More stories

  • in

    Celebrating a decade of a more sustainable MIT, with a focus on the future

    When MIT’s Office of Sustainability (MITOS) first launched in 2013, it was charged with integrating sustainability across all levels of campus by engaging the collective brainpower of students, staff, faculty, alumni, and partners. At the eighth annual Sustainability Connect, MITOS’s signature event, held nearly a decade later, the room was filled with MIT community members representing 67 different departments, labs, and centers — demonstrating the breadth of engagement across MIT.

    Held on Feb. 14 and hosting more than 100 staff, students, faculty, and researchers, the event was a forum on the future of sustainability leadership at MIT, designed to reflect on the work that had brought MIT to its present moment — focused on a net-zero future by 2026 and elimination of direct campus emissions by 2050 — and to plan forward.

    Director of Sustainability Julie Newman kicked off the day by reflecting on some of the questions that influenced the development of the MITOS framework, including: “How can MIT be a game-changing force for campus sustainability in the 21st century?” and “What are we solving for?” Newman shared that while these questions still drive the work of the office, considerations of the impact of this work have evolved. “We are becoming savvier at asking the follow-up question to these prompts,” she explained. “Are our solutions causing additional issues that we were remiss to ask, such as the impact on marginalized communities, unanticipated human health implications, and new forms of extraction?” Newman then encouraged attendees to think about these types of questions when envisioning and planning for the next decade of sustainability at MIT.

    While the event focused broadly on connecting the sustainability community at MIT, the day’s sessions tracked closely to the climate action plans that guided the office, 2015’s A Plan for Action on Climate Change and the current Fast Forward: MIT’s Climate Action Plan for the Decade. Both plans call for using the campus as a test bed, and at “A Model for Change: Field Reports from Campus as a Test Bed,” panelists Miho Mazereeuw, associate professor of architecture and urbanism, director of the Urban Risk Lab, and MITOS Faculty Fellow; Ken Strzepek, MITOS Faculty Fellow and research scientist at the MIT Center for Global Change Science; and Ippolyti Dellatolas graduate student and MITOS Climate Action Sustainability researcher shared ways in which they utilize the MIT campus as a test bed to design, study, and implement solutions related to flood risk, campus porosity, emissions reductions, and climate policy — efforts that can also inform work beyond MIT. Dellatolas reflected on success in this space. “With a successful campus as a test bed project, there is either output: we achieved these greenhouse gas emissions reductions or we learned something valuable in the process, so even if it fails, we understand why it failed and we can lend that knowledge to the next project,” she explained.

    Later in the morning, an “On the Horizon” panel focused on what key areas of focus, partnerships, and evolutions will propel the campus forward — anchored in the intersectional topics of decarbonization, climate justice, and experiential learning. To kick off the discussion, panelists John Fernández, director of the Environmental Solutions Initiative and professor of architecture; Joe Higgins, vice president for campus services and stewardship; Susy Jones, senior sustainability project manager; and Kate Trimble, senior associate dean for experiential learning shared which elements of their work have shifted in the last five years. Higgins commented on exciting progress being made in the space of renewables, electrification, smart thermostats, offshore wind, and other advances both at MIT and the municipal level. “You take this moment, and you think, these things weren’t in the moment five years ago when we were here on this stage. It brings a sense of abundance and optimism,” he concluded.

    Jones, for her part, shared how thinking about food and nutrition evolved over this period. “We’ve developed a lot of programming around nutrition. In the past few years, this new knowledge around the climate impact of our food system has joined the conversation,” she shared. “I think it’s really important to add that to the many years and decades of work that have been going on around food justice and food access and bring that climate conversation into that piece and acknowledge that, yes, the food system is accountable for about a quarter of global greenhouse gases.”

    Throughout the event, attendees were encouraged to share their questions and ideas for the future. In the closing workshop, “The Future of Sustainability at MIT,” attendees responded to questions such as, “What gives you hope?” and “What are we already doing well at MIT, what could we do more of?” The answers and ideas — which ranged from fusion to community co-design to a continued focus on justice — will inform MITOS’s work going forward, says Newman. “This is an activity we did within our core team, and the answers were so impactful and candid that we thought to bring it to the larger community to learn even more,” she says.

    That larger community was also recognized for their contributions with the first-ever Sustainability Awards, which honored nominated staff and students from departments across MIT for their contributions to building a more sustainable MIT. “This year we had a special opportunity to spotlight some of those individuals and teams leading transformative change at MIT,” explained Newman. “But everyone in the room and everyone working on sustainability at MIT in some way are our partners in this work. Our office could not do what we do without them.” More

  • in

    Pursuing progress at the nanoscale

    Last fall, a team of five senior undergraduate nuclear engineering students met once a week for dinners where they took turns cooking and debated how to tackle a particularly daunting challenge set forth in their program’s capstone course, 22.033 (Nuclear Systems Design Project).

    In past semesters, students had free reign to identify any real-world problem that interested them to solve through team-driven prototyping and design. This past fall worked a little differently. The team continued the trend of tackling daunting problems, but instead got an assignment to explore a particular design challenge on MIT’s campus. Rising to the challenge, the team spent the semester seeking a feasible way to introduce a highly coveted technology at MIT.

    Housed inside a big blue dome is the MIT Nuclear Reactor Laboratory (NRL). The reactor is used to conduct a wide range of science experiments, but in recent years, there have been multiple attempts to implement an instrument at the reactor that could probe the structure of materials, molecules, and devices. With this technology, researchers could model the structure of a wide range of materials and complex liquids made of polymers or containing nanoscale inhomogeneities that differ from the larger mass. On campus, researchers for the first time could conduct experiments to better understand the properties and functions of anything placed in front of a neutron beam emanating from the reactor core.

    The impact of this would be immense. If the reactor could be adapted to conduct this advanced technique, known as small-angle neutron scattering (SANS), it would open up a whole new world of research at MIT.

    “It’s essentially using the nuclear reactor as an incredibly high-performance camera that researchers from all over MIT would be very interested in using, including nuclear science and engineering, chemical engineering, biological engineering, and materials science, who currently use this tool at other institutions,” says Zachary Hartwig, Nuclear Systems Design Project professor and the MIT Robert N. Noyce Career Development Professor.

    SANS instruments have been installed at fewer than 20 facilities worldwide, and MIT researchers have previously considered implementing the capability at the reactor to help MIT expand community-wide access to SANS. Last fall, this mission went from long-time campus dream to potential reality as it became the design challenge that Hartwig’s students confronted. Despite having no experience with SANS, the team embraced the challenge, taking the first steps to figure out how to bring this technology to campus.

    “I really loved the idea that what we were doing could have a very real impact,” says Zoe Fisher, Nuclear Systems Design Project team member and now graduate nuclear engineering student.

    Each fall, Hartwig uses the course to introduce students to real-world challenges with strict constraints on solutions, and last fall’s project came with plenty of thorny design questions for students to tackle. First was the size limitation posed by the space available at MIT’s reactor. In SANS facilities around the world, the average length of the instrument is 30 meters, but at NRL, the space available is approximately 7.5 meters. Second, these instruments can cost up to $30 million, which is far outside NRL’s proposed budget of $3 million. That meant not only did students need to design an instrument that would work in a smaller space, but also one that could be built for a tenth of the typical cost.

    “The challenge was not just implementing one of these instruments,” Hartwig says. “It was whether the students could significantly innovate beyond the ‘traditional’ approach to doing SANS to meet the daunting constraints that we have at the MIT Reactor.”

    Because NRL actually wants to pursue this project, the students had to get creative, and their creative potential was precisely why the idea arose to get them involved, says Jacopo Buongiorno, the director of science and technology at NRL and Tokyo Electric Power Company Professor in Nuclear Engineering. “Involvement in real-world projects that answer questions about feasibility and cost of new technology and capabilities is a key element of a successful undergraduate education at MIT,” Buongiorno says.

    Students say it would have been impossible to tackle the problem without the help of co-instructor Boris Khaykovich, a research scientist at NRL who specializes in neutron instrumentation.

    Over the past two decades, Khaykovich has watched as SANS became the most popular technique for analyzing material structure. As the amount of available SANS beam time at the few facilities that exist became more competitive, access declined. Today only the experiments passing the most stringent review get access. What Khaykovich hopes to bring to MIT is improved access to SANS by designing an instrument that will be suitable for a majority of run-of-the-mill experiments, even if it’s not as powerful as state-of-the-art national SANS facilities. Such an instrument can still serve a wider range of researchers who currently have few opportunities to pursue SANS experiments.

    “In the U.S., we don’t have a simple, small, day-to-day SANS instrument,” Khaykovich says.

    With Khaykovich’s help, nuclear engineering undergraduate student Liam Hines says his team was able to go much further with their assessment than they would’ve starting from scratch, with no background in SANS. This project was unlike anything they’d ever been asked of as MIT students, and for students like Hines, who contributed to NRL research his entire time on campus, it was a project that hit close to home. “We were imagining this thing that might be designed at MIT,” Hines says.

    Fisher and Hines were joined by undergraduate nuclear engineering student team members Francisco Arellano, Jovier Jimenez, and Brendan Vaughan. Together, they devised a design that surprised both Khaykovich and Hartwig, identifying creative solutions that overcame all limitations and significantly reduced cost.

    Their team’s final project featured an adaptation of a conical design that was recently experimentally tested in Japan, but not generally used. The conical design allowed them to maximize precision while working within the other constraints, resulting in an instrument design that exceeded Hartwig’s expectations. The students also showed the feasibility of using an alternative type of glass-based low-cost neutron detector to calibrate the scattering data. By avoiding the need for a traditional detector based on helium-3, which is increasingly scarce and exorbitantly expensive, such a detector would dramatically reduce cost and increase availability. Their final presentation indicated the day-to-day SANS instrument could be built at only 4.5 meters long and with an estimated cost less than $1 million.

    Khaykovich credited the students for their enthusiasm, bouncing ideas off each other and exploring as much terrain as possible by interviewing experts who implemented SANS at other facilities. “They showed quite a perseverance and an ability to go deep into a very unfamiliar territory for them,” Khaykovich says.

    Hines says that Hartwig emphasized the importance of fielding expert opinions to more quickly discover optimal solutions. Fisher says that based on their research, if their design is funded, it would make SANS “more accessible to research for the sake of knowledge,” rather than dominated by industry research.

    Hartwig and Khaykovich agreed the students’ final project results showed a baseline of how MIT could pursue SANS technology cheaply, and when NRL proceeds with its own design process, Hartwig says, “The student’s work might actually change the cost of the feasibility of this at MIT in a way that if we hadn’t run the class, we would never have thought about doing.”

    Buongiorno says as they move forward with the project, NRL staff will consult students’ findings.

    “Indeed, the students developed original technical approaches, which are now being further explored by the NRL staff and may ultimately lead to the deployment of this new important capability on the MIT campus,” Buongiorno says.

    Hartwig says it’s a goal of the Nuclear Systems Design Project course to empower students to learn how to lead teams and embrace challenges, so they can be effective leaders advancing novel solutions in research and industry. “I think it helps teach people to be agile, to be flexible, to have confidence that they can actually go off and learn what they don’t know and solve problems they may think are bigger than themselves,” he says.

    It’s common for past classes of Nuclear Systems Design Project students to continue working on ideas beyond the course, and some students have even launched companies from their project research. What’s less common is for Hartwig’s students to actively serve as engineers pointed to a particular campus problem that’s expected to be resolved in the next few years.

    “In this case, they’re actually working on something real,” Hartwig says. “Their ideas are going to very much influence what we hope will be a facility that gets built at the reactor.”

    For students, it was exciting to inform a major instrument proposal that will soon be submitted to federal funding agencies, and for Hines, it became a chance to make his mark at NRL.

    “This is a lab I’ve been contributing to my entire time at MIT, and then through this project, I finished my time at MIT contributing in a much larger sense,” Hines says. More

  • in

    Charting the landscape at MIT

    Norman Magnuson’s MIT career — culminating in his role as manager of grounds services in the Department of Facilities for the past 20 years — started in 1974 with a summer job. Fresh out of high school and unsure of his next step, Magnuson’s father, Norman Sr., a housing manager at MIT, encouraged him to take a summer staffer position with MIT Grounds Services. That temporary job would turn into a 48-year career, in which Magnuson found and fed his passion for horticulture.

    Over the years, Magnuson has had a number of roles, including mover, truck driver, and landscaper. In his most recent role, Magnuson was responsible for managing and maintaining the grounds of MIT’s more-than-168-acre campus — work that includes landscaping, snow removal, and event setup — a position where his pride of work could be seen across campus. Now, after nearly half a century at the Institute, Magnuson is retiring, leaving an enormous set of shoes to fill.

    “Norman’s passion for stewarding an immense array of green spaces has delighted the eyes of tens of thousands of people from around the world who have worked, visited, studied, and resided at MIT over the years,” says Vice President for Campus Services and Stewardship Joe Higgins. Adds Martin O’Brien, senior manager of Campus Services, “Not only do he and his team excel at high-profile events like snowstorms and Commencement, but day to day, they keep the campus shining.”

    Touching six decades on a transforming campus

    Like many who have spent dozens of years at the Institute, when asked what has changed the most in his time here, Magnuson thinks first of MIT’s skyline. He notes that the Landau Building (Building 66) was the first new construction he saw on campus. He remembers seeing E40 and E51 be transformed from warehouses to more functional spaces for research and labs — a pattern that would be repeated often during his time at MIT. As each part of campus dramatically evolved, so did the quiet and steadfast work of Magnuson and Grounds Services.

    When Magnuson first started working for Grounds Services, he says that landscaping was often an afterthought. “We worked with whatever extra budget money there was,” he remembers, speaking of the landscaping support for new buildings. Magnuson says that over his long career, the work of his department became more professionalized and integrated with departments like the Office of Campus Planning. Grounds Services now works closely with that office to support design and management of resilient campus landscapes that incorporate systems of soils, plantings, and hardscapes for stormwater management, as well as mitigating heat island effects while growing and diversifying the urban forest canopy.

    “There’s growing recognition of the contributions that our campus green spaces make to both community well-being and campus resiliency,” explains Laura Tenny, senior campus planner. “Over the last two years, people have rediscovered the outdoors as a place to come together, and so these campus spaces have become part of the social fabric of MIT. As landscapes become more performance-based and more like living green infrastructure, Norman has overseen a complex campus system that’s working at multiple levels, not unlike our sophisticated building and infrastructure systems.”

    Magnuson says he always welcomed change in the landscaping space and has worked hard to drive it. “I like to be on the cutting edge,” he says highlighting environmentally- and climate-friendly change he’s pushed for. “I can remember when we used to do things like throw leaves in the trash in plastic garbage bags,” he says. “These days, we’ve almost eliminated herbicides and pesticides, we’re mindful of the fertilizer that we use, and we’re very cognizant of things like this because we work with teams like the Office of Sustainability (MITOS).”

    As Magnuson and his team have striven to do better for the environment, he notes that he has also seen firsthand how climate change is transforming the campus landscape: “Leaves fall off the deciduous trees earlier than they used to. This year the azaleas bloomed late; the rhododendrons were a little bit early. When you look at particular plants that have been in the ground for many years, you do see the difference,” he says, adding that snow seasons have also become more unpredictable despite improved forecasting technology.

    Enduring connections with the community

    With his craft and campus always changing, one thing remained constant for Magnuson: MIT students. Magnuson and his team have connected with students for countless interviews and research projects over the years — a highlight of his work and a reminder of its impact. “I always tell my staff that we help educate the students — not directly most times, but we are part of the mechanism that makes it possible for them to be here,” he says.

    A recent project for Magnuson was working with students to create and maintain The Hive Garden, MIT’s first sustainability garden and a collaborative project between MITOS, the Undergraduate Association Committee on Sustainability, and Grounds Services. “That was probably one of my favorite interactions with the students,” Magnuson says of the garden. Susy Jones, senior sustainability project manager who worked with Magnuson on the garden, says Magnuson played an essential role: “He took real joy in working with the students — they brought him sketches of these complex hexagonal garden beds, and I watched him and his team sit patiently with them and come up with something we could implement quickly that would maintain the integrity of their designs,” she remembers. “His team happily taught the students how to irrigate the beds and which plants to cut back in the winter — little lessons about the natural world they’ll take with them forever.” 

    As Magnuson begins his retirement, he capped off his career with one more go at this favorite MIT event — Commencement. Though the event requires tremendous amounts of work for Grounds Services, Magnuson looks forward to it each year. “It’s our Super Bowl,” he says. Each spring the Grounds Services team partners with the MIT Repair and Maintenance Carpentry crew to ready Killian Court for several thousand people by turning the open court into a massive seating area and stage while protecting and highlighting the grounds. “When the students come in and they announce them, it’s always an emotional moment for me, because it’s, ‘OK, this is it, it started, and everything looks perfect,’” he says. Former executive officer for Commencement Gayle Gallagher, who worked closely with Magnuson for more than two dozen Commencement weekends, agrees with the “perfect” assessment. “His commitment to the campus grounds — regardless of the season — was unparalleled. He spent countless hours each year to ensure our campus looked its absolute best for our graduates, their families and guests, and our alumni,” she recalls. “I always looked forward to collaborating with him — he is simply one-of-a-kind.”

    When Magnuson looks back on his long career, he notes that community and camaraderie are a large part of what kept him with MIT for so long. He’s built many relationships at MIT (his wife, Diane, recently retired from MIT Medical after 44 years, and his daughter Kelsey works with the Department of Facilities Contracts team) and says his department has the unique ability to support individuals and foster careers like it did for him. “We have some very, very talented people and we have a lot of people like me who learned on the job. Landscaping is one of those professions that if you put your all into it, you can get a degree in landscaping without having an actual degree,” he says.

    “Everybody that works for Grounds is so proud of what they do — you can see it in the work,” he adds. “I’m so proud of the work I’ve done.” More