More stories

  • in

    Tackling the MIT campus’s top energy consumers, building by building

    When staff in MIT’s Department of Facilities would visualize energy use and carbon-associated emissions by campus buildings, Building 46 always stood out — attributed to its energy intensity, which accounted for 8 percent of MIT’s total campus energy use. This high energy draw was not surprising, as the building is home of the Brain and Cognitive Sciences Complex and a large amount of lab space, but it also made the building a perfect candidate for an energy performance audit to seek out potential energy saving opportunities.

    This audit revealed that several energy efficiency updates to the building mechanical systems infrastructure, including optimization of the room-by-room ventilation rates, could result in an estimated 35 percent reduction of energy use, which would in turn lower MIT’s total greenhouse gas emissions by an estimated 2 percent — driving toward the Institute’s 2026 goal of net-zero and 2050 goal of elimination of direct campus emissions.

    Building energy efficiency projects are not new for MIT. Since 2010, MIT has been engaged in a partnership agreement with utility company Eversource establishing the Efficiency Forward program, empowering MIT to invest in more than 300 energy conservation projects to date and lowering energy consumption on campus for a total calculated savings of approximately 70 million kilowatt hours and 4.2 million therms. But at 418,000 gross square feet, Building 46 is the first energy efficiency project of its size on the campus.

    “We’ve never tackled a whole building like this — it’s the first capital project that is technically an energy project,” explains Siobhan Carr, energy efficiency program manager, who was part of the team overseeing the energy audit and lab ventilation performance assessment in the building. “That gives you an idea of the magnitude and complexity of this.”

    The project started with the full building energy assessment and lab ventilation risk audit. “We had a team go through every corner of the building and look at every possible opportunity to save energy,” explains Jessica Parks, senior project manager for systems performance and turnover in campus construction. “One of the biggest issues we saw was that there’s a lot of dry lab spaces which are basically offices, but they’re all getting the same ventilation as if they were a high-intensity lab.” Higher ventilation and more frequent air exchange rates draw more energy. By optimizing for the required ventilation rates, there was an opportunity to save energy in nearly every space in the building.

    In addition to the optimized ventilation, the project team will convert fume hoods from constant volume to variable volume and install equipment to help the building systems run more efficiently. The team also identified opportunities to work with labs to implement programs such as fume hood hibernation and unoccupied setbacks for temperature and ventilation. As different spaces in the building have varying needs, the energy retrofit will touch all 1,254 spaces in the building — one by one — to implement the different energy measures to reach that estimated 35 percent reduction in energy use.

    Although time-consuming and complex, this room-by-room approach has a big benefit in that it has allowed research to continue in the space largely uninterrupted. With a few exceptions, the occupants of Building 46, which include the Department of Brain and Cognitive Sciences, The McGovern Institute for Brain Research, and The Picower Institute for Learning and Memory, have remained in place for the duration of the project. Partners in the MIT Environment, Health and Safety Office are instrumental to this balance of renovations and keeping the building operational during the optimization efforts and are one of several teams across MIT contributing to building efficiency efforts.

    The completion date of the building efficiency project is set for 2024, but Carr says that some of the impact of this ongoing work may soon be seen. “We should start to see savings as we move through the building, and we expect to fully realize all of our projected savings a year after completion,” she says, noting that the length of time is required for a year-over-year perspective to see the full reduction in energy use.

    The impact of the project goes far beyond the footprint of Building 46 as it offers insights and spurred actions for future projects — including buildings 76 and 68, the number two and three top energy users on campus. Both buildings recently underwent their own energy audits and lab ventilation performance assessments. The energy efficiency team is now crafting a plan for full-building approaches, much like Building 46. “To date, 46 has presented many learning opportunities, such as how to touch every space in a building while research continues, as well as how to overcome challenges encountered when working on existing systems,” explains Parks. “The good news is that we have developed solutions for those challenges and the teams have been proactively implementing those lessons in our other projects.”

    Communication has proven to be another key for these large projects where occupants see the work happening and often play a role in answering questions about their unique space. “People are really engaged, they ask questions about the work, and we ask them about the space they’re in every day,” says Parks. “The Building 46 occupants have been wonderful partners as we worked in all of their spaces, which is paving the way for a successful project.”

    The release of Fast Forward in 2021 has also made communications easier, notes Carr, who says the plan helps to frame these projects as part of the big picture — not just a construction interruption. “Fast Forward has brought a visibility into what we’re doing within [MIT] Facilities on these buildings,” she says. “It brings more eyes and ears, and people understand that these projects are happening throughout campus and not just in their own space — we’re all working to reduce energy and to reduce greenhouse gas across campus.”

    The Energy Efficiency team will continue to apply that big-picture approach as ongoing building efficiency projects on campus are assessed to reach toward a 10 to 15 percent reduction in energy use and corresponding emissions over the next several years. More

  • in

    3Q: How MIT is working to reduce carbon emissions on our campus

    Fast Forward: MIT’s Climate Action Plan for the Decade, launched in May 2021, charges MIT to eliminate its direct carbon emissions by 2050. Setting an interim goal of net zero emissions by 2026 is an important step to getting there. Joe Higgins, vice president for campus services and stewardship, speaks here about the coordinated, multi-team effort underway to address the Institute’s carbon-reduction goals, the challenges and opportunities in getting there, and creating a blueprint for a carbon-free campus in 2050.

    Q: The Fast Forward plan laid out specific goals for MIT to address its own carbon footprint. What has been the strategy to tackle these priorities?

    A: The launch of the Fast Forward Climate Action Plan empowered teams at MIT to expand the scope of our carbon reduction tasks beyond the work we’ve been doing to date. The on-campus activities called for in the plan range from substantially expanding our electric vehicle infrastructure on campus, to increasing our rooftop solar installations, to setting impact goals for food, water, and waste systems. Another strategy utilizes artificial intelligence to further reduce energy consumption and emissions from our buildings. When fully implemented, these systems will adjust a building’s temperature setpoints throughout the day while maintaining occupant comfort, and will use occupancy data, weather forecasts, and carbon intensity projections from the grid to make more efficient use of energy. 

    We have tremendous momentum right now thanks to the progress made over the past decade by our teams — which include planners, designers, engineers, construction managers, and sustainability and operations experts. Since 2014, our efforts to advance energy efficiency and incorporate renewable energy have reduced net emissions on campus by 20% (from a 2014 baseline) despite significant campus growth. One of our current goals is to further reduce energy use in high-intensity research buildings — 20 of our campus buildings consume more than 50% of our energy. To reduce energy usage in these buildings we have major energy retrofit projects in design or in planning for buildings 32, 46, 68, 76, E14, and E25, and we expect this work will reduce overall MIT emissions by an additional 10 to 15%.

    Q: The Fast Forward plan acknowledges the challenges we face in our efforts to reach our campus emission reduction goals, in part due to the current state of New England’s electrical grid. How does MIT’s district energy system factor into our approach? 

    A: MIT’s district energy system is a network of underground pipes and power lines that moves energy from the Central Utilities Plant (CUP) around to the vast majority of Institute buildings to provide electricity, heating, and air conditioning. Using a closed-loop, central-source system like this enables MIT to operate more efficiently by using less energy to heat and cool its buildings and labs, and by maintaining better load control to accommodate seasonal variations in peak demand.

    When the new MIT campus was built in Cambridge in 1916, it included a centralized state-of-the-art steam and electrical power plant that would service the campus buildings. This central district energy approach allowed MIT to avoid having individual furnaces in each building and to easily incorporate progressively cleaner fuel sources campus-wide over the years. After starting with coal as a primary energy source, MIT transitioned to fuel oil, then to natural gas, and then to cogeneration in 1995 — and each step has made the campus more energy efficient. Our continuous investment in a centralized infrastructure has facilitated our ability to improve energy efficiency while adding capacity; as new technologies become available, we can implement them across the entire campus. Our district energy system is very adaptable to seasonal variations in demand for cooling, heating and electricity, and builds upon decades of centralized investments in energy-efficient infrastructure.

    This past year, MIT completed a major upgrade of the district energy system whereby the majority of buildings on campus now benefit from the most advanced cogeneration technology for combined heating, cooling, and power delivery. This system generates electrical power that produces 15 to 25% less carbon than the current New England grid. We also have the ability to export power during times when the grid is most stressed, which contributes to the resiliency of local energy systems. On the flip side, any time the grid is a cleaner option, MIT is able to import a higher amount of electricity from the utility by distributing this energy through our centralized system. In fact, it’s important to note that we have the ability to import 100% of our electrical energy from the grid as it becomes cleaner. We anticipate that this will happen as the next major wave of technology innovation unfolds and the abundance of offshore wind and other renewable resources increases as anticipated by the end of this decade. As the grid gets greener, our adaptable district energy system will bring us closer to meeting our decarbonization goals.

    MIT’s ability to adapt its system and use new technologies is crucial right now as we work in collaboration with faculty, students, industry experts, peer institutions, and the cities of Cambridge and Boston to evaluate various strategies, opportunities, and constraints. In terms of evolving into a next-generation district energy system, we are reviewing options such as electric steam boilers and industrial-scale heat pumps, thermal batteries, geothermal exchange, micro-reactors, bio-based fuels, and green hydrogen produced from renewable energy. We are preparing to incorporate the most beneficial technologies into a blueprint that will get us to our 2050 goal.

    Q: What is MIT doing in the near term to reach the carbon-reduction goals of the climate action plan?

    A: In the near term, we are exploring several options, including enabling large-scale renewable energy projects and investing in verified carbon offset projects that reduce, avoid, or sequester carbon. In 2016, MIT joined a power purchase agreement (PPA) partnership that enabled the construction of a 650-acre solar farm in North Carolina and resulted in the early retirement of a nearby coal plant. We’ve documented a huge emissions savings from this, and we’re exploring how to do something similar on a much larger scale with a broader group of partners. As we seek out collaborative opportunities that enable the development of new renewable energy sources, we hope to provide a model for other institutions and organizations, as the original PPA did. Because PPAs accelerate the de-carbonization of regional electricity grids, they can have an enormous and far-reaching impact. We see these partnerships as an important component of achieving net zero emissions on campus as well as accelerating the de-carbonization of regional power grids — a transformation that must take place to reach zero emissions by 2050.

    Other near-term initiatives include enabling community solar power projects in Massachusetts to support the state’s renewable energy goals and provide opportunities for more property owners (municipalities, businesses, homeowners, etc.) to purchase affordable renewable energy. MIT is engaged with three of these projects; one of them is in operation today in Middleton, and the two others are scheduled to be built soon on Cape Cod.

    We’re joining the commonwealth and its cities, its organizations and utility providers on an unprecedented journey — the global transition to a clean energy system. Along the way, everything is going to change as technologies and the grid continue to evolve. Our focus is on both the near term and the future, as we plan a path into the next energy era. More

  • in

    MIT accelerates efforts on path to carbon reduction goals

    Under its “Fast Forward” climate action plan, which was announced in May 2021, MIT has set a goal of eliminating direct emissions from its campus by 2050. An important near-term milestone will be achieving net-zero emissions by 2026. Many other colleges and universities have set similar targets. What does it take to achieve such a dramatic reduction?

    Since 2014, when MIT launched a five-year plan for action on climate change, net campus emissions have been cut by 20 percent. To meet the 2026 target, and ultimately achieve zero direct emissions by 2050, the Institute is making its campus buildings dramatically more energy efficient, transitioning to electric vehicles (EVs), and enabling large-scale renewable energy projects, among other strategies.

    “This is an ‘all-in’ moment for MIT, and we’re taking comprehensive steps to address our carbon footprint,” says Glen Shor, executive vice president and treasurer. “Reducing our emissions to zero will be challenging, but it’s the right aspiration.”

    “As an energy-intensive campus in an urban setting, our ability to achieve this goal will, in part, depend on the capacity of the local power grid to support the electrification of buildings and transportation, and how ‘green’ that grid electricity will become over time,” says Joe Higgins, MIT’s vice president for campus services and stewardship. “It will also require breakthrough technology improvements and new public policies to drive their adoption. Many of those tech breakthroughs are being developed by our own faculty, and our teams are planning scenarios in anticipation of their arrival.”

    Working toward an energy-efficient campus

    The on-campus reductions have come primarily from a major upgrade to MIT’s Central Utilities Plant, which provides electricity, heating, and cooling for about 80 percent of all Institute buildings. The upgraded plant, which uses advanced cogeneration technology, became fully operational at the end of 2021 and is meeting campus energy needs at greater efficiency and lower carbon intensity (on average 15 to 25 percent cleaner) compared to the regional electricity grid. Carbon reductions from the increased efficiency provided by the enhanced plant are projected to counter the added greenhouse gas emissions caused by recently completed and planned construction and operation of new buildings on campus, especially energy-intensive laboratory buildings.

    Energy from the plant is delivered to campus buildings through MIT’s district energy system, a network of underground pipes and power lines providing electricity, heating, and air conditioning. With this adaptable system, MIT can introduce new technologies as they become available to increase the system’s energy efficiency. The system enables MIT to export power when the regional grid is under stress and to import electricity from the power grid as it becomes cleaner, likely over the next decade as the availability of offshore wind and renewable resources increases. “At the same time, we are reviewing additional technology options such as industrial-scale heat pumps, thermal batteries, geothermal exchange, microreactors, bio-based fuels, and green hydrogen produced from renewable energy,” Higgins says.

    Along with upgrades to the plant, MIT is gradually converting existing steam-based heating systems into more efficient hot-water systems. This long-term project to lower campus emissions requires replacing the vast network of existing steam pipes and infrastructure, and will be phased in as systems need to be replaced. Currently MIT has four buildings that are on a hot-water system, with five more buildings transitioning to hot water by the fall of 2022.  

    Minimizing emissions by implementing meaningful building efficiency standards has been an ongoing strategy in MIT’s climate mitigation efforts. In 2016, MIT made a commitment that all new campus construction and major renovation projects must earn at least Leadership in Energy and Environmental Design (LEED) Gold certification. To date, 24 spaces and buildings at MIT have earned a LEED designation, a performance-based rating system of a building’s environmental attributes associated with its design, construction, operations, and management.

    Current efficiency efforts focus on reducing energy in the 20 buildings that account for more than 50 percent of MIT’s energy usage. One such project under construction aims to improve energy efficiency in Building 46, which houses the Department of Brain and Cognitive Sciences and the Picower Institute for Learning and Memory and is the biggest energy user on the campus because of its large size and high concentration of lab spaces. Interventions include optimizing ventilation systems that will significantly reduce energy use while improving occupant comfort, and working with labs to implement programs such as fume hood hibernation and equipment adjustments. For example, raising ultralow freezer set points by 10 degrees can reduce their energy consumption by as much as 40 percent. Together, these measures are projected to yield a 35 percent reduction in emissions for Building 46, which would contribute to reducing campus-level emissions by 2 percent.

    Over the past decade, in addition to whole building intervention programs, the campus has taken targeted measures in over 100 campus buildings to add building insulation, replace old, inefficient windows, transition to energy-efficient lighting and mechanical systems, optimize lab ventilation systems, and install solar panels on solar-ready rooftops on campus — and will increase the capacity of renewable energy installations on campus by a minimum of 400 percent by 2026. These smaller scale contributions to overall emissions reductions are essential steps in a comprehensive campus effort.

    Electrification of buildings and vehicles

    With an eye to designing for “the next energy era,” says Higgins, MIT is looking to large-scale electrification of its buildings and district energy systems to reduce building use-associated emissions. Currently under renovation, the Metropolitan Storage Warehouse — which will house the MIT School of Architecture and Planning (SA+P) and the newly established MIT Morningside Academy for Design — will be the first building on campus to undergo this transformation by using electric heat pumps as its main heating and supplemental cooling source. The project team, consisting of campus engineering and construction teams as well as the designers, is working with SA+P faculty to design this innovative electrification project. The solution will move excess heat from the district energy infrastructure and nearby facilities to supply the heat pump system, creating a solution that uses less energy — resulting in fewer carbon emissions. 

    Next to building energy use, emissions from on-campus vehicles are a key target for reduction; one of the goals in the “Fast Forward” plan is the electrification of on-campus vehicles. This includes the expansion of electric vehicle charging stations, and work has begun on the promised 200 percent expansion of the number of stations on campus, from 120 to 360. Sites are being evaluated to make sure that all members of the MIT community have easy access to these facilities.

    The electrification also includes working toward replacing existing MIT-owned vehicles, from shuttle buses and vans to pickup trucks and passenger cars, as well as grounds maintenance equipment. Shu Yang Zhang, a junior in the Department of Materials Science and Engineering, is part of an Office of Sustainability student research team that carried out an evaluation of the options available for each type of vehicle and compared both their lifecycle costs and emissions.

    Zhang says the team examined “the specifics of the vehicles that we own, looking at key measures such as fuel economy and cargo capacity,” and determined what alternatives exist in each category. The team carried out a study of the costs for replacing existing vehicles with EVs on the market now, versus buying new gas vehicles or leaving the existing ones in place. They produced a set of specific recommendations about fleet vehicle replacement and charging infrastructure installation on campus that supports both commuters and an MIT EV fleet in the future. According to their estimates, Zhang says, “the costs should be not drastically different” in the long run for the new electric vehicles.

    Strength in numbers

    While a panoply of measures has contributed to the successful offsetting of emissions so far, the biggest single contributor was MIT’s creation of an innovative, collaborative power purchase agreement (PPA) that enabled the construction of a large solar farm in North Carolina, which in turn contributed to the early retirement of a large coal-fired power plant in that region. MIT is committed to buying 73 percent of the power generated by the new facility, which is equivalent to approximately 40 percent of the Institute’s electricity use.

    That PPA, which was a collaboration between three institutions, provided a template that has already been emulated by other institutions, in many cases enabling smaller organizations to take part in such a plan and achieve greater offsets of their carbon emissions than might have been possible acting on their own. Now, MIT is actively pursuing new, larger variations on that plan, which may include a wider variety of organizational participants, perhaps including local governments as well as institutions and nonprofits. The hope is that, as was the case with the original PPA, such collaborations could provide a model that other institutions and organizations may adopt as well.

    Strategic portfolio agreements like the PPA will help achieve net zero emissions on campus while accelerating the decarbonization of regional electricity grids — a transformation critical to achieving net zero emissions, alongside all the work that continues to reduce the direct emissions from the campus itself.

    “PPAs play an important role in MIT’s net zero strategy and have an immediate and significant impact in decarbonization of regional power grids by enabling renewable energy projects,” says Paul L. Joskow, the Elizabeth and James Killian Professor of Economics. “Many well-known U.S. companies and organizations that are seeking to enable and purchase CO2-free electricity have turned to long-term PPAs selected through a competitive procurement process to help to meet their voluntary internal decarbonization commitments. While there are still challenges regarding organizational procurements — including proper carbon emissions mitigation accounting, optimal contract design, and efficient integration into wholesale electricity markets — we are optimistic that MIT’s efforts and partnerships will contribute to resolving some of these issues.”

    Addressing indirect sources of emissions

    MIT’s examination of emissions is not limited to the campus itself but also the indirect sources associated with the Institute’s operations, research, and education. Of these indirect emissions, the three major ones are business travel, purchased goods and services, and construction of buildings, which are collectively larger than the total direct emissions from campus.

    The strategic sourcing team in the Office of the Vice President for Finance has been working to develop opportunities and guidelines for making it easier to purchase sustainable products, for everything from office paper to electronics to lab equipment. Jeremy Gregory, executive director of MIT’s Climate and Sustainability Consortium, notes that MIT’s characteristic independent spirit resists placing limits on what products researchers can buy, but, he says, “we have opportunities to centralize some of our efforts and empower our community to choose low-impact alternatives when making procurement decisions.”

    The path forward

    The process of identifying and implementing MIT’s carbon reductions will be supported, in part, by the Carbon Footprint Working Group, which was launched by the Climate Nucleus, a new body MIT created to manage the implementation of the “Fast Forward” climate plan. The nucleus includes a broad representation from MIT’s departments, labs, and centers that are working on climate change issues. “We’ve created this internal structure in an effort to integrate operational expertise with faculty and student research innovations,” says Director of Sustainability Julie Newman.

    Whatever measures end up being adopted to reduce energy and associated emissions, their results will be made available continuously to members of the MIT community in real-time, through a campus data gateway, Newman says — a degree of transparency that is exceptional in higher education. “If you’re interested in supporting all these efforts and following this,” she says, “you can track the progress via Energize MIT,” a set of online visualizations that display various measures of MIT’s energy usage and greenhouse gas emissions over time. More

  • in

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan

    In a combined in-person and virtual event on Monday, members of the three working groups established last year under MIT’s “Fast Forward” climate action plan reported on the work they’ve been doing to meet the plan’s goals, including reaching zero direct carbon emissions by 2026.

    Introducing the session, Vice President for Research Maria Zuber said that “many universities have climate plans that are inward facing, mostly focused on the direct impacts of their operations on greenhouse gas emissions. And that is really important, but ‘Fast Forward’ is different in that it’s also outward facing — it recognizes climate change as a global crisis.”

    That, she said, “commits us to an all-of-MIT effort to help the world solve the super wicked problem in practice.” That means “helping the world to go as far as it can, as fast as it can, to deploy currently available technologies and policies to reduce greenhouse gas emissions,” while also quickly developing new tools and approaches to deal with the most difficult areas of decarbonization, she said.

    Significant strides have been made in this first year, according to Zuber. The Climate Grand Challenges competition, announced last year as part of the plan, has just announced five flagship projects. “Each of these projects is potentially important in its own right, and is also exemplary of the kinds of bold thinking about climate solutions that the world needs,” she said.

    “We’ve also created new climate-focused institutions within MIT to improve accountability and transparency and to drive action,” Zuber said, including the Climate Nucleus, which comprises heads of labs and departments involved in climate-change work and is led by professors Noelle Selin and Anne White. The “Fast Forward” plan also established three working groups that report to the Climate Nucleus — on climate education, climate policy, and MIT’s carbon footprint — whose members spoke at Monday’s event.

    David McGee, a professor of earth, atmospheric and planetary science, co-director of MIT’s Terrascope program for first-year students, and co-chair of the education working group, said that over the last few years of Terrascope, “we’ve begun focusing much more explicitly on the experiences of, and the knowledge contained within, impacted communities … both for mitigation efforts and how they play out, and also adaptation.” Figuring out how to access the expertise of local communities “in a way that’s not extractive is a challenge that we face,” he added.

    Eduardo Rivera, managing director for MIT International Science and Technology Initiatives (MISTI) programs in several countries and a member of the education team, noted that about 1,000 undergraduates travel each year to work on climate and sustainability challenges. These include, for example, working with a lab in Peru assessing pollution in the Amazon, developing new insulation materials in Germany, developing affordable solar panels in China, working on carbon-capture technology in France or Israel, and many others, Rivera said. These are “unique opportunities to learn about the discipline, where the students can do hands-on work along with the professionals and the scientists in the front lines.” He added that MISTI has just launched a pilot project to help these students “to calculate their carbon footprint, to give them resources, and to understand individual responsibilities and collective responsibilities in this area.”

    Yujie Wang, a graduate student in architecture and an education working group member, said that during her studies she worked on a project focused on protecting biodiversity in Colombia, and also worked with a startup to reduce pesticide use in farming through digital monitoring. In Colombia, she said, she came to appreciate the value of interactions among researchers using satellite data, with local organizations, institutions and officials, to foster collaboration on solving common problems.

    The second panel addressed policy issues, as reflected by the climate policy working group. David Goldston, director of MIT’s Washington office, said “I think policy is totally central, in that for each part of the climate problem, you really can’t make progress without policy.” Part of that, he said, “involves government activities to help communities, and … to make sure the transition [involving the adoption of new technologies] is as equitable as possible.”

    Goldston said “a lot of the progress that’s been made already, whether it’s movement toward solar and wind energy and many other things, has been really prompted by government policy. I think sometimes people see it as a contest, should we be focusing on technology or policy, but I see them as two sides of the same coin. … You can’t get the technology you need into operation without policy tools, and the policy tools won’t have anything to work with unless technology is developed.”

    As for MIT, he said, “I think everybody at MIT who works on any aspect of climate change should be thinking about what’s the policy aspect of it, how could policy help them? How could they help policymakers? I think we need to coordinate better.” The Institute needs to be more strategic, he said, but “that doesn’t mean MIT advocating for specific policies. It means advocating for climate action and injecting a wide range of ideas into the policy arena.”

    Anushree Chaudhari, a student in economics and in urban studies and planning, said she has been learning about the power of negotiations in her work with Professor Larry Susskind. “What we’re currently working on is understanding why there are so many sources of local opposition to scaling renewable energy projects in the U.S.,” she explained. “Even though over 77 percent of the U.S. population actually is in support of renewables, and renewables are actually economically pretty feasible as their costs have come down in the last two decades, there’s still a huge social barrier to having them become the new norm,” she said. She emphasized that a fair and just energy transition will require listening to community stakeholders, including indigenous groups and low-income communities, and understanding why they may oppose utility-scale solar farms and wind farms.

    Joy Jackson, a graduate student in the Technology and Policy Program, said that the implementation of research findings into policy at state, local, and national levels is a “very messy, nonlinear, sort of chaotic process.” One avenue for research to make its way into policy, she said, is through formal processes, such as congressional testimony. But a lot is also informal, as she learned while working as an intern in government offices, where she and her colleagues reached out to professors, researchers, and technical experts of various kinds while in the very early stages of policy development.

    “The good news,” she said, “is there’s a lot of touch points.”

    The third panel featured members of the working group studying ways to reduce MIT’s own carbon footprint. Julie Newman, head of MIT’s Office of Sustainability and co-chair of that group, summed up MIT’s progress toward its stated goal of achieving net zero carbon emissions by 2026. “I can cautiously say we’re on track for that one,” she said. Despite headwinds in the solar industry due to supply chain issues, she said, “we’re well positioned” to meet that near-term target.

    As for working toward the 2050 target of eliminating all direct emissions, she said, it is “quite a challenge.” But under the leadership of Joe Higgins, the vice president for campus services and stewardship, MIT is implementing a number of measures, including deep energy retrofits, investments in high-performance buildings, an extremely efficient central utilities plant, and more.

    She added that MIT is particularly well-positioned in its thinking about scaling its solutions up. “A couple of years ago we approached a handful of local organizations, and over a couple of years have built a consortium to look at large-scale carbon reduction in the world. And it’s a brilliant partnership,” she said, noting that details are still being worked out and will be reported later.

    The work is challenging, because “MIT was built on coal, this campus was not built to get to zero carbon emissions.” Nevertheless, “we think we’re on track” to meet the ambitious goals of the Fast Forward plan, she said. “We’re going to have to have multiple pathways, because we may come to a pathway that may turn out not to be feasible.”

    Jay Dolan, head of facilities development at MIT’s Lincoln Laboratory, said that campus faces extra hurdles compared to the main MIT campus, as it occupies buildings that are owned and maintained by the U.S. Air Force, not MIT. They are still at the data-gathering stage to see what they can do to improve their emissions, he said, and a website they set up to solicit suggestions for reducing their emissions had received 70 suggestions within a few days, which are still being evaluated. “All that enthusiasm, along with the intelligence at the laboratory, is very promising,” he said.

    Peter Jacobson, a graduate student in Leaders for Global Operations, said that in his experience, projects that are most successful start not from a focus on the technology, but from collaborative efforts working with multiple stakeholders. “I think this is exactly why the Climate Nucleus and our working groups are so important here at MIT,” he said. “We need people tasked with thinking at this campus scale, figuring out what the needs and priorities of all the departments are and looking for those synergies, and aligning those needs across both internal and external stakeholders.”

    But, he added, “MIT’s complexity and scale of operations definitely poses unique challenges. Advanced research is energy hungry, and in many cases we don’t have the technology to decarbonize those research processes yet. And we have buildings of varying ages with varying stages of investment.” In addition, MIT has “a lot of people that it needs to feed, and that need to travel and commute, so that poses additional and different challenges.”

    Asked what individuals can do to help MIT in this process, Newman said, “Begin to leverage and figure out how you connect your research to informing our thinking on campus. We have channels for that.”

    Noelle Selin, co-chair of MIT’s climate nucleus and moderator of the third panel, said in conclusion “we’re really looking for your input into all of these working groups and all of these efforts. This is a whole of campus effort. It’s a whole of world effort to address the climate challenge. So, please get in touch and use this as a call to action.” More

  • in

    MIT community in 2021: A year in review

    During 2021, the Covid-19 pandemic continued to color much of the year, as MIT saw both the promise of vaccines as well as the rise of troubling new variants. The Institute also made new commitments to climate action, saw the opening of new and renovated spaces, continued in its efforts to support its diverse voices, and celebrated new Nobel laureates and astronaut candidates. Here are some of the top stories in the MIT community this year.

    Continuing to work through CovidVaccines became widely available to the MIT community early in the year — thanks, in significant part, to the ingenuity of MIT scientists and engineers. In response, the Institute developed a policy requiring vaccination for most members of the community and planned a return to fully in-person teaching and working at MIT for the fall 2021 semester.

    With copious protections in place, the fall semester in many ways embodied MIT’s resilience: In-person teaching expanded, staff returned with new flexible arrangements, and community spirit lifted as face-to-face meetings became possible in many cases once again. Some annual traditions, such as Commencement, stayed remote, while others, like the outdoor Great Glass Pumpkin Patch, and 2.009 grand finale, returned, adding smiles and a sense of gratitude among community members.Melissa Nobles appointed chancellor

    In August, Melissa Nobles, the former Kenin Sahin Dean of the MIT School of Humanities, Arts, and Social Sciences, became the Institute’s new chancellor. A political scientist, Nobles succeeded Cynthia Barnhart, who returned to research and teaching after seven years as chancellor.

    In other news related to MIT’s top administration, Martin Schmidt announced in November that after 40 years at MIT, he plans to step down as provost to become the next president of Rensselaer Polytechnic Institute, his alma mater.

    New climate action plan

    MIT unveiled a new action plan to tackle the climate crisis, committing to net-zero emissions by 2026 and charting a course marshaling all of MIT’s capabilities toward decarbonization. The plan includes a broad array of new initiatives and significant expansions of existing programs to address the needs for new technologies, new policies, and new kinds of outreach to bring the Institute’s expertise to bear on this critical global issue.

    In November, a delegation from MIT also traveled to Scotland for COP26, the 2021 United Nations climate change conference, where international negotiators sought to keep global climate goals on track. Approximately 20 MIT faculty, staff, and students were on hand to observe the negotiations, share and conduct research, and launch new initiatives.

    MIT and Harvard transfer edX

    MIT and Harvard University announced in June that assets of edX, the nonprofit they launched in 2012 to provide an open online platform for university courses, would be acquired by the publicly-traded education technology company 2U, and reorganized as a public benefit company under the 2U umbrella. In exchange, 2U was set to transfer net proceeds from the $800 million transaction to a nonprofit organization, also led by MIT and Harvard, to explore the next generation of online education.

    Supporting our diverse communityAs an important step forward in MIT’s ongoing efforts to create a more welcoming and inclusive community, the Institute hired six new assistant deans, one in each school and in the MIT Schwarzman College of Computing, to serve as diversity, equity, and inclusion professionals. In addition, this week Institute Community and Equity Officer John Dozier provided an update on the Strategic Action Plan for Diversity, Equity, and Inclusion, the first draft of which was released in March.

    A community discussion also examined the complexities of Asian American and Pacific Islander identity and acceptance at MIT, while underscoring the need for collaborative work among groups to combat prejudice and create equity. The forum was held amid a string of violent assaults on Asian Americans in the U.S., which raised public awareness about anti-Asian discrimination. Meanwhile, Professor Emma Teng provided historic context for the crisis.

    Three with MIT ties win Nobel PrizesProfessor Joshua Angrist, whose influential work has enhanced rigorous empirical research in economics, shared half of the 2021 Nobel Prize in economic sciences with Guido Imbens of the Stanford Graduate School of Business; the other half went to David Card of the University of California at Berkeley.

    In addition, David Julius ’77, a professor at the University of California at San Francisco, shared the 2021 Nobel Prize in Physiology or Medicine with Ardem Patapoutian, a professor at the Scripps Research Institute, for their discoveries in how the body senses touch and temperature. And Maria Ressa, a journalist in the Philippines and digital fellow at the MIT Initiative on the Digital Economy, shared the 2021 Nobel Peace Prize with journalist Dmitry Muratov of Russia.

    National STEM leadersBefore taking office in January, President Joe Biden selected two MIT faculty leaders for top science and technology posts in his administration. Eric Lander, director of the Broad Institute and professor of biology, was named presidential science advisor and director of the Office of Science and Technology Policy. Maria Zuber, vice president for research and professor of earth, atmospheric, and planetary sciences, was named co-chair of the President’s Council of Advisors on Science and Technology (PCAST), along with Caltech chemical engineer Frances Arnold — the first women ever to co-chair PCAST.

    Paula Hammond, head of the Department of Chemical Engineering, was also chosen to serve as a member of PCAST. Earlier in the year, Hammond, along with chemical engineer Arup Chakraborty, was named an Institute Professor, the highest honor bestowed upon MIT faculty.

    Task Force 2021 final report

    MIT’s Task Force 2021 and Beyond, charged with reimagining the future of MIT, released its final report, 18 months after it began work in the shadow of the Covid-19 pandemic. The report offers 17 recommendations to strengthen and streamline MIT, and make the Institute more successful across its teaching, research, and innovation endeavors. In addition to a providing a substantive list of recommendations, the report suggests routes to implementation, and assigns one or more senior leaders or faculty governance committees with oversight, for every idea presented.

    Newly opened or reopened

    A number of facilities, new or newly redesigned, opened in 2021. These included a new MIT Welcome Center in Kendall Square; the new InnovationHQ, a hub for MIT entrepreneurship; the newly renovated and reimagined Hayden Library and courtyard; and the new MIT Press Bookstore. Two new student residences also opened, and the community welcomed programming from the Institute’s new outdoor open space.

    Students win an impressive number of distinguished fellowshipsAs always, MIT students continued to shine. This year, exceptional undergraduates were awarded Fulbright, Marshall, Mitchell, Rhodes, and Schwarzman scholarships.

    Remembering those we’ve lostAmong community members who died this year were William Dalzell, Sergio Dominguez, Gene Dresselhaus, Sow Hsin-Chen, Ronald Kurtz, Paul Lagacé, Shirley McBay, ChoKyun Rha, George Shultz, Isadore Singer, James Swan, and Jing Wang. A longer list of 2021 obituaries is available on MIT News.

    In Case You Missed It… 

    Additional top community stories of 2021 included NASA’s selection of three new alumni astronaut candidates; the announcement of the 2021 MIT Solve Global Challenges; the successful conclusion of the MIT Campaign for a Better World; a win for MIT in the American Solar Challenge; a look at chess at the Institute; a roundup of new books from MIT authors; and the introduction of STEM-focused young-adult graphic fiction from the MIT Press. More

  • in

    MIT makes strides on climate action plan

    Two recent online events related to MIT’s ambitious new climate action plan highlighted several areas of progress, including uses of the campus as a real-life testbed for climate impact research, the creation of new planning bodies with opportunities for input from all parts of the MIT community, and a variety of moves toward reducing the Institute’s own carbon footprint in ways that may also provide a useful model for others.

    On Monday, MIT’s Office of Sustainability held its seventh annual “Sustainability Connect” event, bringing together students, faculty, staff, and alumni to learn about and share ideas for addressing climate change. This year’s virtual event emphasized the work toward carrying out the climate plan, titled “Fast Forward: MIT’s Climate Action Plan for the Decade,” which was announced in May. An earlier event, the “MIT Climate Tune-in” on Nov. 3, provided an overview of the many areas of MIT’s work to tackle climate change and featured a video message from Maria Zuber, MIT’s vice president for research, who was attending the COP26 international climate meeting in Glasgow, Scotland, as part of an 18-member team from MIT.

    Zuber pointed out some significant progress that was made at the conference, including a broad agreement by over 100 nations to end deforestation by the end of the decade; she also noted that the U.S. and E.U. are leading a global coalition of countries committed to curbing methane emissions by 30 percent from 2020 levels by decade’s end. “It’s easy to be pessimistic,” she said, “but being here in Glasgow, I’m actually cautiously optimistic, seeing the thousands and thousands of people here who are working toward meaningful climate action. And I know that same spirit exists on our own campus also.”

    As for MIT’s own climate plan, Zuber emphasized three points: “We’re committed to action; second of all, we’re committed to moving fast; and third, we’ve organized ourselves better for success.” That organization includes the creation of the MIT Climate Steering Committee, to oversee and coordinate MIT’s strategies on climate change; the Climate Nucleus, to oversee the management and implementation of the new plan; and three working groups that are forming now, to involve all parts of the MIT community.

    The “Fast Forward” plan calls for reducing the campus’s net greenhouse gas emissions to zero by 2026 and eliminating all such emissions, including indirect ones, by 2050. At Monday’s event, Director of Sustainability Julie Newman pointed out that the climate plan includes no less than 14 specific commitments related to the campus itself. These can be grouped into five broad areas, she said: mitigation, resiliency, electric vehicle infrastructure, investment portfolio sustainability, and climate leadership. “Each of these commitments has due dates, and they range from the tactical to the strategic,” she said. “We’re in the midst of activating our internal teams” to address these commitments, she added, noting that there are 30 teams that involve 75 faculty and researcher members, plus up to eight student positions.

    One specific project that is well underway involves preparing a detailed map of the flood risks to the campus as sea levels rise and storm surges increase. While previous attempts to map out the campus flooding risks had treated buildings essentially as uniform blocks, the new project has already mapped out in detail the location, elevation, and condition of every access point — doors, windows, and drains — in every building in the main campus, and now plans to extend the work to the residence buildings and outlying parts of campus. The project’s methods for identifying and quantifying the risks to specific parts of the campus, Newman said, represents “part of our mission for leveraging the campus as a test bed” by creating a map that is “true to the nature of the topography and the infrastructure,” in order to be prepared for the effects of climate change.

    Also speaking at the Sustainability Connect event, Vice President for Campus Services and Stewardship Joe Higgins outlined a variety of measures that are underway to cut the carbon footprint of the campus as much as possible, as quickly as possible. Part of that, he explained, involves using the campus as a testbed for the development of the equivalent of a “smart thermostat” system for campus buildings. While such products exist commercially for homeowners, there is no such system yet for large institutional or commercial buildings.

    There is a team actively developing such a pilot program in some MIT buildings, he said, focusing on some large lab buildings that have especially high energy usage. They are examining the use of artificial intelligence to reduce energy consumption, he noted. By adding systems to monitor energy use, temperatures, occupancy, and so on, and to control heating, lighting and air conditioning systems, Higgins said at least a 3 to 5 percent reduction in energy use can be realized. “It may be well beyond that,” he added. “There’s a huge opportunity here.”

    Higgins also outlined the ongoing plan to convert the existing steam distribution system for campus heating into a hot water system. Though the massive undertaking may take decades to complete, he said that project alone may reduce campus carbon emissions by 10 percent. Other efforts include the installation of an additional 400 kilowatts of rooftop solar installations.

    Jeremy Gregory, executive director of MIT’s climate and sustainability consortium, described efforts to deal with the most far-reaching areas of greenhouse gas emission, the so-called Scope 3 emissions. He explained that Scope 1 is the direct emissions from the campus itself, from buildings and vehicles; Scope 2 includes indirect emissions from the generation of electricity; and Scope 3 is “everything else.” That includes employee travel, buildings that MIT leases from others and to others, and all goods and services, he added, “so it includes a lot of different categories of emissions.” Gregory said his team, including several student fellows, is actively investigating and quantifying these Scope 3 emissions at MIT, along with potential methods of reducing them.

    Professor Noelle Selin, who was recently named as co-chair of the new Climate Nucleus along with Professor Anne White, outlined their plans for the coming year, including the setting up of the three working groups.

    Selin said the nucleus consists of representatives of departments, labs, centers, and institutes that have significant responsibilities under the climate plan. That body will make recommendations to the steering committee, which includes the deans of all five of MIT’s schools and the MIT Schwarzman College of Computing, “about how to amplify MIT’s impact in the climate sphere. We have an implementation role, but we also have an accelerator pedal that can really make MIT’s climate impact more ambitious, and really push the buttons and make sure that the Institute’s commitments are actually borne out in reality.”

    The MIT Climate Tune-In also featured Selin and White, as well as a presentation on MIT’s expanded educational offerings on climate and sustainability, from Sarah Meyers, ESI’s education program manager; students Derek Allmond and Natalie Northrup; and postdoc Peter Godart. Professor Dennis Whyte also spoke about MIT and Commonwealth Fusion Systems’ recent historical advance toward commercial fusion energy. Organizers said that the Climate Tune-In event is the first of what they hope will be many opportunities to hear updates on the wide range of work happening across campus to implement the Fast Forward plan, and to spark conversations within the MIT community. More

  • in

    For campus “porosity hunters,” climate resilience is the goal

    At MIT, it’s not uncommon to see groups navigating campus with smartphones and measuring devices in hand, using the Institute as a test bed for research. During one week this summer more than a dozen students, researchers, and faculty, plus an altimeter, could be seen doing just that as they traveled across MIT to measure the points of entry into campus buildings — including windows, doors, and vents — known as a building’s porosity.

    Why measure campus building porosity?

    The group was part of the MIT Porosity Hunt, a citizen-science effort that is using the MIT campus as a place to test emerging methodologies, instruments, and data collection processes to better understand the potential impact of a changing climate — and specifically storm scenarios resulting from it — on infrastructure. The hunt is a collaborative effort between the Urban Risk Lab, led by director and associate professor of architecture and urbanism Miho Mazereeuw, and the Office of Sustainability (MITOS), aimed at supporting an MIT that is resilient to the impacts of climate change, including flooding and extreme heat events. Working over three days, members of the hunt catalogued openings in dozens of buildings across campus to better support flood mapping and resiliency planning at MIT.

    For Mazereeuw, the data collection project lies at the nexus of her work with the Urban Risk Lab and as a member of MIT’s Climate Resiliency Committee. While the lab’s mission is to “develop methods, prototypes, and technologies to embed risk reduction and preparedness into the design of cities and regions to increase resilience,” the Climate Resiliency Committee — made up of faculty, staff, and researchers — is focused on assessing, planning, and operationalizing a climate-resilient MIT. The work of both the lab and the committee is embedded in the recently released MIT Climate Resiliency Dashboard, a visualization tool that allows users to understand potential flooding impacts of a number of storm scenarios and drive decision-making.

    While the debut of the tool signaled a big advancement in resiliency planning at MIT, some, including Mazereeuw, saw an opportunity for enhancement. In working with Ken Strzepek, a MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science who was also an integral part of this work, Mazereeuw says she was surprised to learn that even the most sophisticated flood modeling treats buildings as solid blocks. With all buildings being treated the same, despite varying porosity, the dashboard is limited in some flood scenario analysis. To address this, Mazereeuw and others got to work to fill in that additional layer of data, with the citizen science efforts a key factor of that work. “Understanding the porosity of the building is important to understanding how much water actually goes in the building in these scenarios,” she explains.

    Though surveyors are often used to collect and map this type of information, Mazereeuw wanted to leverage the MIT community in order to collect data quickly while engaging students, faculty, and researchers as resiliency stewards for the campus. “It’s important for projects like this to encourage awareness,” she explains. “Generally, when something fails, we notice it, but otherwise we don’t. With climate change bringing on more uncertainty in the scale and intensity of events, we need everyone to be more aware and help us understand things like vulnerabilities.”

    To do this, MITOS and the Urban Risk Lab reached out to more than a dozen students, who were joined by faculty, staff, and researchers, to map porosity of 31 campus buildings connected by basements. The buildings were chosen based on this connectivity, understanding that water that reaches one basement could potentially flow to another.

    Urban Risk Lab research scientists Aditya Barve and Mayank Ojha aided the group’s efforts by creating a mapping app and chatbot to support consistency in reporting and ease of use. Each team member used the app to find buildings where porosity points needed to be mapped. As teams arrived at the building exteriors, they entered their location in the app, which then triggered the Facebook and LINE-powered chatbot on their phone. There, students were guided through measuring the opening, adjusting for elevation to correlate to the City of Cambridge base datum, and, based on observable features, noting the materials and quality of the opening on a one-through-three scale. Over just three days, the team, which included Mazereeuw herself, mapped 1,030 porosity points that will aid in resiliency planning and preparation on campus in a number of ways.

    “The goal is to understand various heights for flood waters around porous spots on campus,” says Mazereeuw. “But the impact can be different depending on the space. We hope this data can inform safety as well as understanding potential damage to research or disruption to campus operations from future storms.”

    The porosity data collection is complete for this round — future hunts will likely be conducted to confirm and converge data — but one team member’s work continues at the basement level of MIT. Katarina Boukin, a PhD student in civil and environmental engineering and PhD student fellow with MITOS, has been focused on methods of collecting data beneath buildings at MIT to understand how they would be impacted if flood water were to enter. “We have a number of connected basements on campus, and if one of them floods, potentially all of them do,” explains Boukin. “By looking at absolute elevation and porosity, we’re connecting the outside to the inside and tracking how much and where water may flow.” With the added data from the Porosity Hunt, a complete picture of vulnerabilities and resiliency opportunities can be shared.

    Synthesizing much of this data is where Eva Then ’21 comes in. Then was among the students who worked to capture data points over the three days and is now working in ArcGIS — an online mapping software that also powers the Climate Resiliency Dashboard — to process and visualize the data collected. Once completed, the data will be incorporated into the campus flood model to increase the accuracy of projections on the Climate Resiliency Dashboard. “Over the next decades, the model will serve as an adaptive planning tool to make campus safe and resilient amid growing climate risks,” Then says.

    For Mazereeuw, the Porosity Hunt and data collected additionally serve as a study in scalability, providing valuable insight on how similar research efforts inspired by the MIT test bed approach could be undertaken and inform policy beyond MIT. She also hopes it will inspire students to launch their own hunts in the future, becoming resiliency stewards for their campus and dorms. “Going through measuring and documenting turns on and shows a new set of goggles — you see campus and buildings in a slightly different way,” she says, “Having people look carefully and document change is a powerful tool in climate and resiliency planning.” 

    Mazereeuw also notes that recent devastating flooding events across the country, including those resulting from Hurricane Ida, have put a special focus on this work. “The loss of life that occurred in that storm, including those who died as waters flooded their basement homes  underscores the urgency of this type of research, planning, and readiness.” More

  • in

    Vapor-collection technology saves water while clearing the air

    About two-fifths of all the water that gets withdrawn from lakes, rivers, and wells in the U.S. is used not for agriculture, drinking, or sanitation, but to cool the power plants that provide electricity from fossil fuels or nuclear power. Over 65 percent of these plants use evaporative cooling, leading to huge white plumes that billow from their cooling towers, which can be a nuisance and, in some cases, even contribute to dangerous driving conditions.

    Now, a small company based on technology recently developed at MIT by the Varanasi Research Group is hoping to reduce both the water needs at these plants and the resultant plumes — and to potentially help alleviate water shortages in areas where power plants put pressure on local water systems.

    The technology is surprisingly simple in principle, but developing it to the point where it can now be tested at full scale on industrial plants was a more complex proposition. That required the real-world experience that the company’s founders gained from installing prototype systems, first on MIT’s natural-gas-powered cogeneration plant and then on MIT’s nuclear research reactor.

    In these demanding tests, which involved exposure to not only the heat and vibrations of a working industrial plant but also the rigors of New England winters, the system proved its effectiveness at both eliminating the vapor plume and recapturing water. And, it purified the water in the process, so that it was 100 times cleaner than the incoming cooling water. The system is now being prepared for full-scale tests in a commercial power plant and in a chemical processing plant.

    “Campus as a living laboratory”

    The technology was originally envisioned by professor of mechanical engineering Kripa Varanasi to develop efficient water-recovery systems by capturing water droplets from both natural fog and plumes from power plant cooling towers. The project began as part of doctoral thesis research of Maher Damak PhD ’18, with funding from the MIT Tata Center for Technology and Design, to improve the efficiency of fog-harvesting systems like the ones used in some arid coastal regions as a source of potable water. Those systems, which generally consist of plastic or metal mesh hung vertically in the path of fogbanks, are extremely inefficient, capturing only about 1 to 3 percent of the water droplets that pass through them.

    Varanasi and Damak found that vapor collection could be made much more efficient by first zapping the tiny droplets of water with a beam of electrically charged particles, or ions, to give each droplet a slight electric charge. Then, the stream of droplets passes through a wire mesh, like a window screen, that has an opposite electrical charge. This causes the droplets to be strongly attracted to the mesh, where they fall away due to gravity and can be collected in trays placed below the mesh.

    Lab tests showed the concept worked, and the researchers, joined by Karim Khalil PhD ’18, won the MIT $100K Entrepreneurship Competition in 2018 for the basic concept. The nascent company, which they called Infinite Cooling, with Damak as CEO, Khalil as CTO, and Varanasi as chairperson, immediately went to work setting up a test installation on one of the cooling towers of MIT’s natural-gas-powered Central Utility Plant, with funding from the MIT Office of Sustainability. After experimenting with various configurations, they were able to show that the system could indeed eliminate the plume and produce water of high purity.

    Professor Jacopo Buongiorno in the Department of Nuclear Science and Engineering immediately spotted a good opportunity for collaboration, offering the use of MIT’s Nuclear Reactor Laboratory research facility for further testing of the system with the help of NRL engineer Ed Block. With its 24/7 operation and its higher-temperature vapor emissions, the plant would provide a more stringent real-world test of the system, as well as proving its effectiveness in an actual operating reactor licensed by the Nuclear Regulatory Commission, an important step in “de-risking” the technology so that electric utilities could feel confident in adopting the system.

    After the system was installed above one of the plant’s four cooling towers, testing showed that the water being collected was more than 100 times cleaner than the feedwater coming into the cooling system. It also proved that the installation — which, unlike the earlier version, had its mesh screens mounted vertically, parallel to the vapor stream — had no effect at all on the operation of the plant. Video of the tests dramatically illustrates how as soon as the power is switched on to the collecting mesh, the white plume of vapor immediately disappears completely.

    The high temperature and volume of the vapor plume from the reactor’s cooling towers represented “kind of a worst-case scenario in terms of plumes,” Damak says, “so if we can capture that, we can basically capture anything.”

    Working with MIT’s Nuclear Reactor Laboratory, Varanasi says, “has been quite an important step because it helped us to test it at scale. … It really both validated the water quality and the performance of the system.” The process, he says, “shows the importance of using the campus as a living laboratory. It allows us to do these kinds of experiments at scale, and also showed the ability to sustainably reduce the water footprint of the campus.”

    Far-reaching benefits

    Power plant plumes are often considered an eyesore and can lead to local opposition to new power plants because of the potential for obscured views, and even potential traffic hazards when the obscuring plumes blow across roadways. “The ability to eliminate the plumes could be an important benefit, allowing plants to be sited in locations that might otherwise be restricted,” Buongiorno says. At the same time, the system could eliminate a significant amount of water used by the plants and then lost to the sky, potentially alleviating pressure on local water systems, which could be especially helpful in arid regions.

    The system is essentially a distillation process, and the pure water it produces could go into power plant boilers — which are separate from the cooling system — that require high-purity water. That might reduce the need for both fresh water and purification systems for the boilers.

    What’s more, in many arid coastal areas power plants are cooled directly with seawater. This system would essentially add a water desalination capability to the plant, at a fraction of the cost of building a new standalone desalination plant, and at an even smaller fraction of its operating costs since the heat would essentially be provided for free.

    Contamination of water is typically measured by testing its electrical conductivity, which increases with the amount of salts and other contaminants it contains. Water used in power plant cooling systems typically measures 3,000 microsiemens per centimeter, Khalil explains, while the water supply in the City of Cambridge is typically around 500 or 600 microsiemens per centimeter. The water captured by this system, he says, typically measures below 50 microsiemens per centimeter.

    Thanks to the validation provided by the testing on MIT’s plants, the company has now been able to secure arrangements for its first two installations on operating commercial plants, which should begin later this year. One is a 900-megawatt power plant where the system’s clean water production will be a major advantage, and the other is at a chemical manufacturing plant in the Midwest.

    In many locations power plants have to pay for the water they use for cooling, Varanasi says, and the new system is expected to reduce the need for water by up to 20 percent. For a typical power plant, that alone could account for about a million dollars saved in water costs per year, he says.

    “Innovation has been a hallmark of the U.S. commercial industry for more than six decades,” says Maria G. Korsnick, president and CEO of the Nuclear Energy Institute, who was not involved in the research. “As the changing climate impacts every aspect of life, including global water supplies, companies across the supply chain are innovating for solutions. The testing of this innovative technology at MIT provides a valuable basis for its consideration in commercial applications.” More