More stories

  • in

    Four researchers with MIT ties earn Schmidt Science Fellowships

    Four researchers with MIT ties — Juncal Arbelaiz, Xiangkun (Elvis) Cao, Sandya Subramanian, and Heather Zlotnick ’17 — have been honored with competitive Schmidt Science Fellowships.

    Created in 2017, the fellows program aims to bring together the world’s brightest minds “to solve society’s toughest challenges.”

    The four MIT-affiliated researchers are among 29 Schmidt Science Fellows from around the world who will receive postdoctoral support for either one or two years with an annual stipend of $100,000, along with individualized mentoring and participation in the program’s Global Meeting Series. The fellows will also have opportunities to engage with thought-leaders from science, business, policy, and society. According to the award announcement, the fellows are expected to pursue research that shifts from the focus of their PhDs, to help expand and enhance their futures as scientific leaders.

    Juncal Arbelaiz is a PhD candidate in applied mathematics at MIT, who is completing her doctorate this summer. Her doctoral research at MIT is advised by Ali Jadbabaie, the JR East Professor of Engineering and head of the Department of Civil and Environmental Engineering; Anette Hosoi, the Neil and Jane Pappalardo Professor of Mechanical Engineering and associate dean of the School of Engineering; and Bassam Bamieh, professor of mechanical engineering and associate director of the Center for Control, Dynamical Systems, and Computation at the University of California at Santa Barbara. Arbelaiz’s research revolves around the design of optimal decentralized intelligence for spatially-distributed dynamical systems.

    “I cannot think of a better way to start my independent scientific career. I feel very excited and grateful for this opportunity,” says Arbelaiz. With her fellowship, she will enlist systems biology to explore how the nervous system encodes and processes sensory information to address future safety-critical artificial intelligence applications. “The Schmidt Science Fellowship will provide me with a unique opportunity to work at the intersection of biological and machine intelligence for two years and will be a steppingstone towards my longer-term objective of becoming a researcher in bio-inspired machine intelligence,” she says.

    Xiangkun (Elvis) Cao is currently a postdoc in the lab of T. Alan Hatton, the Ralph Landau Professor in Chemical Engineering, and an Impact Fellow at the MIT Climate and Sustainability Consortium. Cao received his PhD in mechanical engineering from Cornell University in 2021, during which he focused on microscopic precision in the simultaneous delivery of light and fluids by optofluidics, with advances relevant to health and sustainability applications. As a Schmidt Science Fellow, he plans to be co-advised by Hatton on carbon capture, and Ted Sargent, professor of chemistry at Northwestern University, on carbon utilization. Cao is passionate about integrated carbon capture and utilization (CCU) from molecular to process levels, machine learning to inspire smart CCU, and the nexus of technology, business, and policy for CCU.

    “The Schmidt Science Fellowship provides the perfect opportunity for me to work across disciplines to study integrated carbon capture and utilization from molecular to process levels,” Cao explains. “My vision is that by integrating carbon capture and utilization, we can concurrently make scientific discoveries and unlock economic opportunities while mitigating global climate change. This way, we can turn our carbon liability into an asset.”

    Sandya Subramanian, a 2021 PhD graduate of the Harvard-MIT Program in Health Sciences and Technology (HST) in the area of medical engineering and medical physics, is currently a postdoc at Stanford Data Science. She is focused on the topics of biomedical engineering, statistics, machine learning, neuroscience, and health care. Her research is on developing new technologies and methods to study the interactions between the brain, the autonomic nervous system, and the gut. “I’m extremely honored to receive the Schmidt Science Fellowship and to join the Schmidt community of leaders and scholars,” says Subramanian. “I’ve heard so much about the fellowship and the fact that it can open doors and give people confidence to pursue challenging or unique paths.”

    According to Subramanian, the autonomic nervous system and its interactions with other body systems are poorly understood but thought to be involved in several disorders, such as functional gastrointestinal disorders, Parkinson’s disease, diabetes, migraines, and eating disorders. The goal of her research is to improve our ability to monitor and quantify these physiologic processes. “I’m really interested in understanding how we can use physiological monitoring technologies to inform clinical decision-making, especially around the autonomic nervous system, and I look forward to continuing the work that I’ve recently started at Stanford as Schmidt Science Fellow,” she says. “A huge thank you to all of the mentors, colleagues, friends, and leaders I had the pleasure of meeting and working with at HST and MIT; I couldn’t have done this without everything I learned there.”

    Hannah Zlotnick ’17 attended MIT for her undergraduate studies, majoring in biological engineering with a minor in mechanical engineering. At MIT, Zlotnick was a student-athlete on the women’s varsity soccer team, a UROP student in Alan Grodzinsky’s laboratory, and a member of Pi Beta Phi. For her PhD, Zlotnick attended the University of Pennsylvania, and worked in Robert Mauck’s laboratory within the departments of Bioengineering and Orthopaedic Surgery.

    Zlotnick’s PhD research focused on harnessing remote forces, such as magnetism or gravity, to enhance engineered cartilage and osteochondral repair both in vitro and in large animal models. Zlotnick now plans to pivot to the field of biofabrication to create tissue models of the knee joint to assess potential therapeutics for osteoarthritis. “I am humbled to be a part of the Schmidt Science Fellows community, and excited to venture into the field of biofabrication,” Zlotnick says. “Hopefully this work uncovers new therapies for patients with inflammatory joint diseases.” More

  • in

    Donald Sadoway wins European Inventor Award for liquid metal batteries

    MIT Professor Donald Sadoway has won the 2022 European Inventor Award, in the category for Non-European Patent Office Countries, for his work on liquid metal batteries that could enable the long-term storage of renewable energy.

    Sadoway is the John F. Elliott Professor of Materials Chemistry in MIT’s Department of Materials Science and Engineering, and a longtime supporter and friend of the Materials Research Laboratory.

    “By enabling the large-scale storage of renewable energy, Donald Sadoway’s invention is a huge step towards the deployment of carbon-free electricity generation,” says António Campinos, president of the European Patent Office. “He has spent his career studying electrochemistry and has transformed this expertise into an invention that represents a huge step forward in the transition to green energy.”

    Sadoway was honored at the 2022 European Inventor Award ceremony on June 21. The award is one of Europe’s most prestigious innovation prizes and is presented annually to outstanding inventors from Europe and beyond who have made an exceptional contribution to society, technological progress, and economic growth.

    When accepting the award in Munich, Sadoway told the audience:

    “I am astonished. When I look at all the patented technologies that are represented at this event I see an abundance of excellence, all of them solutions to pressing problems. I wonder if the judges are assessing not only degrees of excellence but degrees of urgency. The liquid metal battery addresses an existential threat to the health of our atmosphere which is related to climate change.

    “By hosting this event the EPO celebrates invention. The thread that connects all the inventors is their efforts to make the world a better place. In my judgment there is no nobler pursuit. So perhaps this is a celebration of nobility.”

    Sadoway’s liquid metal batteries consist of three liquid layers of different densities, which naturally separate in the same way as oil and vinegar do in a salad dressing. The top and bottom layers are made from molten metals, with a middle layer of molten liquid salt.

    To keep the metals liquid, the batteries need to operate at extremely high temperatures, so Sadoway designed a system that is self-heating and insulated, requiring no external heating or cooling. They have a lifespan of more than 20 years, can maintain 99 percent of their capacity over 5,000 charging cycles, and have no combustible materials, meaning there is no fire risk.

    In 2010, with a patent for his invention and support from Bill Gates, Sadoway co-founded Ambri, based in Marlborough, Massachusetts just outside Boston, to develop a commercial product. The company will soon install a unit on a 3,700-acre development for a data center in Nevada. This battery will store energy from a reported 500 megawatts of on-site renewable generation, the same output as a natural gas power plant.

    Born in 1950 into a family of Ukrainian immigrants in Canada, Sadoway studied chemical metallurgy specializing in what he calls “extreme electrochemistry” — chemical reactions in molten salts and liquid metals that have been heated to over 500 degrees Celsius. After earning his BASc, MASc, and PhD, all from the University of Toronto, he joined the faculty at MIT in 1978. More

  • in

    Evan Leppink: Seeking a way to better stabilize the fusion environment

    “Fusion energy was always one of those kind-of sci-fi technologies that you read about,” says nuclear science and engineering PhD candidate Evan Leppink. He’s recalling the time before fusion became a part of his daily hands-on experience at MIT’s Plasma Science and Fusion Center, where he is studying a unique way to drive current in a tokamak plasma using radiofrequency (RF) waves. 

    Now, an award from the U.S. Department of Energy’s (DOE) Office of Science Graduate Student Research (SCGSR) Program will support his work with a 12-month residency at the DIII-D National Fusion Facility in San Diego, California.

    Like all tokamaks, DIII-D generates hot plasma inside a doughnut-shaped vacuum chamber wrapped with magnets. Because plasma will follow magnetic field lines, tokamaks are able to contain the turbulent plasma fuel as it gets hotter and denser, keeping it away from the edges of the chamber where it could damage the wall materials. A key part of the tokamak concept is that part of the magnetic field is created by electrical currents in the plasma itself, which helps to confine and stabilize the configuration. Researchers often launch high-power RF waves into tokamaks to drive that current.

    Leppink will be contributing to research, led by his MIT advisor Steve Wukitch, that pursues launching RF waves in DIII-D using a unique compact antenna placed on the tokamak center column. Typically, antennas are placed inside the tokamak on the outer edge of the doughnut, farthest from the central hole (or column), primarily because access and installation are easier there. This is known as the “low-field side,” because the magnetic field is lower there than at the central column, the “high-field side.” This MIT-led experiment, for the first time, will mount an antenna on the high-field side. There is some theoretical evidence that placing the wave launcher there could improve power penetration and current drive efficiency. And because the plasma environment is less harsh on this side, the antenna will survive longer, a factor important for any future power-producing tokamak.

    Leppink’s work on DIII-D focuses specifically on measuring the density of plasmas generated in the tokamak, for which he developed a “reflectometer.” This small antenna launches microwaves into the plasma, which reflect back to the antenna to be measured. The time that it takes for these microwaves to traverse the plasma provides information about the plasma density, allowing researchers to build up detailed density profiles, data critical for injecting RF power into the plasma.

    “Research shows that when we try to inject these waves into the plasma to drive the current, they can lose power as they travel through the edge region of the tokamak, and can even have problems entering the core of the plasma, where we would most like to direct them,” says Leppink. “My diagnostic will measure that edge region on the high-field side near the launcher in great detail, which provides us a way to directly verify calculations or compare actual results with simulation results.”

    Although focused on his own research, Leppink has excelled at priming other students for success in their studies and research. In 2021 he received the NSE Outstanding Teaching Assistant and Mentorship Award.

    “The highlights of TA’ing for me were the times when I could watch students go from struggling with a difficult topic to fully understanding it, often with just a nudge in the right direction and then allowing them to follow their own intuition the rest of the way,” he says.

    The right direction for Leppink points toward San Diego and RF current drive experiments on DIII-D. He is grateful for the support from the SCGSR, a program created to prepare graduate students like him for science, technology, engineering, or mathematics careers important to the DOE Office of Science mission. It provides graduate thesis research opportunities through extended residency at DOE national laboratories. He has already made several trips to DIII-D, in part to install his reflectometer, and has been impressed with the size of the operation.

    “It takes a little while to kind of compartmentalize everything and say, ‘OK, well, here’s my part of the machine. This is what I’m doing.’ It can definitely be overwhelming at times. But I’m blessed to be able to work on what has been the workhorse tokamak of the United States for the past few decades.” More

  • in

    MIT Climate and Sustainability Consortium announces recipients of inaugural MCSC Seed Awards

    The MIT Climate and Sustainability Consortium (MCSC) has awarded 20 projects a total of $5 million over two years in its first-ever 2022 MCSC Seed Awards program. The winning projects are led by principal investigators across all five of MIT’s schools.

    The goal of the MCSC Seed Awards is to engage MIT researchers and link the economy-wide work of the consortium to ongoing and emerging climate and sustainability efforts across campus. The program offers further opportunity to build networks among the awarded projects to deepen the impact of each and ensure the total is greater than the sum of its parts.

    For example, to drive progress under the awards category Circularity and Materials, the MCSC can facilitate connections between the technologists at MIT who are developing recovery approaches for metals, plastics, and fiber; the urban planners who are uncovering barriers to reuse; and the engineers, who will look for efficiency opportunities in reverse supply chains.

    “The MCSC Seed Awards are designed to complement actions previously outlined in Fast Forward: MIT’s Climate Action Plan for the Decade and, more specifically, the Climate Grand Challenges,” says Anantha P. Chandrakasan, dean of the MIT School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MIT Climate and Sustainability Consortium. “In collaboration with seed award recipients and MCSC industry members, we are eager to engage in interdisciplinary exploration and propel urgent advancements in climate and sustainability.” 

    By supporting MIT researchers with expertise in economics, infrastructure, community risk assessment, mobility, and alternative fuels, the MCSC will accelerate implementation of cross-disciplinary solutions in the awards category Decarbonized and Resilient Value Chains. Enhancing Natural Carbon Sinks and building connections to local communities will require associations across experts in ecosystem change, biodiversity, improved agricultural practice and engagement with farmers, all of which the consortium can begin to foster through the seed awards.

    “Funding opportunities across campus has been a top priority since launching the MCSC,” says Jeremy Gregory, MCSC executive director. “It is our honor to support innovative teams of MIT researchers through the inaugural 2022 MCSC Seed Awards program.”

    The winning projects are tightly aligned with the MCSC’s areas of focus, which were derived from a year of highly engaged collaborations with MCSC member companies. The projects apply across the member’s climate and sustainability goals.

    The MCSC’s 16 member companies span many industries, and since early 2021, have met with members of the MIT community to define focused problem statements for industry-specific challenges, identify meaningful partnerships and collaborations, and develop clear and scalable priorities. Outcomes from these collaborations laid the foundation for the focus areas, which have shaped the work of the MCSC. Specifically, the MCSC Industry Advisory Board engaged with MIT on key strategic directions, and played a critical role in the MCSC’s series of interactive events. These included virtual workshops hosted last summer, each on a specific topic that allowed companies to work with MIT and each other to align key assumptions, identify blind spots in corporate goal-setting, and leverage synergies between members, across industries. The work continued in follow-up sessions and an annual symposium.

    “We are excited to see how the seed award efforts will help our member companies reach or even exceed their ambitious climate targets, find new cross-sector links among each other, seek opportunities to lead, and ripple key lessons within their industry, while also deepening the Institute’s strong foundation in climate and sustainability research,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.

    As the seed projects take shape, the MCSC will provide ongoing opportunities for awardees to engage with the Industry Advisory Board and technical teams from the MCSC member companies to learn more about the potential for linking efforts to support and accelerate their climate and sustainability goals. Awardees will also have the chance to engage with other members of the MCSC community, including its interdisciplinary Faculty Steering Committee.

    “One of our mantras in the MCSC is to ‘amplify and extend’ existing efforts across campus; we’re always looking for ways to connect the collaborative industry relationships we’re building and the work we’re doing with other efforts on campus,” notes Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. “We feel the urgency as well as the potential, and we don’t want to miss opportunities to do more and go faster.”

    The MCSC Seed Awards complement the Climate Grand Challenges, a new initiative to mobilize the entire MIT research community around developing the bold, interdisciplinary solutions needed to address difficult, unsolved climate problems. The 27 finalist teams addressed four broad research themes, which align with the MCSC’s focus areas. From these finalist teams, five flagship projects were announced in April 2022.

    The parallels between MCSC’s focus areas and the Climate Grand Challenges themes underscore an important connection between the shared long-term research interests of industry and academia. The challenges that some of the world’s largest and most influential companies have identified are complementary to MIT’s ongoing research and innovation — highlighting the tremendous opportunity to develop breakthroughs and scalable solutions quickly and effectively. Special Presidential Envoy for Climate John Kerry underscored the importance of developing these scalable solutions, including critical new technology, during a conversation with MIT President L. Rafael Reif at MIT’s first Climate Grand Challenges showcase event last month.

    Both the MCSC Seed Awards and the Climate Grand Challenges are part of MIT’s larger commitment and initiative to combat climate change; this was underscored in “Fast Forward: MIT’s Climate Action Plan for the Decade,” which the Institute published in May 2021.

    The project titles and research leads for each of the 20 awardees listed below are categorized by MCSC focus area.

    Decarbonized and resilient value chains

    “Collaborative community mapping toolkit for resilience planning,” led by Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on Climate Grand Challenges flagship project) and Nicholas de Monchaux, professor and department head in the Department of Architecture
    “CP4All: Fast and local climate projections with scientific machine learning — towards accessibility for all of humanity,” led by Chris Hill, principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences and Dava Newman, director of the MIT Media Lab and the Apollo Program Professor in the Department of Aeronautics and Astronautics
    “Emissions reductions and productivity in U.S. manufacturing,” led by Mert Demirer, assistant professor of applied economics at the MIT Sloan School of Management and Jing Li, assistant professor and William Barton Rogers Career Development Chair of Energy Economics in the MIT Sloan School of Management
    “Logistics electrification through scalable and inter-operable charging infrastructure: operations, planning, and policy,” led by Alex Jacquillat, the 1942 Career Development Professor and assistant professor of operations research and statistics in the MIT Sloan School of Management
    “Powertrain and system design for LOHC-powered long-haul trucking,” led by William Green, the Hoyt Hottel Professor in Chemical Engineering in the Department of Chemical Engineering and postdoctoral officer, and Wai K. Cheng, professor in the Department of Mechanical Engineering and director of the Sloan Automotive Laboratory
    “Sustainable Separation and Purification of Biochemicals and Biofuels using Membranes,” led by John Lienhard, the Abdul Latif Jameel Professor of Water in the Department of Mechanical Engineering, director of the Abdul Latif Jameel Water and Food Systems Lab, and director of the Rohsenow Kendall Heat Transfer Laboratory; and Nicolas Hadjiconstantinou, professor in the Department of Mechanical Engineering, co-director of the Center for Computational Science and Engineering, associate director of the Center for Exascale Simulation of Materials in Extreme Environments, and graduate officer
    “Toolkit for assessing the vulnerability of industry infrastructure siting to climate change,” led by Michael Howland, assistant professor in the Department of Civil and Environmental Engineering

    Circularity and Materials

    “Colorimetric Sulfidation for Aluminum Recycling,” led by Antoine Allanore, associate professor of metallurgy in the Department of Materials Science and Engineering
    “Double Loop Circularity in Materials Design Demonstrated on Polyurethanes,” led by Brad Olsen, the Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering, and Kristala Prather, the Arthur Dehon Little Professor and department executive officer in the Department of Chemical Engineering
    “Engineering of a microbial consortium to degrade and valorize plastic waste,” led by Otto Cordero, associate professor in the Department of Civil and Environmental Engineering, and Desiree Plata, the Gilbert W. Winslow (1937) Career Development Professor in Civil Engineering and associate professor in the Department of Civil and Environmental Engineering
    “Fruit-peel-inspired, biodegradable packaging platform with multifunctional barrier properties,” led by Kripa Varanasi, professor in the Department of Mechanical Engineering
    “High Throughput Screening of Sustainable Polyesters for Fibers,” led by Gregory Rutledge, the Lammot du Pont Professor in the Department of Chemical Engineering, and Brad Olsen, Alexander and I. Michael Kasser (1960) Professor and graduate admissions co-chair in the Department of Chemical Engineering
    “Short-term and long-term efficiency gains in reverse supply chains,” led by Yossi Sheffi, the Elisha Gray II Professor of Engineering Systems, professor in the Department of Civil and Environmental Engineering, and director of the Center for Transportation and Logistics
    The costs and benefits of circularity in building construction, led by Siqi Zheng, the STL Champion Professor of Urban and Real Estate Sustainability at the MIT Center for Real Estate and Department of Urban Studies and Planning, faculty director of the MIT Center for Real Estate, and faculty director for the MIT Sustainable Urbanization Lab; and Randolph Kirchain, principal research scientist and co-director of MIT Concrete Sustainability Hub

    Natural carbon sinks

    “Carbon sequestration through sustainable practices by smallholder farmers,” led by Joann de Zegher, the Maurice F. Strong Career Development Professor and assistant professor of operations management in the MIT Sloan School of Management, and Karen Zheng the George M. Bunker Professor and associate professor of operations management in the MIT Sloan School of Management
    “Coatings to protect and enhance diverse microbes for improved soil health and crop yields,” led by Ariel Furst, the Raymond A. (1921) And Helen E. St. Laurent Career Development Professor of Chemical Engineering in the Department of Chemical Engineering, and Mary Gehring, associate professor of biology in the Department of Biology, core member of the Whitehead Institute for Biomedical Research, and graduate officer
    “ECO-LENS: Mainstreaming biodiversity data through AI,” led by John Fernández, professor of building technology in the Department of Architecture and director of MIT Environmental Solutions Initiative
    “Growing season length, productivity, and carbon balance of global ecosystems under climate change,” led by Charles Harvey, professor in the Department of Civil and Environmental Engineering, and César Terrer, assistant professor in the Department of Civil and Environmental Engineering

    Social dimensions and adaptation

    “Anthro-engineering decarbonization at the million-person scale,” led by Manduhai Buyandelger, professor in the Anthropology Section, and Michael Short, the Class of ’42 Associate Professor of Nuclear Science and Engineering in the Department of Nuclear Science and Engineering
    “Sustainable solutions for climate change adaptation: weaving traditional ecological knowledge and STEAM,” led by Janelle Knox-Hayes, the Lister Brothers Associate Professor of Economic Geography and Planning and head of the Environmental Policy and Planning Group in the Department of Urban Studies and Planning, and Miho Mazereeuw, associate professor of architecture and urbanism in the Department of Architecture and director of the Urban Risk Lab (a research lead on a Climate Grand Challenges flagship project) More

  • in

    Five MIT PhD students awarded 2022 J-WAFS fellowships for water and food solutions

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the selection of its 2022-23 cohort of graduate fellows. Two students were named Rasikbhai L. Meswani Fellows for Water Solutions and three students were named J-WAFS Graduate Student Fellows. All five fellows will receive full tuition and a stipend for one semester, and J-WAFS will support the students throughout the 2022-23 academic year by providing networking, mentorship, and opportunities to showcase their research.

    New this year, fellowship nominations were open not only to students pursuing water research, but food-related research as well. The five students selected were chosen for their commitment to solutions-based research that aims to alleviate problems such as water supply or purification, food security, or agriculture. Their projects exemplify the wide range of research that J-WAFS supports, from enhancing nutrition through improved methods to deliver micronutrients to developing high-performance drip irrigation technology. The strong applicant pool reflects the passion MIT students have to address the water and food crises currently facing the planet.

    “This year’s fellows are drawn from a dynamic and engaged community across the Institute whose creativity and ingenuity are pushing forward transformational water and food solutions,” says J-WAFS executive director Renee J. Robins. “We congratulate these students as we recognize their outstanding achievements and their promise as up-and-coming leaders in global water and food sectors.”

    2022-23 Rasikbhai L. Meswani Fellows for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a fellowship for students pursuing water-related research at MIT. The Rasikbhai L. Meswani Fellowship for Water Solutions was made possible by a generous gift from Elina and Nikhil Meswani and family.

    Aditya Ghodgaonkar is a PhD candidate in the Department of Mechanical Engineering at MIT, where he works in the Global Engineering and Research (GEAR) Lab under Professor Amos Winter. Ghodgaonkar received a bachelor’s degree in mechanical engineering from the RV College of Engineering in India. He then moved to the United States and received a master’s degree in mechanical engineering from Purdue University.Ghodgaonkar is currently designing hydraulic components for drip irrigation that could support the development of water-efficient irrigation systems that are off-grid, inexpensive, and low-maintenance. He has focused on designing drip irrigation emitters that are resistant to clogging, seeking inspiration about flow regulation from marine fauna such as manta rays, as well as turbomachinery concepts. Ghodgaonkar notes that clogging is currently an expensive technical challenge to diagnose, mitigate, and resolve. With an eye on hundreds of millions of farms in developing countries, he aims to bring the benefits of irrigation technology to even the poorest farmers.Outside of his research, Ghodgaonkar is a mentor in MIT Makerworks and has been a teaching assistant for classes such as 2.007 (Design and Manufacturing I). He also helped organize the annual MIT Water Summit last fall.

    Devashish Gokhale is a PhD candidate advised by Professor Patrick Doyle in the Department of Chemical Engineering. He received a bachelor’s degree in chemical engineering from the Indian Institute of Technology Madras, where he researched fluid flow in energy-efficient pumps. Gokhale’s commitment to global water security stemmed from his experience growing up in India, where water sources are threatened by population growth, industrialization, and climate change.As a researcher in the Doyle group, Devashish is developing sustainable and reusable materials for water treatment, with a focus on the elimination of emerging contaminants and other micropollutants from water through cost-effective processes. Many of these contaminants are carcinogens or endocrine disruptors, posing significant threats to both humans and animals. His advisor notes that Devashish was the first researcher in the Doyle group to work on water purification, bringing his passion for the topic to the lab.Gokhale’s research won an award for potential scalability in last year’s J-WAFS World Water Day competition. He also serves as the lecture series chair in the MIT Water Club.

    2022-23 J-WAFS Graduate Student FellowsThe J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship. The program is central to J-WAFS’ efforts to engage across sector and disciplinary boundaries in solving real-world problems. Currently, there are two J-WAFS Research Affiliates: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    James Zhang is a PhD candidate in the Department of Mechanical Engineering at MIT, where he has worked in the NanoEngineering Laboratory with Professor Gang Chen since 2019. As an undergraduate at Carnegie Mellon University, he double majored in mechanical engineering and engineering public policy. He then received a master’s degree in mechanical engineering from MIT. In addition to working in the NanoEngineering Laboratory, James has also worked in the Zhao Laboratory and in the Boriskina Research Group at MIT.Zhang is developing a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light interacts with brackish water surfaces. With strong theoretical as well as experimental components, his research could lead to innovations in desalinating brackish water at high energy efficiencies. Outside of his research, Zhang has served as a student moderator for the MIT International Colloquia on Thermal Innovations.

    Katharina Fransen is a PhD candidate advised by Professor Bradley Olsen in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Minnesota, where she was involved in the Society of Women Engineers. Fransen is motivated by the challenge of protecting the most vulnerable global communities from the large quantities of plastic waste associated with traditional food packaging materials. As a researcher in the Olsen Lab, Fransen is developing new plastics that are biologically-based and biodegradable, so they can degrade in the environment instead of polluting communities with plastic waste. These polymers are also optimized for food packaging applications to keep food fresher for longer, preventing food waste.Outside of her research, Fransen is involved in Diversity in Chemical Engineering as the coordinator for the graduate application mentorship program for underrepresented groups. She is also an active member of Graduate Womxn in ChemE and mentors an Undergraduate Research Opportunities Program student.

    Linzixuan (Rhoda) Zhang is a PhD candidate advised by Professor Robert Langer and Ana Jaklenec in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Illinois at Urbana-Champaign, where she researched how to genetically engineer microorganisms for the efficient production of advanced biofuels and chemicals.Zhang is currently developing a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. She has helped develop a group of biodegradable polymers that can stabilize micronutrients under harsh conditions, enabling local food companies to fortify food with essential vitamins. This work aims to tackle a hidden crisis in low- and middle-income countries, where a chronic lack of essential micronutrients affects an estimated 2 billion people.Zhang is also working on the development of self-boosting vaccines to promote more widespread vaccine access and serves as a research mentor in the Langer Lab. More

  • in

    Amy Moran-Thomas receives the Edgerton Faculty Achievement Award

    Amy Moran-Thomas, the Alfred Henry and Jean Morrison Hayes Career Development Associate Professor of Anthropology, has received the 2021-22 Harold E. Edgerton Faculty Achievement Award in recognition of her “exceptional commitment to innovative and collaborative interdisciplinary approaches to resolving inequitable impacts on human health,” according to a statement by the  selection committee.A medical anthropologist, Moran-Thomas investigates linkages between human and environmental health, with a focus on health disparities. She is the author of the award-winning book “Traveling with Sugar: Chronicles of a Global Epidemic” (University of California Press, 2019), which frames the diabetes epidemic in Belize within the context of 500 years of colonialism.

    On human and planetary well-being Moran-Thomas “stands out in this field by bringing a humanistic approach into dialogue with environmental and science studies to investigate how bodily health is shaped by social well-being at the community level and further conditioned by localized planetary imbalances,” the selection committee’s statement said. “Professor Moran-Thomas shows how diabetes resides not only within human bodies but also across toxic environments, crumbling healthcare infrastructures, and stress-inducing economic inequalities.”Heather Paxson, the William R. Kenan, Jr. Professor of Anthropology and head of the MIT Anthropology program, calls Moran-Thomas “a fast-rising star in her field.” Paxson, who nominated Moran-Thomas for the award, adds, “She is also a highly effective teacher and student mentor, an engaged member of our Institute community, and a budding public intellectual.” A profound discovery for medical equity

    “Professor Moran-Thomas’s work has an extraordinarily profound and impactful reach,” according to the committee, which highlighted a widely read 2020 essay in Boston Review in which Moran-Thomas revealed that the fingertip pulse oximeter — a key tool in monitoring the effects of respiratory distress due to Covid-19 and other illness — gives misleading readings with darkly complected skin. This essay inspired a subsequent medical research study and ultimately led to an alert from the U.S. Food and Drug Administration spotlighting the limitations of pulse oximeters.

    The selection committee further lauded Moran-Thomas for her pedagogy, including her work developing the new subject 21A.311 (The Social Lives of Medical Objects). She was also commended for her service, notably her work on the MIT Climate Action Advisory Committee and with the Social and Ethical Responsibilities of Computing group within MIT’s Schwarzman College of Computing.

    Moran-Thomas earned her bachelor’s degree in literature from American University and her PhD in anthropology from Princeton University. She joined MIT Anthropology in 2015, following postdocs at the Woodrow Institute for Public and International Affairs and at Brown University’s Cogut Humanities Center. She was promoted to associate professor without tenure in 2019.

    The annual Edgerton Faculty Award, established in 1982 as a tribute to Institute Professor Emeritus Harold E. Edgerton, honors achievement in research, teaching, and service by a nontenured member of the faculty.The 2019-20 Edgerton Award Selection Committee was chaired by T.L. Taylor, a professor of Comparative Media Studies/Writing. Other members were Geoffrey Beach, a professor in the Department of Materials Science and Engineering; Mircea Dinca, the W.M. Keck Professor of Energy in the Department of Chemistry; Hazhir Rahmandad, an associate professor of system dynamics in the Sloan School of Management; and Rafi Segal, an associate professor in the Department of Architecture.

    Story prepared by MIT SHASS CommunicationsSenior Writer: Kathryn O’NeillEditorial and Design Director: Emily Hiestand More

  • in

    Bringing climate reporting to local newsrooms

    Last summer, Nora Hertel, a reporter for the St. Cloud Times in central Minnesota, visited a farm just northeast of the Twin Cities run by the Native American-led nonprofit Dream of Wild Health. The farm raises a mix of vegetables and flowering plants, and has a particular focus on cultivating rare heirloom varieties. It’s also dealing with severely depleted soil, inherited from previous owners who grew corn on the same land. Hertel had come to learn about the techniques the farm was using to restore its soil, many of which were traditional parts of Indigenous farming practice, including planting cover crops over the winter and incorporating burnt wood and manure into the earth.

    The trip was part of a multi-part reporting project that Hertel undertook as an inaugural fellow in a new program from the MIT Environmental Solutions Initiative (ESI). The ESI Journalism Fellowship was created to help local reporters around the United States connect climate change science and solutions with issues that are already of importance to their audiences — particularly in areas where many people are still unclear or unsure about climate change. For Hertel, that meant visiting 10 farms and forest lands across Minnesota to understand how natural climate solutions are taking shape in her state. The practices she saw at the Dream of Wild Health farm not only helped to restore soil, but also helped slow climate change by taking carbon dioxide out of the air and storing it in soils and plants.

    “There is enthusiasm for natural climate solutions,” Hertel says, but these practices can be expensive and difficult to adopt. She wanted to explain the benefits and the hurdles, especially for farmers and land managers considering new agricultural techniques.

    Hertel produced six news pieces for the St. Cloud Times as part of her project, as well as a six-episode podcast series and two videos. To conclude the series, she ran a public event where 130 attendees — including conventional farmers, regenerative farmers, state senators, the St. Cloud mayor, and other community stakeholders — gathered outside in the 40-degree Fahrenheit cold to discuss carbon markets in Minnesota. The stories were republished in 12 additional outlets, including USA Today, Associated Press, Yahoo News, and US News & World Report. 

    “I had been hoping to write about cover crops and carbon markets for about two years before I pitched my project to ESI,” says Hertel. “I hadn’t been able to take the time and resources with all my other responsibilities. Joining the fellowship allowed me to focus on those topics and dive in deep to understand how much is uncertain and changing in the field right now.”

    Supporting local climate reporting

    In today’s news landscape, local coverage is dwindling, which has major effects on the ways people hear about climate change. At times, the only in-depth climate coverage available is covered by specialty or national publications, which can miss the opportunity to understand the nuances of the communities they are parachuting into.

    “Climate change is or will impact all of us, but many Americans don’t see it as relevant to their lives,” says Laur Hesse Fisher, program director at the ESI, who created and manages the fellowship program. “We’re working to help change that.”

    In this first year of the fellowship, five local journalists were selected from around the country to pursue long-form or serial climate-focused reporting. Fellows received funding and stipends to help them dedicate extra time and resources to their projects. They gathered virtually for workshops and were connected with MIT experts in a variety of relevant fields: scientists such as Adam Schlosser, senior research scientist and deputy director for science research at the MIT Joint Program on the Science and Policy of Global Change; economists and policy experts such as Joshua Hodge, executive director of the MIT Center for Energy and Environmental Policy Research (CEEPR); and journalism experts from the MIT Knight Science Journalism Program.

    Fellows were also given full access to MIT’s extensive library databases and geographic data visualization tools, along with tools focused specifically on climate science and policy like the MIT Socio-Environmental Triage platform and CEEPR’s working papers. All these resources aimed to give the journalism fellows the backing they needed to undertake ambitious projects on climate issues their audiences might otherwise never have known were playing out right in their backyards.

    Stories around the country

    The result was five distinct reporting projects spread across the United States.

    ESI Fellow Tristan Baurick is an environment reporter for the Times Picayune | New Orleans Advocate, Louisiana’s largest newspaper. His multi-part series, “Wind of Change: How the Gulf of Mexico could be the next offshore wind powerhouse,” ran on the front page of the Thanksgiving print edition of the paper. It explores how the state’s offshore oil companies are pivoting to support the emerging wind energy industry, as well as the outcomes of the U.S.’s first offshore wind farm in Rhode Island, which Baurick visited on an extended reporting trip. The series looks at the history of Louisiana, which, despite being a hub for wind engineering technology production, has seen most of that technology exported. “The project relied on experts from the oil and gas industry to introduce the idea of offshore wind energy and the opportunities it could offer the region,” says Baurick. “This approach made readers who are skeptical of climate change and renewable energy let their guard down and consider these topics with a more open mind.”

    Oregon-based environmental journalist Alex Schwartz explored water rights and climate change within the Klamath River Basin for the Herald & News. The result was a five-part digital series that examines the many stakeholders, including Indigenous groups, farmers, fishers, and park managers, who depend on the Klamath River for water even as the region enters a period of extended climate change-induced drought. “The fellowship provided me with financial resources to be able to execute a project at this scale,” says Schwartz. “We never would have been able to take the time off and travel throughout the basin without the support of the fellowship.”

    Melba Newsome is a North Carolina-based independent reporter. Her two-part series for NC Health News focuses on Smithfield’s Foods, whose hog houses continue to have lasting health and environmental implications for majority Black communities in the southeastern part of the state. The series, which has been republished by Indy Weekly, the Daily Yonder, and others, interviews residents and activists to untangle a history of legal battles, neglect, and accusations of environmental racism — while noting that sea-level rise has made the region increasingly vulnerable to dangerous releases of waste from its growing factory farms.

    The final project supported by the fellowship came from Wyoming, famous for its vast outdoors and coal industry. In his three-part series for WyoFile, journalist Dustin Bleizeffer — whose beat shifted from education to energy and climate in part as a result of his fellowship — spoke to local residents to capture their personal experiences of warming temperatures and changing landscapes. “[Of] the people I interviewed and featured in my reporting … all but one are climate skeptics, but they spoke in detail about climate changes they’ve observed, and very eloquently described their concerns,” says Bleizeffer. “I’m still receiving comments and enthusiasm to keep the conversation going.” He also looked at how two Wyoming counties, Gillette and Campbell, are faring through the coal industry’s decline. His series provided a boost to efforts by grassroots organizations and conservation groups that are trying to open “the climate conversation” in the state.

    Lessons for climate conversations

    All five fellows joined ESI for a wrap-up event on Nov. 4, Connecting with Americans on Climate Change, which both showcased their work and gave them the opportunity to publicly discuss ways to engage Americans across the political spectrum on climate change.

    The event was joined by sociologist Arlie Russell Hochschild, author of the bestselling “Strangers in Their Own Land: Anger and Mourning on the American Right,” who had earlier joined the fellows in one of their workshops to offer her own experience engaging with people who feel ill-served by the national media. Her book, which followed members of the Tea Party in Louisiana for five years, illustrates the importance of deep listening to bridging America’s social and political divides. Hochschild applied this insight to climate change in talking with the fellows and event attendees about strategies to understand and respond to local perspectives on what is often framed as a contentious political issue. “Sociology gives us forgiveness; [it] gets blame and guilt out of the picture,” said Hochschild.

    That was an insight echoed by several of the journalism fellows. “I think rural people feel blamed a lot for every problem,” said Schwartz. “If we were to take the carbon footprint of the Klamath River Basin, it would be minuscule compared to any corporation, right? … We have to create that safety net for our communities to be able to bear the brunt of these cascading disasters that are already occurring and are just going to get worse in the future. Focusing on the adaptation side was really helpful in terms of just getting people to talk about climate change.”

    Other fellows had their own strategies for opening conversations about climate change — and by responding to their audiences’ concerns, they did see opportunities for change in their reporting. In Wyoming, Bleizeffer talked about the need to retain young people in the state, and about changes to landscapes residents loved. Newsome emphasized that people need to see climate change as not someone else’s problem — for her audience, it illustrated and exacerbated injustices they were already feeling.

    And Hertel, speaking of the conventional farmers, everyday people, and local government officials featured in her series, left event attendees with one more insight about effective climate reporting. “Don’t expect people to change on a dime,” she said. “You must bring people [along] on the journey.”

    ESI will be opening journalism fellowship applications for its second cohort later this year. Experienced reporters are encouraged to apply. If you are interested in supporting this fellowship or are curious about opportunities for partnerships, please contact Laur Hesse Fisher. More

  • in

    Courtney Lesoon and Elizabeth Yarina win Fulbright-Hays Scholarships

    Two MIT doctoral students in the MIT School of Architecture and Planning have received the prestigious Fulbright-Hays Scholarship for Doctoral Dissertation Research Award. Courtney Lesoon and Elizabeth “Lizzie” Yarina are the first awardees from MIT in more than a decade.

    The fellowship provides opportunities for doctoral students to engage in full-time dissertation research abroad. The program, funded by the U.S. Department of Education, is designed to contribute to the development and improvement of the study of modern foreign languages and area studies. Applicants anticipate pursuing a teaching career in the United States following completion of their dissertation. There were 138 individuals from 47 institutions named scholars for the 2021 cycle.

    Courtney Lesoon

    Lesoon is a doctoral candidate in the Aga Khan Program for Islamic Architecture, in the History, Theory and Criticism Section of the Department of Architecture. Lesoon earned her BA from College of the Holy Cross and was a 2012-13 Fulbright U.S. Student grantee to the United Arab Emirates, where her research concerned contemporary art and emerging cultural institutions. Her dissertation is titled “Spatializing Ahl al-ʿIlm: Learning and the Rise of the Early Islamic City.” Losoon’s fieldwork will be done in Morocco, Egypt, and Turkey.

    “Courtney’s project presents an innovative idea that has not, to my knowledge, been investigated before,” says Nasser Rabbat, professor and director of the MIT Aga Khan Program. “How did the emergence and evolution of a particularly Islamic learning system affect the development of the city in the early Islamic period? Her work enriches the thinking about premodern urbanism and education everywhere by theorizing the intricate relationship between traveling, learning, and the city.”

    “I’ll be working in different manuscripts collections in Morocco, Egypt, and Turkey to investigate where and how scholars were learning inside of the early Islamic city before the formal institutionalization of higher education,” says Lesoon. “I’m interested in how learning — as a set of social practices — informed urban life. My project speaks to two different fields; Islamic urbanism and Islamic intellectual history. I’m really excited about my time on Fulbright-Hays; it will be a really fruitful time for my research and writing.”

    Before arriving at MIT, Lesoon worked as a research assistant in the Art of the Middle East Department at the Los Angeles County Museum of Art. Recently, she was awarded the 2021 Margaret B. Ševčenko Prize for “the best unpublished essay written by a junior scholar” for her paper “The Sphero-conical as Apothecary Vessel: An Argument for Dedicated Use.” Lesoon earned her MA from the University of Michigan at Ann Arbor, where her thesis investigated an 18th-century “Damascus Room” and its acquisition as a collected interior in the United States.

    Lizzie Yarina

    Yarina is a doctoral candidate in the MIT Department of Urban Studies and Planning (DUSP) and a research fellow at the MIT Norman B. Leventhal Center for Advanced Urbanism. She is presently co-editing a volume on the relationship between climate models and the built environment with a multidisciplinary team of editors and contributors. Yarina was a research scientist at the MIT Urban Risk Lab, where she was part of a team examining alternatives to the Federal Emergency Management Agency’s post-disaster housing systems; she also conducted research on disaster preparedness in Japan. Her award supports her doctoral research under the title “Modeling the Mekong: Climate Adaptation Imaginaries in Delta Regions,” which will include fieldwork in Vietnam, the Netherlands, Thailand, and Cambodia.

    “Lizzie’s research brings together three dimensions critical to global well-being and sustainability: adapting to the inevitability of changing ecosystems wrought by the climate crisis; questioning the equity, appropriateness, and relationality of adaptation planning models spanning the global North and the global South; and understanding how to develop durable and just climate futures,” says Christopher Zegras, professor of mobility and urban planning and department head for DUSP. “Her work will be an important contribution toward the long-term health of our planet and of communities working to justly adapt to climate change.”

    Previously, Yarina was awarded a U.S. Scholarship Fulbright to New Zealand to research spatial mapping and policy implications of Pacific Islander migration to New Zealand.

    “My dissertation project looks at climate adaptation planning in delta regions,” she says. “My focus is on Vietnam’s Mekong River Delta, but I’m also looking at how models that are used in delta adaptation planning move between different deltas, including the Netherlands Rhine Delta and the Mississippi Delta.”

    Working on her masters at MIT, Yarina had a teaching fellowship in Singapore, where she conducted research on climate adaptation plans in four major cities in Southeast Asia.

    “Through that process I learned about the role of Dutch experts and Dutch models in shaping how climate adaptation planning was taking place in Southeast Asia,” she says. “This project expands on that work from looking at a single city to examining a regional plan at the scale of a delta.”

    Yarina holds a joint masters in architecture and masters of city planning from MIT, and a BS in architecture from the University of Michigan. More