryl James, ARC larval/juvenile production manager. “This process is critical to encourage optimal growth and strengthen the population.” 

    Developing an automated identification and counting system will help to improve this step in the production process with time and cost benefits. “This is not an easy task,” says Vincent, “but with the guidance of Dr. Zolotas at the Northeastern University Institute for Experiential Robotics and the work of the UROP students, we have made solid progress.” 

    The UROP program benefits both researchers and students. Involving MIT UROP students in developing these types of systems provides insights into AI applications that they might not have considered, providing opportunities to explore, learn, and apply themselves while contributing to solving real challenges.

    Borrego saw this project as an opportunity to apply what he’d learned in class 6.390 (Introduction to Machine Learning) to a real-world issue. “I was starting to form an idea of how computers can see images and extract information from them,” he says. “I wanted to keep exploring that.”

    Usua decided to pursue the project because of the direct industry impacts it could have. “I’m pretty interested in seeing how we can utilize machine learning to make people’s lives easier. We are using AI to help biologists make this counting and identification process easier.” While Usua wasn’t familiar with aquaculture before starting this project, she explains, “Just hearing about the hatcheries that Dr. Vincent was telling us about, it was unfortunate that not a lot of people know what’s going on and the problems that they’re facing.”

    On Cape Cod alone, aquaculture is an $18 million per year industry. But the Massachusetts Division of Marine Fisheries estimates that hatcheries are only able to meet 70–80 percent of seed demand annually, which impacts local growers and economies. Through this project, the partners aim to develop technology that will increase seed production, advance industry capabilities, and help understand and improve the hatchery microbiome.

    Borrego explains the initial challenge of having limited data to work with. “Starting out, we had to go through and label all of the data, but going through that process helped me learn a lot.” In true MIT fashion, he shares his takeaway from the project: “Try to get the best out of what you’re given with the data you have to work with. You’re going to have to adapt and change your strategies depending on what you have.”

    Usua describes her experience going through the research process, communicating in a team, and deciding what approaches to take. “Research is a difficult and long process, but there is a lot to gain from it because it teaches you to look for things on your own and find your own solutions to problems.”

    In addition to increasing seed production and reducing the human labor required in the hatchery process, the collaborators expect this project to contribute to cost savings and technology integration to support one of the most underserved industries in the United States. 

    Borrego and Usua both plan to continue their work for a second semester with MIT Sea Grant. Borrego is interested in learning more about how technology can be used to protect the environment and wildlife. Usua says she hopes to explore more projects related to aquaculture. “It seems like there’s an infinite amount of ways to tackle these issues.” More

  • in

    Using deep learning to image the Earth’s planetary boundary layer

    Although the troposphere is often thought of as the closest layer of the atmosphere to the Earth’s surface, the planetary boundary layer (PBL) — the lowest layer of the troposphere — is actually the part that most significantly influences weather near the surface. In the 2018 planetary science decadal survey, the PBL was raised as an important scientific issue that has the potential to enhance storm forecasting and improve climate projections.  

    “The PBL is where the surface interacts with the atmosphere, including exchanges of moisture and heat that help lead to severe weather and a changing climate,” says Adam Milstein, a technical staff member in Lincoln Laboratory’s Applied Space Systems Group. “The PBL is also where humans live, and the turbulent movement of aerosols throughout the PBL is important for air quality that influences human health.” 

    Although vital for studying weather and climate, important features of the PBL, such as its height, are difficult to resolve with current technology. In the past four years, Lincoln Laboratory staff have been studying the PBL, focusing on two different tasks: using machine learning to make 3D-scanned profiles of the atmosphere, and resolving the vertical structure of the atmosphere more clearly in order to better predict droughts.  

    This PBL-focused research effort builds on more than a decade of related work on fast, operational neural network algorithms developed by Lincoln Laboratory for NASA missions. These missions include the Time-Resolved Observations of Precipitation structure and storm Intensity with a Constellation of Smallsats (TROPICS) mission as well as Aqua, a satellite that collects data about Earth’s water cycle and observes variables such as ocean temperature, precipitation, and water vapor in the atmosphere. These algorithms retrieve temperature and humidity from the satellite instrument data and have been shown to significantly improve the accuracy and usable global coverage of the observations over previous approaches. For TROPICS, the algorithms help retrieve data that are used to characterize a storm’s rapidly evolving structures in near-real time, and for Aqua, it has helped increase forecasting models, drought monitoring, and fire prediction. 

    These operational algorithms for TROPICS and Aqua are based on classic “shallow” neural networks to maximize speed and simplicity, creating a one-dimensional vertical profile for each spectral measurement collected by the instrument over each location. While this approach has improved observations of the atmosphere down to the surface overall, including the PBL, laboratory staff determined that newer “deep” learning techniques that treat the atmosphere over a region of interest as a three-dimensional image are needed to improve PBL details further.

    “We hypothesized that deep learning and artificial intelligence (AI) techniques could improve on current approaches by incorporating a better statistical representation of 3D temperature and humidity imagery of the atmosphere into the solutions,” Milstein says. “But it took a while to figure out how to create the best dataset — a mix of real and simulated data; we needed to prepare to train these techniques.”

    The team collaborated with Joseph Santanello of the NASA Goddard Space Flight Center and William Blackwell, also of the Applied Space Systems Group, in a recent NASA-funded effort showing that these retrieval algorithms can improve PBL detail, including more accurate determination of the PBL height than the previous state of the art. 

    While improved knowledge of the PBL is broadly useful for increasing understanding of climate and weather, one key application is prediction of droughts. According to a Global Drought Snapshot report released last year, droughts are a pressing planetary issue that the global community needs to address. Lack of humidity near the surface, specifically at the level of the PBL, is the leading indicator of drought. While previous studies using remote-sensing techniques have examined the humidity of soil to determine drought risk, studying the atmosphere can help predict when droughts will happen.  

    In an effort funded by Lincoln Laboratory’s Climate Change Initiative, Milstein, along with laboratory staff member Michael Pieper, are working with scientists at NASA’s Jet Propulsion Laboratory (JPL) to use neural network techniques to improve drought prediction over the continental United States. While the work builds off of existing operational work JPL has done incorporating (in part) the laboratory’s operational “shallow” neural network approach for Aqua, the team believes that this work and the PBL-focused deep learning research work can be combined to further improve the accuracy of drought prediction. 

    “Lincoln Laboratory has been working with NASA for more than a decade on neural network algorithms for estimating temperature and humidity in the atmosphere from space-borne infrared and microwave instruments, including those on the Aqua spacecraft,” Milstein says. “Over that time, we have learned a lot about this problem by working with the science community, including learning about what scientific challenges remain. Our long experience working on this type of remote sensing with NASA scientists, as well as our experience with using neural network techniques, gave us a unique perspective.”

    According to Milstein, the next step for this project is to compare the deep learning results to datasets from the National Oceanic and Atmospheric Administration, NASA, and the Department of Energy collected directly in the PBL using radiosondes, a type of instrument flown on a weather balloon. “These direct measurements can be considered a kind of ‘ground truth’ to quantify the accuracy of the techniques we have developed,” Milstein says.

    This improved neural network approach holds promise to demonstrate drought prediction that can exceed the capabilities of existing indicators, Milstein says, and to be a tool that scientists can rely on for decades to come. More

  • in

    Extracting hydrogen from rocks

    It’s commonly thought that the most abundant element in the universe, hydrogen, exists mainly alongside other elements — with oxygen in water, for example, and with carbon in methane. But naturally occurring underground pockets of pure hydrogen are punching holes in that notion — and generating attention as a potentially unlimited source of carbon-free power. One interested party is the U.S. Department of Energy, which last month awarded $20 million in research grants to 18 teams from laboratories, universities, and private companies to develop technologies that can lead to cheap, clean fuel from the subsurface. Geologic hydrogen, as it’s known, is produced when water reacts with iron-rich rocks, causing the iron to oxidize. One of the grant recipients, MIT Assistant Professor Iwnetim Abate’s research group, will use its $1.3 million grant to determine the ideal conditions for producing hydrogen underground — considering factors such as catalysts to initiate the chemical reaction, temperature, pressure, and pH levels. The goal is to improve efficiency for large-scale production, meeting global energy needs at a competitive cost. The U.S. Geological Survey estimates there are potentially billions of tons of geologic hydrogen buried in the Earth’s crust. Accumulations have been discovered worldwide, and a slew of startups are searching for extractable deposits. Abate is looking to jump-start the natural hydrogen production process, implementing “proactive” approaches that involve stimulating production and harvesting the gas.                                                                                                                         “We aim to optimize the reaction parameters to make the reaction faster and produce hydrogen in an economically feasible manner,” says Abate, the Chipman Development Professor in the Department of Materials Science and Engineering (DMSE). Abate’s research centers on designing materials and technologies for the renewable energy transition, including next-generation batteries and novel chemical methods for energy storage. 

    Sparking innovation

    Interest in geologic hydrogen is growing at a time when governments worldwide are seeking carbon-free energy alternatives to oil and gas. In December, French President Emmanuel Macron said his government would provide funding to explore natural hydrogen. And in February, government and private sector witnesses briefed U.S. lawmakers on opportunities to extract hydrogen from the ground. Today commercial hydrogen is manufactured at $2 a kilogram, mostly for fertilizer and chemical and steel production, but most methods involve burning fossil fuels, which release Earth-heating carbon. “Green hydrogen,” produced with renewable energy, is promising, but at $7 per kilogram, it’s expensive. “If you get hydrogen at a dollar a kilo, it’s competitive with natural gas on an energy-price basis,” says Douglas Wicks, a program director at Advanced Research Projects Agency – Energy (ARPA-E), the Department of Energy organization leading the geologic hydrogen grant program. Recipients of the ARPA-E grants include Colorado School of Mines, Texas Tech University, and Los Alamos National Laboratory, plus private companies including Koloma, a hydrogen production startup that has received funding from Amazon and Bill Gates. The projects themselves are diverse, ranging from applying industrial oil and gas methods for hydrogen production and extraction to developing models to understand hydrogen formation in rocks. The purpose: to address questions in what Wicks calls a “total white space.” “In geologic hydrogen, we don’t know how we can accelerate the production of it, because it’s a chemical reaction, nor do we really understand how to engineer the subsurface so that we can safely extract it,” Wicks says. “We’re trying to bring in the best skills of each of the different groups to work on this under the idea that the ensemble should be able to give us good answers in a fairly rapid timeframe.” Geochemist Viacheslav Zgonnik, one of the foremost experts in the natural hydrogen field, agrees that the list of unknowns is long, as is the road to the first commercial projects. But he says efforts to stimulate hydrogen production — to harness the natural reaction between water and rock — present “tremendous potential.” “The idea is to find ways we can accelerate that reaction and control it so we can produce hydrogen on demand in specific places,” says Zgonnik, CEO and founder of Natural Hydrogen Energy, a Denver-based startup that has mineral leases for exploratory drilling in the United States. “If we can achieve that goal, it means that we can potentially replace fossil fuels with stimulated hydrogen.”

    “A full-circle moment”

    For Abate, the connection to the project is personal. As a child in his hometown in Ethiopia, power outages were a usual occurrence — the lights would be out three, maybe four days a week. Flickering candles or pollutant-emitting kerosene lamps were often the only source of light for doing homework at night. “And for the household, we had to use wood and charcoal for chores such as cooking,” says Abate. “That was my story all the way until the end of high school and before I came to the U.S. for college.” In 1987, well-diggers drilling for water in Mali in Western Africa uncovered a natural hydrogen deposit, causing an explosion. Decades later, Malian entrepreneur Aliou Diallo and his Canadian oil and gas company tapped the well and used an engine to burn hydrogen and power electricity in the nearby village. Ditching oil and gas, Diallo launched Hydroma, the world’s first hydrogen exploration enterprise. The company is drilling wells near the original site that have yielded high concentrations of the gas. “So, what used to be known as an energy-poor continent now is generating hope for the future of the world,” Abate says. “Learning about that was a full-circle moment for me. Of course, the problem is global; the solution is global. But then the connection with my personal journey, plus the solution coming from my home continent, makes me personally connected to the problem and to the solution.”

    Experiments that scale

    Abate and researchers in his lab are formulating a recipe for a fluid that will induce the chemical reaction that triggers hydrogen production in rocks. The main ingredient is water, and the team is testing “simple” materials for catalysts that will speed up the reaction and in turn increase the amount of hydrogen produced, says postdoc Yifan Gao. “Some catalysts are very costly and hard to produce, requiring complex production or preparation,” Gao says. “A catalyst that’s inexpensive and abundant will allow us to enhance the production rate — that way, we produce it at an economically feasible rate, but also with an economically feasible yield.” The iron-rich rocks in which the chemical reaction happens can be found across the United States and the world. To optimize the reaction across a diversity of geological compositions and environments, Abate and Gao are developing what they call a high-throughput system, consisting of artificial intelligence software and robotics, to test different catalyst mixtures and simulate what would happen when applied to rocks from various regions, with different external conditions like temperature and pressure. “And from that we measure how much hydrogen we are producing for each possible combination,” Abate says. “Then the AI will learn from the experiments and suggest to us, ‘Based on what I’ve learned and based on the literature, I suggest you test this composition of catalyst material for this rock.’” The team is writing a paper on its project and aims to publish its findings in the coming months. The next milestones for the project, after developing the catalyst recipe, is designing a reactor that will serve two purposes. First, fitted with technologies such as Raman spectroscopy, it will allow researchers to identify and optimize the chemical conditions that lead to improved rates and yield of hydrogen production. The lab-scale device will also inform the design of a real-world reactor that can accelerate hydrogen production in the field. “That would be a plant-scale reactor that would be implanted into the subsurface,” Abate says. The cross-disciplinary project is also tapping the expertise of Yang Shao-Horn, of MIT’s Department of Mechanical Engineering and DMSE, for computational analysis of the catalyst, and Esteban Gazel, a Cornell University scientist who will lend his expertise in geology and geochemistry. He’ll focus on understanding the iron-rich ultramafic rock formations across the United States and the globe and how they react with water. For Wicks at ARPA-E, the questions Abate and the other grant recipients are asking are just the first, critical steps in uncharted energy territory. “If we can understand how to stimulate these rocks into generating hydrogen, safely getting it up, it really unleashes the potential energy source,” he says. Then the emerging industry will look to oil and gas for the drilling, piping, and gas extraction know-how. “As I like to say, this is enabling technology that we hope to, in a very short term, enable us to say, ‘Is there really something there?’” More

  • in

    MIT-derived algorithm helps forecast the frequency of extreme weather

    To assess a community’s risk of extreme weather, policymakers rely first on global climate models that can be run decades, and even centuries, forward in time, but only at a coarse resolution. These models might be used to gauge, for instance, future climate conditions for the northeastern U.S., but not specifically for Boston.

    To estimate Boston’s future risk of extreme weather such as flooding, policymakers can combine a coarse model’s large-scale predictions with a finer-resolution model, tuned to estimate how often Boston is likely to experience damaging floods as the climate warms. But this risk analysis is only as accurate as the predictions from that first, coarser climate model.

    “If you get those wrong for large-scale environments, then you miss everything in terms of what extreme events will look like at smaller scales, such as over individual cities,” says Themistoklis Sapsis, the William I. Koch Professor and director of the Center for Ocean Engineering in MIT’s Department of Mechanical Engineering.

    Sapsis and his colleagues have now developed a method to “correct” the predictions from coarse climate models. By combining machine learning with dynamical systems theory, the team’s approach “nudges” a climate model’s simulations into more realistic patterns over large scales. When paired with smaller-scale models to predict specific weather events such as tropical cyclones or floods, the team’s approach produced more accurate predictions for how often specific locations will experience those events over the next few decades, compared to predictions made without the correction scheme.

    Play video

    This animation shows the evolution of storms around the northern hemisphere, as a result of a high-resolution storm model, combined with the MIT team’s corrected global climate model. The simulation improves the modeling of extreme values for wind, temperature, and humidity, which typically have significant errors in coarse scale models. Credit: Courtesy of Ruby Leung and Shixuan Zhang, PNNL

    Sapsis says the new correction scheme is general in form and can be applied to any global climate model. Once corrected, the models can help to determine where and how often extreme weather will strike as global temperatures rise over the coming years. 

    “Climate change will have an effect on every aspect of human life, and every type of life on the planet, from biodiversity to food security to the economy,” Sapsis says. “If we have capabilities to know accurately how extreme weather will change, especially over specific locations, it can make a lot of difference in terms of preparation and doing the right engineering to come up with solutions. This is the method that can open the way to do that.”

    The team’s results appear today in the Journal of Advances in Modeling Earth Systems. The study’s MIT co-authors include postdoc Benedikt Barthel Sorensen and Alexis-Tzianni Charalampopoulos SM ’19, PhD ’23, with Shixuan Zhang, Bryce Harrop, and Ruby Leung of the Pacific Northwest National Laboratory in Washington state.

    Over the hood

    Today’s large-scale climate models simulate weather features such as the average temperature, humidity, and precipitation around the world, on a grid-by-grid basis. Running simulations of these models takes enormous computing power, and in order to simulate how weather features will interact and evolve over periods of decades or longer, models average out features every 100 kilometers or so.

    “It’s a very heavy computation requiring supercomputers,” Sapsis notes. “But these models still do not resolve very important processes like clouds or storms, which occur over smaller scales of a kilometer or less.”

    To improve the resolution of these coarse climate models, scientists typically have gone under the hood to try and fix a model’s underlying dynamical equations, which describe how phenomena in the atmosphere and oceans should physically interact.

    “People have tried to dissect into climate model codes that have been developed over the last 20 to 30 years, which is a nightmare, because you can lose a lot of stability in your simulation,” Sapsis explains. “What we’re doing is a completely different approach, in that we’re not trying to correct the equations but instead correct the model’s output.”

    The team’s new approach takes a model’s output, or simulation, and overlays an algorithm that nudges the simulation toward something that more closely represents real-world conditions. The algorithm is based on a machine-learning scheme that takes in data, such as past information for temperature and humidity around the world, and learns associations within the data that represent fundamental dynamics among weather features. The algorithm then uses these learned associations to correct a model’s predictions.

    “What we’re doing is trying to correct dynamics, as in how an extreme weather feature, such as the windspeeds during a Hurricane Sandy event, will look like in the coarse model, versus in reality,” Sapsis says. “The method learns dynamics, and dynamics are universal. Having the correct dynamics eventually leads to correct statistics, for example, frequency of rare extreme events.”

    Climate correction

    As a first test of their new approach, the team used the machine-learning scheme to correct simulations produced by the Energy Exascale Earth System Model (E3SM), a climate model run by the U.S. Department of Energy, that simulates climate patterns around the world at a resolution of 110 kilometers. The researchers used eight years of past data for temperature, humidity, and wind speed to train their new algorithm, which learned dynamical associations between the measured weather features and the E3SM model. They then ran the climate model forward in time for about 36 years and applied the trained algorithm to the model’s simulations. They found that the corrected version produced climate patterns that more closely matched real-world observations from the last 36 years, not used for training.

    “We’re not talking about huge differences in absolute terms,” Sapsis says. “An extreme event in the uncorrected simulation might be 105 degrees Fahrenheit, versus 115 degrees with our corrections. But for humans experiencing this, that is a big difference.”

    When the team then paired the corrected coarse model with a specific, finer-resolution model of tropical cyclones, they found the approach accurately reproduced the frequency of extreme storms in specific locations around the world.

    “We now have a coarse model that can get you the right frequency of events, for the present climate. It’s much more improved,” Sapsis says. “Once we correct the dynamics, this is a relevant correction, even when you have a different average global temperature, and it can be used for understanding how forest fires, flooding events, and heat waves will look in a future climate. Our ongoing work is focusing on analyzing future climate scenarios.”

    “The results are particularly impressive as the method shows promising results on E3SM, a state-of-the-art climate model,” says Pedram Hassanzadeh, an associate professor who leads the Climate Extremes Theory and Data group at the University of Chicago and was not involved with the study. “It would be interesting to see what climate change projections this framework yields once future greenhouse-gas emission scenarios are incorporated.”

    This work was supported, in part, by the U.S. Defense Advanced Research Projects Agency. More

  • in

    Gosha Geogdzhayev and Sadhana Lolla named 2024 Gates Cambridge Scholars

    This article was updated on April 23 to reflect the promotion of Gosha Geogdzhayev from alternate to winner of the Gates Cambridge Scholarship.

    MIT seniors Gosha Geogdzhayev and Sadhana Lolla have won the prestigious Gates Cambridge Scholarship, which offers students an opportunity to pursue graduate study in the field of their choice at Cambridge University in the U.K.

    Established in 2000, Gates Cambridge offers full-cost post-graduate scholarships to outstanding applicants from countries outside of the U.K. The mission of Gates Cambridge is to build a global network of future leaders committed to improving the lives of others.

    Gosha Geogdzhayev

    Originally from New York City, Geogdzhayev is a senior majoring in physics with minors in mathematics and computer science. At Cambridge, Geogdzhayev intends to pursue an MPhil in quantitative climate and environmental science. He is interested in applying these subjects to climate science and intends to spend his career developing novel statistical methods for climate prediction.

    At MIT, Geogdzhayev researches climate emulators with Professor Raffaele Ferrari’s group in the Department of Earth, Atmospheric and Planetary Sciences and is part of the “Bringing Computation to the Climate Challenge” Grand Challenges project. He is currently working on an operator-based emulator for the projection of climate extremes. Previously, Geogdzhayev studied the statistics of changing chaotic systems, work that has recently been published as a first-author paper.

    As a recipient of the National Oceanic and Atmospheric Agency (NOAA) Hollings Scholarship, Geogdzhayev has worked on bias correction methods for climate data at the NOAA Geophysical Fluid Dynamics Laboratory. He is the recipient of several other awards in the field of earth and atmospheric sciences, notably the American Meteorological Society Ward and Eileen Seguin Scholarship.

    Outside of research, Geogdzhayev enjoys writing poetry and is actively involved with his living community, Burton 1, for which he has previously served as floor chair.

    Sadhana Lolla

    Lolla, a senior from Clarksburg, Maryland, is majoring in computer science and minoring in mathematics and literature. At Cambridge, she will pursue an MPhil in technology policy.

    In the future, Lolla aims to lead conversations on deploying and developing technology for marginalized communities, such as the rural Indian village that her family calls home, while also conducting research in embodied intelligence.

    At MIT, Lolla conducts research on safe and trustworthy robotics and deep learning at the Distributed Robotics Laboratory with Professor Daniela Rus. Her research has spanned debiasing strategies for autonomous vehicles and accelerating robotic design processes. At Microsoft Research and Themis AI, she works on creating uncertainty-aware frameworks for deep learning, which has impacts across computational biology, language modeling, and robotics. She has presented her work at the Neural Information Processing Systems (NeurIPS) conference and the International Conference on Machine Learning (ICML). 

    Outside of research, Lolla leads initiatives to make computer science education more accessible globally. She is an instructor for class 6.s191 (MIT Introduction to Deep Learning), one of the largest AI courses in the world, which reaches millions of students annually. She serves as the curriculum lead for Momentum AI, the only U.S. program that teaches AI to underserved students for free, and she has taught hundreds of students in Northern Scotland as part of the MIT Global Teaching Labs program.

    Lolla was also the director for xFair, MIT’s largest student-run career fair, and is an executive board member for Next Sing, where she works to make a cappella more accessible for students across musical backgrounds. In her free time, she enjoys singing, solving crossword puzzles, and baking. More

  • in

    Generative AI for smart grid modeling

    MIT’s Laboratory for Information and Decision Systems (LIDS) has been awarded $1,365,000 in funding from the Appalachian Regional Commission (ARC) to support its involvement with an innovative project, “Forming the Smart Grid Deployment Consortium (SGDC) and Expanding the HILLTOP+ Platform.”

    The grant was made available through ARC’s Appalachian Regional Initiative for Stronger Economies, which fosters regional economic transformation through multi-state collaboration.

    Led by Kalyan Veeramachaneni, research scientist and principal investigator at LIDS’ Data to AI Group, the project will focus on creating AI-driven generative models for customer load data. Veeramachaneni and colleagues will work alongside a team of universities and organizations led by Tennessee Tech University, including collaborators across Ohio, Pennsylvania, West Virginia, and Tennessee, to develop and deploy smart grid modeling services through the SGDC project.

    These generative models have far-reaching applications, including grid modeling and training algorithms for energy tech startups. When the models are trained on existing data, they create additional, realistic data that can augment limited datasets or stand in for sensitive ones. Stakeholders can then use these models to understand and plan for specific what-if scenarios far beyond what could be achieved with existing data alone. For example, generated data can predict the potential load on the grid if an additional 1,000 households were to adopt solar technologies, how that load might change throughout the day, and similar contingencies vital to future planning.

    The generative AI models developed by Veeramachaneni and his team will provide inputs to modeling services based on the HILLTOP+ microgrid simulation platform, originally prototyped by MIT Lincoln Laboratory. HILLTOP+ will be used to model and test new smart grid technologies in a virtual “safe space,” providing rural electric utilities with increased confidence in deploying smart grid technologies, including utility-scale battery storage. Energy tech startups will also benefit from HILLTOP+ grid modeling services, enabling them to develop and virtually test their smart grid hardware and software products for scalability and interoperability.

    The project aims to assist rural electric utilities and energy tech startups in mitigating the risks associated with deploying these new technologies. “This project is a powerful example of how generative AI can transform a sector — in this case, the energy sector,” says Veeramachaneni. “In order to be useful, generative AI technologies and their development have to be closely integrated with domain expertise. I am thrilled to be collaborating with experts in grid modeling, and working alongside them to integrate the latest and greatest from my research group and push the boundaries of these technologies.”

    “This project is testament to the power of collaboration and innovation, and we look forward to working with our collaborators to drive positive change in the energy sector,” says Satish Mahajan, principal investigator for the project at Tennessee Tech and a professor of electrical and computer engineering. Tennessee Tech’s Center for Rural Innovation director, Michael Aikens, adds, “Together, we are taking significant steps towards a more sustainable and resilient future for the Appalachian region.” More

  • in

    Q&A: A blueprint for sustainable innovation

    Atacama Biomaterials is a startup combining architecture, machine learning, and chemical engineering to create eco-friendly materials with multiple applications. Passionate about sustainable innovation, its co-founder Paloma Gonzalez-Rojas SM ’15, PhD ’21 highlights here how MIT has supported the project through several of its entrepreneurship initiatives, and reflects on the role of design in building a holistic vision for an expanding business.

    Q: What role do you see your startup playing in the sustainable materials space?

    A: Atacama Biomaterials is a venture dedicated to advancing sustainable materials through state-of-the-art technology. With my co-founder Jose Tomas Dominguez, we have been working on developing our technology since 2019. We initially started the company in 2020 under another name and received Sandbox funds the next year. In 2021, we went through The Engine’s accelerator, Blueprint, and changed our name to Atacama Biomaterials in 2022 during the MITdesignX program. 

    This technology we have developed allows us to create our own data and material library using artificial intelligence and machine learning, and serves as a platform applicable to various industries horizontally — biofuels, biological drugs, and even mining. Vertically, we produce inexpensive, regionally sourced, and environmentally friendly bio-based polymers and packaging — that is, naturally compostable plastics as a flagship product, along with AI products.

    Q: What motivated you to venture into biomaterials and found Atacama?

    A: I’m from Chile, a country with a beautiful, rich geography and nature where we can see all the problems stemming from industry, waste management, and pollution. We named our company Atacama Biomaterials because the Atacama Desert in Chile — one of the places where you can best see the stars in the world — is becoming a plastic dump, as many other places on Earth. I care deeply about sustainability, and I have an emotional attachment to stop these problems. Considering that manufacturing accounts for 29 percent of global carbon emissions, it is clear that sustainability has a role in how we define technology and entrepreneurship, as well as a socio-economic dimension.

    When I first came to MIT, it was to develop software in the Department of Architecture’s Design and Computation Group, with MIT professors Svafa Gronfeldt as co-advisor and Regina Barzilay as committee member. During my PhD, I studied machine-learning methods simulating pedestrian motion to understand how people move in space. In my work, I would use lots of plastics for 3D printing and I couldn’t stop thinking about sustainability and climate change, so I reached out to material science and mechanical engineering professors to look into biopolymers and degradable bio-based materials. This is how I met my co-founder, as we were both working with MIT Professor Neil Gershenfeld. Together, we were part of one of the first teams in the world to 3D print wood fibers, which is difficult — it’s slow and expensive — and quickly pivoted to sustainable packaging. 

    I then won a fellowship from MCSC [the MIT Climate and Sustainability Consortium], which gave me freedom to explore further, and I eventually got a postdoc in MIT chemical engineering, guided by MIT Professor Gregory Rutledge, a polymer physicist. This was unexpected in my career path. Winning Nucleate Eco Track 2022 and the MITdesignX Innovation Award in 2022 profiled Atacama Biomaterials as one of the rising startups in Boston’s biotechnology and climate-tech scene.

    Q: What is your process to develop new biomaterials?

    A: My PhD research, coupled with my background in material development and molecular dynamics, sparked the realization that principles I studied simulating pedestrian motion could also apply to molecular engineering. This connection may seem unconventional, but for me, it was a natural progression. Early in my career, I developed an intuition for materials, understanding their mechanics and physics.

    Using my experience and skills, and leveraging machine learning as a technology jump, I applied a similar conceptual framework to simulate the trajectories of molecules and find potential applications in biomaterials. Making that parallel and shift was amazing. It allowed me to optimize a state-of-the-art molecular dynamic software to run twice as fast as more traditional technologies through my algorithm presented at the International Conference of Machine Learning this year. This is very important, because this kind of simulation usually takes a week, so narrowing it down to two days has major implications for scientists and industry, in material science, chemical engineering, computer science and related fields. Such work greatly influenced the foundation of Atacama Biomaterials, where we developed our own AI to deploy our materials. In an effort to mitigate the environmental impact of manufacturing, Atacama is targeting a 16.7 percent reduction in carbon dioxide emissions associated with the manufacturing process of its polymers, through the use of renewable energy. 

    Another thing is that I was trained as an architect in Chile, and my degree had a design component. I think design allows me to understand problems at a very high level, and how things interconnect. It contributed to developing a holistic vision for Atacama, because it allowed me to jump from one technology or discipline to another and understand broader applications on a conceptual level. Our design approach also meant that sustainability came to the center of our work from the very beginning, not just a plus or an added cost.

    Q: What was the role of MITdesignX in Atacama’s development?

    A: I have known Svafa Grönfeldt, MITdesignX’s faculty director, for almost six years. She was the co-advisor of my PhD, and we had a mentor-mentee relationship. I admire the fact that she created a space for people interested in business and entrepreneurship to grow within the Department of Architecture. She and Executive Director Gilad Rosenzweig gave us fantastic advice, and we received significant support from mentors. For example, Daniel Tsai helped us with intellectual property, including a crucial patent for Atacama. And we’re still in touch with the rest of the cohort. I really like this “design your company” approach, which I find quite unique, because it gives us the opportunity to reflect on who we want to be as designers, technologists, and entrepreneurs. Studying user insights also allowed us to understand the broad applicability of our research, and align our vision with market demands, ultimately shaping Atacama into a company with a holistic perspective on sustainable material development.

    Q: How does Atacama approach scaling, and what are the immediate next steps for the company?

    A: When I think about accomplishing our vision, I feel really inspired by my 3-year-old daughter. I want her to experience a world with trees and wildlife when she’s 100 years old, and I hope Atacama will contribute to such a future.

    Going back to the designer’s perspective, we designed the whole process holistically, from feedstock to material development, incorporating AI and advanced manufacturing. Having proved that there is a demand for the materials we are developing, and having tested our products, manufacturing process, and technology in critical environments, we are now ready to scale. Our level of technology-readiness is comparable to the one used by NASA (level 4).

    We have proof of concept: a biodegradable and recyclable packaging material which is cost- and energy-efficient as a clean energy enabler in large-scale manufacturing. We have received pre-seed funding, and are sustainably scaling by taking advantage of available resources around the world, like repurposing machinery from the paper industry. As presented in the MIT Industrial Liaison and STEX Program’s recent Sustainability Conference, unlike our competitors, we have cost-parity with current packaging materials, as well as low-energy processes. And we also proved the demand for our products, which was an important milestone. Our next steps involve strategically expanding our manufacturing capabilities and research facilities and we are currently evaluating building a factory in Chile and establishing an R&D lab plus a manufacturing plant in the U.S. More