More stories

  • in

    Machine learning, harnessed to extreme computing, aids fusion energy development

    MIT research scientists Pablo Rodriguez-Fernandez and Nathan Howard have just completed one of the most demanding calculations in fusion science — predicting the temperature and density profiles of a magnetically confined plasma via first-principles simulation of plasma turbulence. Solving this problem by brute force is beyond the capabilities of even the most advanced supercomputers. Instead, the researchers used an optimization methodology developed for machine learning to dramatically reduce the CPU time required while maintaining the accuracy of the solution.

    Fusion energyFusion offers the promise of unlimited, carbon-free energy through the same physical process that powers the sun and the stars. It requires heating the fuel to temperatures above 100 million degrees, well above the point where the electrons are stripped from their atoms, creating a form of matter called plasma. On Earth, researchers use strong magnetic fields to isolate and insulate the hot plasma from ordinary matter. The stronger the magnetic field, the better the quality of the insulation that it provides.

    Rodriguez-Fernandez and Howard have focused on predicting the performance expected in the SPARC device, a compact, high-magnetic-field fusion experiment, currently under construction by the MIT spin-out company Commonwealth Fusion Systems (CFS) and researchers from MIT’s Plasma Science and Fusion Center. While the calculation required an extraordinary amount of computer time, over 8 million CPU-hours, what was remarkable was not how much time was used, but how little, given the daunting computational challenge.

    The computational challenge of fusion energyTurbulence, which is the mechanism for most of the heat loss in a confined plasma, is one of the science’s grand challenges and the greatest problem remaining in classical physics. The equations that govern fusion plasmas are well known, but analytic solutions are not possible in the regimes of interest, where nonlinearities are important and solutions encompass an enormous range of spatial and temporal scales. Scientists resort to solving the equations by numerical simulation on computers. It is no accident that fusion researchers have been pioneers in computational physics for the last 50 years.

    One of the fundamental problems for researchers is reliably predicting plasma temperature and density given only the magnetic field configuration and the externally applied input power. In confinement devices like SPARC, the external power and the heat input from the fusion process are lost through turbulence in the plasma. The turbulence itself is driven by the difference in the extremely high temperature of the plasma core and the relatively cool temperatures of the plasma edge (merely a few million degrees). Predicting the performance of a self-heated fusion plasma therefore requires a calculation of the power balance between the fusion power input and the losses due to turbulence.

    These calculations generally start by assuming plasma temperature and density profiles at a particular location, then computing the heat transported locally by turbulence. However, a useful prediction requires a self-consistent calculation of the profiles across the entire plasma, which includes both the heat input and turbulent losses. Directly solving this problem is beyond the capabilities of any existing computer, so researchers have developed an approach that stitches the profiles together from a series of demanding but tractable local calculations. This method works, but since the heat and particle fluxes depend on multiple parameters, the calculations can be very slow to converge.

    However, techniques emerging from the field of machine learning are well suited to optimize just such a calculation. Starting with a set of computationally intensive local calculations run with the full-physics, first-principles CGYRO code (provided by a team from General Atomics led by Jeff Candy) Rodriguez-Fernandez and Howard fit a surrogate mathematical model, which was used to explore and optimize a search within the parameter space. The results of the optimization were compared to the exact calculations at each optimum point, and the system was iterated to a desired level of accuracy. The researchers estimate that the technique reduced the number of runs of the CGYRO code by a factor of four.

    New approach increases confidence in predictionsThis work, described in a recent publication in the journal Nuclear Fusion, is the highest fidelity calculation ever made of the core of a fusion plasma. It refines and confirms predictions made with less demanding models. Professor Jonathan Citrin, of the Eindhoven University of Technology and leader of the fusion modeling group for DIFFER, the Dutch Institute for Fundamental Energy Research, commented: “The work significantly accelerates our capabilities in more routinely performing ultra-high-fidelity tokamak scenario prediction. This algorithm can help provide the ultimate validation test of machine design or scenario optimization carried out with faster, more reduced modeling, greatly increasing our confidence in the outcomes.” 

    In addition to increasing confidence in the fusion performance of the SPARC experiment, this technique provides a roadmap to check and calibrate reduced physics models, which run with a small fraction of the computational power. Such models, cross-checked against the results generated from turbulence simulations, will provide a reliable prediction before each SPARC discharge, helping to guide experimental campaigns and improving the scientific exploitation of the device. It can also be used to tweak and improve even simple data-driven models, which run extremely quickly, allowing researchers to sift through enormous parameter ranges to narrow down possible experiments or possible future machines.

    The research was funded by CFS, with computational support from the National Energy Research Scientific Computing Center, a U.S. Department of Energy Office of Science User Facility. More

  • in

    Engineers enlist AI to help scale up advanced solar cell manufacturing

    Perovskites are a family of materials that are currently the leading contender to potentially replace today’s silicon-based solar photovoltaics. They hold the promise of panels that are far thinner and lighter, that could be made with ultra-high throughput at room temperature instead of at hundreds of degrees, and that are cheaper and easier to transport and install. But bringing these materials from controlled laboratory experiments into a product that can be manufactured competitively has been a long struggle.

    Manufacturing perovskite-based solar cells involves optimizing at least a dozen or so variables at once, even within one particular manufacturing approach among many possibilities. But a new system based on a novel approach to machine learning could speed up the development of optimized production methods and help make the next generation of solar power a reality.

    The system, developed by researchers at MIT and Stanford University over the last few years, makes it possible to integrate data from prior experiments, and information based on personal observations by experienced workers, into the machine learning process. This makes the outcomes more accurate and has already led to the manufacturing of perovskite cells with an energy conversion efficiency of 18.5 percent, a competitive level for today’s market.

    The research is reported today in the journal Joule, in a paper by MIT professor of mechanical engineering Tonio Buonassisi, Stanford professor of materials science and engineering Reinhold Dauskardt, recent MIT research assistant Zhe Liu, Stanford doctoral graduate Nicholas Rolston, and three others.

    Perovskites are a group of layered crystalline compounds defined by the configuration of the atoms in their crystal lattice. There are thousands of such possible compounds and many different ways of making them. While most lab-scale development of perovskite materials uses a spin-coating technique, that’s not practical for larger-scale manufacturing, so companies and labs around the world have been searching for ways of translating these lab materials into a practical, manufacturable product.

    “There’s always a big challenge when you’re trying to take a lab-scale process and then transfer it to something like a startup or a manufacturing line,” says Rolston, who is now an assistant professor at Arizona State University. The team looked at a process that they felt had the greatest potential, a method called rapid spray plasma processing, or RSPP.

    The manufacturing process would involve a moving roll-to-roll surface, or series of sheets, on which the precursor solutions for the perovskite compound would be sprayed or ink-jetted as the sheet rolled by. The material would then move on to a curing stage, providing a rapid and continuous output “with throughputs that are higher than for any other photovoltaic technology,” Rolston says.

    “The real breakthrough with this platform is that it would allow us to scale in a way that no other material has allowed us to do,” he adds. “Even materials like silicon require a much longer timeframe because of the processing that’s done. Whereas you can think of [this approach as more] like spray painting.”

    Within that process, at least a dozen variables may affect the outcome, some of them more controllable than others. These include the composition of the starting materials, the temperature, the humidity, the speed of the processing path, the distance of the nozzle used to spray the material onto a substrate, and the methods of curing the material. Many of these factors can interact with each other, and if the process is in open air, then humidity, for example, may be uncontrolled. Evaluating all possible combinations of these variables through experimentation is impossible, so machine learning was needed to help guide the experimental process.

    But while most machine-learning systems use raw data such as measurements of the electrical and other properties of test samples, they don’t typically incorporate human experience such as qualitative observations made by the experimenters of the visual and other properties of the test samples, or information from other experiments reported by other researchers. So, the team found a way to incorporate such outside information into the machine learning model, using a probability factor based on a mathematical technique called Bayesian Optimization.

    Using the system, he says, “having a model that comes from experimental data, we can find out trends that we weren’t able to see before.” For example, they initially had trouble adjusting for uncontrolled variations in humidity in their ambient setting. But the model showed them “that we could overcome our humidity challenges by changing the temperature, for instance, and by changing some of the other knobs.”

    The system now allows experimenters to much more rapidly guide their process in order to optimize it for a given set of conditions or required outcomes. In their experiments, the team focused on optimizing the power output, but the system could also be used to simultaneously incorporate other criteria, such as cost and durability — something members of the team are continuing to work on, Buonassisi says.

    The researchers were encouraged by the Department of Energy, which sponsored the work, to commercialize the technology, and they’re currently focusing on tech transfer to existing perovskite manufacturers. “We are reaching out to companies now,” Buonassisi says, and the code they developed has been made freely available through an open-source server. “It’s now on GitHub, anyone can download it, anyone can run it,” he says. “We’re happy to help companies get started in using our code.”

    Already, several companies are gearing up to produce perovskite-based solar panels, even though they are still working out the details of how to produce them, says Liu, who is now at the Northwestern Polytechnical University in Xi’an, China. He says companies there are not yet doing large-scale manufacturing, but instead starting with smaller, high-value applications such as building-integrated solar tiles where appearance is important. Three of these companies “are on track or are being pushed by investors to manufacture 1 meter by 2-meter rectangular modules [comparable to today’s most common solar panels], within two years,” he says.

    ‘The problem is, they don’t have a consensus on what manufacturing technology to use,” Liu says. The RSPP method, developed at Stanford, “still has a good chance” to be competitive, he says. And the machine learning system the team developed could prove to be important in guiding the optimization of whatever process ends up being used.

    “The primary goal was to accelerate the process, so it required less time, less experiments, and less human hours to develop something that is usable right away, for free, for industry,” he says.

    “Existing work on machine-learning-driven perovskite PV fabrication largely focuses on spin-coating, a lab-scale technique,” says Ted Sargent, University Professor at the University of Toronto, who was not associated with this work, which he says demonstrates “a workflow that is readily adapted to the deposition techniques that dominate the thin-film industry. Only a handful of groups have the simultaneous expertise in engineering and computation to drive such advances.” Sargent adds that this approach “could be an exciting advance for the manufacture of a broader family of materials” including LEDs, other PV technologies, and graphene, “in short, any industry that uses some form of vapor or vacuum deposition.” 

    The team also included Austin Flick and Thomas Colburn at Stanford and Zekun Ren at the Singapore-MIT Alliance for Science and Technology (SMART). In addition to the Department of Energy, the work was supported by a fellowship from the MIT Energy Initiative, the Graduate Research Fellowship Program from the National Science Foundation, and the SMART program. More

  • in

    New program bolsters innovation in next-generation artificial intelligence hardware

    The MIT AI Hardware Program is a new academia and industry collaboration aimed at defining and developing translational technologies in hardware and software for the AI and quantum age. A collaboration between the MIT School of Engineering and MIT Schwarzman College of Computing, involving the Microsystems Technologies Laboratories and programs and units in the college, the cross-disciplinary effort aims to innovate technologies that will deliver enhanced energy efficiency systems for cloud and edge computing.

    “A sharp focus on AI hardware manufacturing, research, and design is critical to meet the demands of the world’s evolving devices, architectures, and systems,” says Anantha Chandrakasan, dean of the MIT School of Engineering and Vannevar Bush Professor of Electrical Engineering and Computer Science. “Knowledge-sharing between industry and academia is imperative to the future of high-performance computing.”

    Based on use-inspired research involving materials, devices, circuits, algorithms, and software, the MIT AI Hardware Program convenes researchers from MIT and industry to facilitate the transition of fundamental knowledge to real-world technological solutions. The program spans materials and devices, as well as architecture and algorithms enabling energy-efficient and sustainable high-performance computing.

    “As AI systems become more sophisticated, new solutions are sorely needed to enable more advanced applications and deliver greater performance,” says Daniel Huttenlocher, dean of the MIT Schwarzman College of Computing and Henry Ellis Warren Professor of Electrical Engineering and Computer Science. “Our aim is to devise real-world technological solutions and lead the development of technologies for AI in hardware and software.”

    The inaugural members of the program are companies from a wide range of industries including chip-making, semiconductor manufacturing equipment, AI and computing services, and information systems R&D organizations. The companies represent a diverse ecosystem, both nationally and internationally, and will work with MIT faculty and students to help shape a vibrant future for our planet through cutting-edge AI hardware research.

    The five inaugural members of the MIT AI Hardware Program are:  

    Amazon, a global technology company whose hardware inventions include the Kindle, Amazon Echo, Fire TV, and Astro; 
    Analog Devices, a global leader in the design and manufacturing of analog, mixed signal, and DSP integrated circuits; 
    ASML, an innovation leader in the semiconductor industry, providing chipmakers with hardware, software, and services to mass produce patterns on silicon through lithography; 
    NTT Research, a subsidiary of NTT that conducts fundamental research to upgrade reality in game-changing ways that improve lives and brighten our global future; and 
    TSMC, the world’s leading dedicated semiconductor foundry.

    The MIT AI Hardware Program will create a roadmap of transformative AI hardware technologies. Leveraging MIT.nano, the most advanced university nanofabrication facility anywhere, the program will foster a unique environment for AI hardware research.  

    “We are all in awe at the seemingly superhuman capabilities of today’s AI systems. But this comes at a rapidly increasing and unsustainable energy cost,” says Jesús del Alamo, the Donner Professor in MIT’s Department of Electrical Engineering and Computer Science. “Continued progress in AI will require new and vastly more energy-efficient systems. This, in turn, will demand innovations across the entire abstraction stack, from materials and devices to systems and software. The program is in a unique position to contribute to this quest.”

    The program will prioritize the following topics:

    analog neural networks;
    new roadmap CMOS designs;
    heterogeneous integration for AI systems;
    onolithic-3D AI systems;
    analog nonvolatile memory devices;
    software-hardware co-design;
    intelligence at the edge;
    intelligent sensors;
    energy-efficient AI;
    intelligent internet of things (IIoT);
    neuromorphic computing;
    AI edge security;
    quantum AI;
    wireless technologies;
    hybrid-cloud computing; and
    high-performance computation.

    “We live in an era where paradigm-shifting discoveries in hardware, systems communications, and computing have become mandatory to find sustainable solutions — solutions that we are proud to give to the world and generations to come,” says Aude Oliva, senior research scientist in the MIT Computer Science and Artificial Intelligence Laboratory (CSAIL) and director of strategic industry engagement in the MIT Schwarzman College of Computing.

    The new program is co-led by Jesús del Alamo and Aude Oliva, and Anantha Chandrakasan serves as chair. More

  • in

    Using artificial intelligence to find anomalies hiding in massive datasets

    Identifying a malfunction in the nation’s power grid can be like trying to find a needle in an enormous haystack. Hundreds of thousands of interrelated sensors spread across the U.S. capture data on electric current, voltage, and other critical information in real time, often taking multiple recordings per second.

    Researchers at the MIT-IBM Watson AI Lab have devised a computationally efficient method that can automatically pinpoint anomalies in those data streams in real time. They demonstrated that their artificial intelligence method, which learns to model the interconnectedness of the power grid, is much better at detecting these glitches than some other popular techniques.

    Because the machine-learning model they developed does not require annotated data on power grid anomalies for training, it would be easier to apply in real-world situations where high-quality, labeled datasets are often hard to come by. The model is also flexible and can be applied to other situations where a vast number of interconnected sensors collect and report data, like traffic monitoring systems. It could, for example, identify traffic bottlenecks or reveal how traffic jams cascade.

    “In the case of a power grid, people have tried to capture the data using statistics and then define detection rules with domain knowledge to say that, for example, if the voltage surges by a certain percentage, then the grid operator should be alerted. Such rule-based systems, even empowered by statistical data analysis, require a lot of labor and expertise. We show that we can automate this process and also learn patterns from the data using advanced machine-learning techniques,” says senior author Jie Chen, a research staff member and manager of the MIT-IBM Watson AI Lab.

    The co-author is Enyan Dai, an MIT-IBM Watson AI Lab intern and graduate student at the Pennsylvania State University. This research will be presented at the International Conference on Learning Representations.

    Probing probabilities

    The researchers began by defining an anomaly as an event that has a low probability of occurring, like a sudden spike in voltage. They treat the power grid data as a probability distribution, so if they can estimate the probability densities, they can identify the low-density values in the dataset. Those data points which are least likely to occur correspond to anomalies.

    Estimating those probabilities is no easy task, especially since each sample captures multiple time series, and each time series is a set of multidimensional data points recorded over time. Plus, the sensors that capture all that data are conditional on one another, meaning they are connected in a certain configuration and one sensor can sometimes impact others.

    To learn the complex conditional probability distribution of the data, the researchers used a special type of deep-learning model called a normalizing flow, which is particularly effective at estimating the probability density of a sample.

    They augmented that normalizing flow model using a type of graph, known as a Bayesian network, which can learn the complex, causal relationship structure between different sensors. This graph structure enables the researchers to see patterns in the data and estimate anomalies more accurately, Chen explains.

    “The sensors are interacting with each other, and they have causal relationships and depend on each other. So, we have to be able to inject this dependency information into the way that we compute the probabilities,” he says.

    This Bayesian network factorizes, or breaks down, the joint probability of the multiple time series data into less complex, conditional probabilities that are much easier to parameterize, learn, and evaluate. This allows the researchers to estimate the likelihood of observing certain sensor readings, and to identify those readings that have a low probability of occurring, meaning they are anomalies.

    Their method is especially powerful because this complex graph structure does not need to be defined in advance — the model can learn the graph on its own, in an unsupervised manner.

    A powerful technique

    They tested this framework by seeing how well it could identify anomalies in power grid data, traffic data, and water system data. The datasets they used for testing contained anomalies that had been identified by humans, so the researchers were able to compare the anomalies their model identified with real glitches in each system.

    Their model outperformed all the baselines by detecting a higher percentage of true anomalies in each dataset.

    “For the baselines, a lot of them don’t incorporate graph structure. That perfectly corroborates our hypothesis. Figuring out the dependency relationships between the different nodes in the graph is definitely helping us,” Chen says.

    Their methodology is also flexible. Armed with a large, unlabeled dataset, they can tune the model to make effective anomaly predictions in other situations, like traffic patterns.

    Once the model is deployed, it would continue to learn from a steady stream of new sensor data, adapting to possible drift of the data distribution and maintaining accuracy over time, says Chen.

    Though this particular project is close to its end, he looks forward to applying the lessons he learned to other areas of deep-learning research, particularly on graphs.

    Chen and his colleagues could use this approach to develop models that map other complex, conditional relationships. They also want to explore how they can efficiently learn these models when the graphs become enormous, perhaps with millions or billions of interconnected nodes. And rather than finding anomalies, they could also use this approach to improve the accuracy of forecasts based on datasets or streamline other classification techniques.

    This work was funded by the MIT-IBM Watson AI Lab and the U.S. Department of Energy. More

  • in

    More sensitive X-ray imaging

    Scintillators are materials that emit light when bombarded with high-energy particles or X-rays. In medical or dental X-ray systems, they convert incoming X-ray radiation into visible light that can then be captured using film or photosensors. They’re also used for night-vision systems and for research, such as in particle detectors or electron microscopes.

    Researchers at MIT have now shown how one could improve the efficiency of scintillators by at least tenfold, and perhaps even a hundredfold, by changing the material’s surface to create certain nanoscale configurations, such as arrays of wave-like ridges. While past attempts to develop more efficient scintillators have focused on finding new materials, the new approach could in principle work with any of the existing materials.

    Though it will require more time and effort to integrate their scintillators into existing X-ray machines, the team believes that this method might lead to improvements in medical diagnostic X-rays or CT scans, to reduce dose exposure and improve image quality. In other applications, such as X-ray inspection of manufactured parts for quality control, the new scintillators could enable inspections with higher accuracy or at faster speeds.

    The findings are described today in the journal Science, in a paper by MIT doctoral students Charles Roques-Carmes and Nicholas Rivera; MIT professors Marin Soljacic, Steven Johnson, and John Joannopoulos; and 10 others.

    While scintillators have been in use for some 70 years, much of the research in the field has focused on developing new materials that produce brighter or faster light emissions. The new approach instead applies advances in nanotechnology to existing materials. By creating patterns in scintillator materials at a length scale comparable to the wavelengths of the light being emitted, the team found that it was possible to dramatically change the material’s optical properties.

    To make what they coined “nanophotonic scintillators,” Roques-Carmes says, “you can directly make patterns inside the scintillators, or you can glue on another material that would have holes on the nanoscale. The specifics depend on the exact structure and material.” For this research, the team took a scintillator and made holes spaced apart by roughly one optical wavelength, or about 500 nanometers (billionths of a meter).

    “The key to what we’re doing is a general theory and framework we have developed,” Rivera says. This allows the researchers to calculate the scintillation levels that would be produced by any arbitrary configuration of nanophotonic structures. The scintillation process itself involves a series of steps, making it complicated to unravel. The framework the team developed involves integrating three different types of physics, Roques-Carmes says. Using this system they have found a good match between their predictions and the results of their subsequent experiments.

    The experiments showed a tenfold improvement in emission from the treated scintillator. “So, this is something that might translate into applications for medical imaging, which are optical photon-starved, meaning the conversion of X-rays to optical light limits the image quality. [In medical imaging,] you do not want to irradiate your patients with too much of the X-rays, especially for routine screening, and especially for young patients as well,” Roques-Carmes says.

    “We believe that this will open a new field of research in nanophotonics,” he adds. “You can use a lot of the existing work and research that has been done in the field of nanophotonics to improve significantly on existing materials that scintillate.”

    “The research presented in this paper is hugely significant,” says Rajiv Gupta, chief of neuroradiology at Massachusetts General Hospital and an associate professor at Harvard Medical School, who was not associated with this work. “Nearly all detectors used in the $100 billion [medical X-ray] industry are indirect detectors,” which is the type of detector the new findings apply to, he says. “Everything that I use in my clinical practice today is based on this principle. This paper improves the efficiency of this process by 10 times. If this claim is even partially true, say the improvement is two times instead of 10 times, it would be transformative for the field!”

    Soljacic says that while their experiments proved a tenfold improvement in emission could be achieved in particular systems, by further fine-tuning the design of the nanoscale patterning, “we also show that you can get up to 100 times [improvement] in certain scintillator systems, and we believe we also have a path toward making it even better,” he says.

    Soljacic points out that in other areas of nanophotonics, a field that deals with how light interacts with materials that are structured at the nanometer scale, the development of computational simulations has enabled rapid, substantial improvements, for example in the development of solar cells and LEDs. The new models this team developed for scintillating materials could facilitate similar leaps in this technology, he says.

    Nanophotonics techniques “give you the ultimate power of tailoring and enhancing the behavior of light,” Soljacic says. “But until now, this promise, this ability to do this with scintillation was unreachable because modeling the scintillation was very challenging. Now, this work for the first time opens up this field of scintillation, fully opens it, for the application of nanophotonics techniques.” More generally, the team believes that the combination of nanophotonic and scintillators might ultimately enable higher resolution, reduced X-ray dose, and energy-resolved X-ray imaging.

    This work is “very original and excellent,” says Eli Yablonovitch, a professor of Electrical Engineering and Computer Sciences at the University of California at Berkeley, who was not associated with this research. “New scintillator concepts are very important in medical imaging and in basic research.”

    Yablonovitch adds that while the concept still needs to be proven in a practical device, he says that, “After years of research on photonic crystals in optical communication and other fields, it’s long overdue that photonic crystals should be applied to scintillators, which are of great practical importance yet have been overlooked” until this work.

    The research team included Ali Ghorashi, Steven Kooi, Yi Yang, Zin Lin, Justin Beroz, Aviram Massuda, Jamison Sloan, and Nicolas Romeo at MIT; Yang Yu at Raith America, Inc.; and Ido Kaminer at Technion in Israel. The work was supported, in part, by the U.S. Army Research Office and the U.S. Army Research Laboratory through the Institute for Soldier Nanotechnologies, by the Air Force Office of Scientific Research, and by a Mathworks Engineering Fellowship. More

  • in

    3 Questions: Anuradha Annaswamy on building smart infrastructures

    Much of Anuradha Annaswamy’s research hinges on uncertainty. How does cloudy weather affect a grid powered by solar energy? How do we ensure that electricity is delivered to the consumer if a grid is powered by wind and the wind does not blow? What’s the best course of action if a bird hits a plane engine on takeoff? How can you predict the behavior of a cyber attacker?

    A senior research scientist in MIT’s Department of Mechanical Engineering, Annaswamy spends most of her research time dealing with decision-making under uncertainty. Designing smart infrastructures that are resilient to uncertainty can lead to safer, more reliable systems, she says.

    Annaswamy serves as the director of MIT’s Active Adaptive Control Laboratory. A world-leading expert in adaptive control theory, she was named president of the Institute of Electrical and Electronics Engineers Control Systems Society for 2020. Her team uses adaptive control and optimization to account for various uncertainties and anomalies in autonomous systems. In particular, they are developing smart infrastructures in the energy and transportation sectors.

    Using a combination of control theory, cognitive science, economic modeling, and cyber-physical systems, Annaswamy and her team have designed intelligent systems that could someday transform the way we travel and consume energy. Their research includes a diverse range of topics such as safer autopilot systems on airplanes, the efficient dispatch of resources in electrical grids, better ride-sharing services, and price-responsive railway systems.

    In a recent interview, Annaswamy spoke about how these smart systems could help support a safer and more sustainable future.

    Q: How is your team using adaptive control to make air travel safer?

    A: We want to develop an advanced autopilot system that can safely recover the airplane in the event of a severe anomaly — such as the wing becoming damaged mid-flight, or a bird flying into the engine. In the airplane, you have a pilot and autopilot to make decisions. We’re asking: How do you combine those two decision-makers?

    The answer we landed on was developing a shared pilot-autopilot control architecture. We collaborated with David Woods, an expert in cognitive engineering at The Ohio State University, to develop an intelligent system that takes the pilot’s behavior into account. For example, all humans have something known as “capacity for maneuver” and “graceful command degradation” that inform how we react in the face of adversity. Using mathematical models of pilot behavior, we proposed a shared control architecture where the pilot and the autopilot work together to make an intelligent decision on how to react in the face of uncertainties. In this system, the pilot reports the anomaly to an adaptive autopilot system that ensures resilient flight control.

    Q: How does your research on adaptive control fit into the concept of smart cities?

    A: Smart cities are an interesting way we can use intelligent systems to promote sustainability. Our team is looking at ride-sharing services in particular. Services like Uber and Lyft have provided new transportation options, but their impact on the carbon footprint has to be considered. We’re looking at developing a system where the number of passenger-miles per unit of energy is maximized through something called “shared mobility on demand services.” Using the alternating minimization approach, we’ve developed an algorithm that can determine the optimal route for multiple passengers traveling to various destinations.

    As with the pilot-autopilot dynamic, human behavior is at play here. In sociology there is an interesting concept of behavioral dynamics known as Prospect Theory. If we give passengers options with regards to which route their shared ride service will take, we are empowering them with free will to accept or reject a route. Prospect Theory shows that if you can use pricing as an incentive, people are much more loss-averse so they would be willing to walk a bit extra or wait a few minutes longer to join a low-cost ride with an optimized route. If everyone utilized a system like this, the carbon footprint of ride-sharing services could decrease substantially.

    Q: What other ways are you using intelligent systems to promote sustainability?

    A: Renewable energy and sustainability are huge drivers for our research. To enable a world where all of our energy is coming from renewable sources like solar or wind, we need to develop a smart grid that can account for the fact that the sun isn’t always shining and wind isn’t always blowing. These uncertainties are the biggest hurdles to achieving an all-renewable grid. Of course, there are many technologies being developed for batteries that can help store renewable energy, but we are taking a different approach.

    We have created algorithms that can optimally schedule distributed energy resources within the grid — this includes making decisions on when to use onsite generators, how to operate storage devices, and when to call upon demand response technologies, all in response to the economics of using such resources and their physical constraints. If we can develop an interconnected smart grid where, for example, the air conditioning setting in a house is set to 72 degrees instead of 69 degrees automatically when demand is high, there could be a substantial savings in energy usage without impacting human comfort. In one of our studies, we applied a distributed proximal atomic coordination algorithm to the grid in Tokyo to demonstrate how this intelligent system could account for the uncertainties present in a grid powered by renewable resources. More

  • in

    Meet the 2021-22 Accenture Fellows

    Launched in October of 2020, the MIT and Accenture Convergence Initiative for Industry and Technology underscores the ways in which industry and technology come together to spur innovation. The five-year initiative aims to achieve its mission through research, education, and fellowships. To that end, Accenture has once again awarded five annual fellowships to MIT graduate students working on research in industry and technology convergence who are underrepresented, including by race, ethnicity, and gender.

    This year’s Accenture Fellows work across disciplines including robotics, manufacturing, artificial intelligence, and biomedicine. Their research covers a wide array of subjects, including: advancing manufacturing through computational design, with the potential to benefit global vaccine production; designing low-energy robotics for both consumer electronics and the aerospace industry; developing robotics and machine learning systems that may aid the elderly in their homes; and creating ingestible biomedical devices that can help gather medical data from inside a patient’s body.

    Student nominations from each unit within the School of Engineering, as well as from the four other MIT schools and the MIT Schwarzman College of Computing, were invited as part of the application process. Five exceptional students were selected as fellows in the initiative’s second year.

    Xinming (Lily) Liu is a PhD student in operations research at MIT Sloan School of Management. Her work is focused on behavioral and data-driven operations for social good, incorporating human behaviors into traditional optimization models, designing incentives, and analyzing real-world data. Her current research looks at the convergence of social media, digital platforms, and agriculture, with particular attention to expanding technological equity and economic opportunity in developing countries. Liu earned her BS from Cornell University, with a double major in operations research and computer science.

    Caris Moses is a PhD student in electrical engineering and computer science specializing inartificial intelligence. Moses’ research focuses on using machine learning, optimization, and electromechanical engineering to build robotics systems that are robust, flexible, intelligent, and can learn on the job. The technology she is developing holds promise for industries including flexible, small-batch manufacturing; robots to assist the elderly in their households; and warehouse management and fulfillment. Moses earned her BS in mechanical engineering from Cornell University and her MS in computer science from Northeastern University.

    Sergio Rodriguez Aponte is a PhD student in biological engineering. He is working on the convergence of computational design and manufacturing practices, which have the potential to impact industries such as biopharmaceuticals, food, and wellness/nutrition. His current research aims to develop strategies for applying computational tools, such as multiscale modeling and machine learning, to the design and production of manufacturable and accessible vaccine candidates that could eventually be available globally. Rodriguez Aponte earned his BS in industrial biotechnology from the University of Puerto Rico at Mayaguez.

    Soumya Sudhakar SM ’20 is a PhD student in aeronautics and astronautics. Her work is focused on theco-design of new algorithms and integrated circuits for autonomous low-energy robotics that could have novel applications in aerospace and consumer electronics. Her contributions bring together the emerging robotics industry, integrated circuits industry, aerospace industry, and consumer electronics industry. Sudhakar earned her BSE in mechanical and aerospace engineering from Princeton University and her MS in aeronautics and astronautics from MIT.

    So-Yoon Yang is a PhD student in electrical engineering and computer science. Her work on the development of low-power, wireless, ingestible biomedical devices for health care is at the intersection of the medical device, integrated circuit, artificial intelligence, and pharmaceutical fields. Currently, the majority of wireless biomedical devices can only provide a limited range of medical data measured from outside the body. Ingestible devices hold promise for the next generation of personal health care because they do not require surgical implantation, can be useful for detecting physiological and pathophysiological signals, and can also function as therapeutic alternatives when treatment cannot be done externally. Yang earned her BS in electrical and computer engineering from Seoul National University in South Korea and her MS in electrical engineering from Caltech. More

  • in

    A tool to speed development of new solar cells

    In the ongoing race to develop ever-better materials and configurations for solar cells, there are many variables that can be adjusted to try to improve performance, including material type, thickness, and geometric arrangement. Developing new solar cells has generally been a tedious process of making small changes to one of these parameters at a time. While computational simulators have made it possible to evaluate such changes without having to actually build each new variation for testing, the process remains slow.

    Now, researchers at MIT and Google Brain have developed a system that makes it possible not just to evaluate one proposed design at a time, but to provide information about which changes will provide the desired improvements. This could greatly increase the rate for the discovery of new, improved configurations.

    The new system, called a differentiable solar cell simulator, is described in a paper published today in the journal Computer Physics Communications, written by MIT junior Sean Mann, research scientist Giuseppe Romano of MIT’s Institute for Soldier Nanotechnologies, and four others at MIT and at Google Brain.

    Traditional solar cell simulators, Romano explains, take the details of a solar cell configuration and produce as their output a predicted efficiency — that is, what percentage of the energy of incoming sunlight actually gets converted to an electric current. But this new simulator both predicts the efficiency and shows how much that output is affected by any one of the input parameters. “It tells you directly what happens to the efficiency if we make this layer a little bit thicker, or what happens to the efficiency if we for example change the property of the material,” he says.

    In short, he says, “we didn’t discover a new device, but we developed a tool that will enable others to discover more quickly other higher performance devices.” Using this system, “we are decreasing the number of times that we need to run a simulator to give quicker access to a wider space of optimized structures.” In addition, he says, “our tool can identify a unique set of material parameters that has been hidden so far because it’s very complex to run those simulations.”

    While traditional approaches use essentially a random search of possible variations, Mann says, with his tool “we can follow a trajectory of change because the simulator tells you what direction you want to be changing your device. That makes the process much faster because instead of exploring the entire space of opportunities, you can just follow a single path” that leads directly to improved performance.

    Since advanced solar cells often are composed of multiple layers interlaced with conductive materials to carry electric charge from one to the other, this computational tool reveals how changing the relative thicknesses of these different layers will affect the device’s output. “This is very important because the thickness is critical. There is a strong interplay between light propagation and the thickness of each layer and the absorption of each layer,” Mann explains.

    Other variables that can be evaluated include the amount of doping (the introduction of atoms of another element) that each layer receives, or the dielectric constant of insulating layers, or the bandgap, a measure of the energy levels of photons of light that can be captured by different materials used in the layers.

    This simulator is now available as an open-source tool that can be used immediately to help guide research in this field, Romano says. “It is ready, and can be taken up by industry experts.” To make use of it, researchers would couple this device’s computations with an optimization algorithm, or even a machine learning system, to rapidly assess a wide variety of possible changes and home in quickly on the most promising alternatives.

    At this point, the simulator is based on just a one-dimensional version of the solar cell, so the next step will be to expand its capabilities to include two- and three-dimensional configurations. But even this 1D version “can cover the majority of cells that are currently under production,” Romano says. Certain variations, such as so-called tandem cells using different materials, cannot yet be simulated directly by this tool, but “there are ways to approximate a tandem solar cell by simulating each of the individual cells,” Mann says.

    The simulator is “end-to-end,” Romano says, meaning it computes the sensitivity of the efficiency, also taking into account light absorption. He adds: “An appealing future direction is composing our simulator with advanced existing differentiable light-propagation simulators, to achieve enhanced accuracy.”

    Moving forward, Romano says, because this is an open-source code, “that means that once it’s up there, the community can contribute to it. And that’s why we are really excited.” Although this research group is “just a handful of people,” he says, now anyone working in the field can make their own enhancements and improvements to the code and introduce new capabilities.

    “Differentiable physics is going to provide new capabilities for the simulations of engineered systems,” says Venkat Viswanathan, an associate professor of mechanical engineering at Carnegie Mellon University, who was not associated with this work. “The  differentiable solar cell simulator is an incredible example of differentiable physics, that can now provide new capabilities to optimize solar cell device performance,” he says, calling the study “an exciting step forward.”

    In addition to Mann and Romano, the team included Eric Fadel and Steven Johnson at MIT, and Samuel Schoenholz and Ekin Cubuk at Google Brain. The work was supported in part by Eni S.p.A. and the MIT Energy Initiative, and the MIT Quest for Intelligence. More