More stories

  • in

    A new way to swiftly eliminate micropollutants from water

    “Zwitterionic” might not be a word you come across every day, but for Professor Patrick Doyle of the MIT Department of Chemical Engineering, it’s a word that’s central to the technology his group is developing to remove micropollutants from water. Derived from the German word “zwitter,” meaning “hybrid,” “zwitterionic” molecules are those with an equal number of positive and negative charges.

    Devashish Gokhale, a PhD student in Doyle’s lab, uses the example of a magnet to describe zwitterionic materials. “On a magnet, you have a north pole and a south pole that stick to each other, and on a zwitterionic molecule, you have a positive charge and a negative charge which stick to each other in a similar way.” Because many inorganic micropollutants and some organic micropollutants are themselves charged, Doyle and his team have been investigating how to deploy zwitterionic molecules to capture micropollutants in water. 

    In a new paper in Nature Water, Doyle, Gokhale, and undergraduate student Andre Hamelberg explain how they use zwitterionic hydrogels to sustainably capture both organic and inorganic micropollutants from water with minimal operational complexity. In the past, zwitterionic molecules have been used as coatings on membranes for water treatment because of their non-fouling properties. But in the Doyle group’s system, zwitterionic molecules are used to form the scaffold material, or backbone within the hydrogel — a porous three-dimensional network of polymer chains that contains a significant amount of water. “Zwitterionic molecules have very strong attraction to water compared to other materials which are used to make hydrogels or polymers,” says Gokhale. What’s more, the positive and negative charges on zwitterionic molecules cause the hydrogels to have lower compressibility than what has been commonly observed in hydrogels. This makes for significantly more swollen, robust, and porous hydrogels, which is important for the scale up of the hydrogel-based system for water treatment.

    The early stages of this research were supported by a seed grant from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Doyle’s group is now pursuing commercialization of the platform for both at-home use and industrial scale applications, with support from a J-WAFS Solutions grant.

    Seeking a sustainable solution

    Micropollutants are chemically diverse materials that can be harmful to human health and the environment, even though they are typically found at low concentrations (micrograms to milligrams per liter) relative to conventional contaminants. Micropollutants can be organic or inorganic and can be naturally-occurring or synthetic. Organic micropollutants are mostly carbon-based molecules and include pesticides and per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals.” Inorganic micropollutants, such as heavy metals like lead and arsenic, tend to be smaller than organic micropollutants. Unfortunately, both organic and inorganic micropollutants are pervasive in the environment.

    Many micropollutants come from industrial processes, but the effects of human-induced climate change are also contributing to the environmental spread of micropollutants. Gokhale explains that, in California, for example, fires burn plastic electrical cables and leech micropollutants into natural ecosystems. Doyle adds that “outside of climate change, things like pandemics can spike the number of organic micropollutants in the environment due to high concentrations of pharmaceuticals in wastewater.”

    It’s no surprise then, that over the past few years micropollutants have become more and more of a concern. These chemicals have garnered attention in the media and led to “significant change in the environmental engineering and regulatory landscape” says Gokhale. In March 2023, the U.S. Environmental Protection Agency (EPA) proposed a strict, federal standard that would regulate six different PFAS chemicals in drinking water. Just last October, the EPA proposed banning the micropollutant trichloroethylene, a cancer-causing chemical that can be found in brake cleaners and other consumer products. And as recently as November, the EPA proposed that water utilities nationwide be required to replace all of their lead pipes to protect the public from lead exposure. Internationally, Gokhale notes the Oslo Paris Convention, whose mission is to protect the marine environment of the northeast Atlantic Ocean, including phasing out the discharge of offshore chemicals from the oil and gas industries. 

    With each new, necessary regulation to protect the safety of our water resources, the need for effective water treatment processes grows. Compounding this challenge is the need to make water treatment processes that are sustainable and energy-efficient. 

    The benchmark method to treat micropollutants in water is activated carbon. However, making filters with activated carbon is energy-intensive, requiring very high temperatures in large, centralized facilities. Gokhale says approximately “four kilograms of coal are needed to make one kilogram of activated carbon, so you lose a significant amount of carbon dioxide to the environment.” According to the World Economic Forum, global water and wastewater treatment accounts for 5 percent of annual emissions. In the U.S. alone, the EPA reports that drinking water and wastewater systems account for over 45 million tons of greenhouse gas emissions annually.

    “We need to develop methods which have smaller climate footprints than methods which are being used industrially today,” says Gokhale.

    Supporting a “high-risk” project

    In September 2019, Doyle and his lab embarked on an initial project to develop a microparticle-based platform to remove a broad range of micropollutants from water. Doyle’s group had been using hydrogels in pharmaceutical processing to formulate drug molecules into pill format. When he learned about the J-WAFS seed grant opportunity for early-stage research in water and food systems, Doyle realized his pharmaceutical work with hydrogels could be applied to environmental issues like water treatment. “I would never have gotten funding for this project if I went to the NSF [National Science Foundation], because they would just say, ‘you’re not a water person.’ But the J-WAFS seed grant offered a way for a high-risk, high-reward kind of project,” Doyle says.

    In March 2022, Doyle, Gokhale, and MIT undergraduate Ian Chen published findings from the seed grant work, describing their use of micelles within hydrogels for water treatment. Micelles are spherical structures that form when molecules called surfactants (found in things like soap), come in contact with water or other liquids. The team was able to synthesize micelle-laden hydrogel particles that soak up micropollutants from water like a sponge. Unlike activated carbon, the hydrogel particle system is made from environmentally friendly materials. Furthermore, the system’s materials are made at room temperature, making them exceedingly more sustainable than activated carbon.

    Building off the success of the seed grant, Doyle and his team were awarded a J-WAFS Solutions grant in September 2022 to help move their technology from the lab to the market. With this support, the researchers have been able to build, test, and refine pilot-scale prototypes of their hydrogel platform. System iterations during the solutions grant period have included the use of the zwitterionic molecules, a novel advancement from the seed grant work.  

    Rapid elimination of micropollutants is of special importance in commercial water treatment processes, where there is a limited amount of time water can spend inside the operational filtration unit. This is referred to as contact time, explains Gokhale. In municipal-scale or industrial-scale water treatment systems, contact times are usually less than 20 minutes and can be as short as five minutes. 

    “But as people have been trying to target these emerging micropollutants of concern, they realized they can’t get to sufficiently low concentrations on the same time scales as conventional contaminants,” Gokhale says. “Most technologies focus only on specific molecules or specific classes of molecules. So, you have whole technologies which are focusing only on PFAS, and then you have other technologies for lead and metals. When you start thinking about removing all of these contaminants from water, you end up with designs which have a very large number of unit operations. And that’s an issue because you have plants which are in the middle of large cities, and they don’t necessarily have space to expand to increase their contact times to efficiently remove multiple micropollutants,” he adds.

    Since zwitterionic molecules possess unique properties that confer high porosity, the researchers have been able to engineer a system for quicker uptake of micropollutants from water. Tests show that the hydrogels can eliminate six chemically diverse micropollutants at least 10 times faster than commercial activated carbon. The system is also compatible with a diverse set of materials, making it multifunctional. Micropollutants can bind to many different sites within the hydrogel platform: organic micropollutants bind to the micelles or surfactants while inorganic micropollutants bind to the zwitterionic molecules. Micelles, surfactants, zwitterionic molecules, and other chelating agents can be swapped in and out to essentially tune the system with different functionalities based on the profile of the water being treated. This kind of “plug-and-play” addition of various functional agents does not require a change in the design or synthesis of the hydrogel platform, and adding more functionalities does not take away from existing functionality. In this way, the zwitterionic-based system can rapidly remove multiple contaminants at lower concentrations in a single step, without the need for large, industrial units or capital expenditure. 

    Perhaps most importantly, the particles in the Doyle group’s system can be regenerated and used over and over again. By simply soaking the particles in an ethanol bath, they can be washed of micropollutants for indefinite use without loss of efficacy. When activated carbon is used for water treatment, the activated carbon itself becomes contaminated with micropollutants and must be treated as toxic chemical waste and disposed of in special landfills. Over time, micropollutants in landfills will reenter the ecosystem, perpetuating the problem.

    Arjav Shah, a PhD-MBA candidate in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, respectively, recently joined the team to lead commercialization efforts. The team has found that the zwitterionic hydrogels could be used in several real-world contexts, ranging from large-scale industrial packed beds to small-scale, portable, off-grid applications — for example, in tablets that could clean water in a canteen — and they have begun piloting the technology through a number of commercialization programs at MIT and in the greater Boston area.

    The combined strengths of each member of the team continue to drive the project forward in impactful ways, including undergraduate students like Andre Hamelberg, the third author on the Nature Water paper. Hamelberg is a participant in MIT’s Undergraduate Research Opportunities Program (UROP). Gokhale, who is also a J-WAFS Fellow, provides training and mentorship to Hamelberg and other UROP students in the lab.

    “We see this as an educational opportunity,” says Gokhale, noting that the UROP students learn science and chemical engineering through the research they conduct in the lab. The J-WAFS project has also been “a way of getting undergrads interested in water treatment and the more sustainable aspects of chemical engineering,” Gokhale says. He adds that it’s “one of the few projects which goes all the way from designing specific chemistries to building small filters and units and scaling them up and commercializing them. It’s a really good learning opportunity for the undergrads and we’re always excited to have them work with us.”

    In four years, the technology has been able to grow from an initial idea to a technology with scalable, real-world applications, making it an exemplar J-WAFS project. The fruitful collaboration between J-WAFS and the Doyle lab serves as inspiration for any MIT faculty who may want to apply their research to water or food systems projects.

    “The J-WAFS project serves as a way to demystify what a chemical engineer does,” says Doyle. “I think that there’s an old idea of chemical engineering as working in just oil and gas. But modern chemical engineering is focused on things which make life and the environment better.” More

  • in

    MIT students win Beth Israel Deaconess Medical Center sustainability award

    MIT senior Anna Kwon and sophomore Nicole Doering have been recognized by Beth Israel Deaconess Medical Center (BIDMC) for their work as interns last summer. Both students received Jane Matlaw Environmental Champion Awards, which honor leaders and innovators who have catalyzed changes that align with BIDMC’s sustainability goals and foster a healthier future for staff and patients.

    The awards, which were established 25 years ago, had previously only been given to individuals and teams within BIDMC. “This year, given the significant leadership and alignment with our public commitments that Nicole and Anna had over the summer, our Sustainability Award Review Committee determined that we would include a student category of our awards for both a high school student and undergraduates as well,” says Avery Palardy, the climate and sustainability director at BIDMC.

    Kwon and Doering worked at BIDMC through the Social Impact Internship Program, one of many experiential learning opportunities offered by MIT’s Priscilla King Gray Center for Public Service. The program provides funded internships to students interested in working with government agencies, nonprofits, and social ventures.

    Both students conducted work that will help BIDMC meet two commitments to the Department of Health and Human Services Health Sector Climate Pledge: to develop a climate resilience plan for continuous operations by the end of 2023, and to conduct an inventory of its supply chain emissions by the end of 2024.

    “It was fun — a new challenge for me,” says Kwon, who is majoring in electrical engineering and computer science. “I have never done research in sustainability before. I was able to dive into the field of health care from a new angle, deepening my understanding of the complexities of environmental issues within health care.” Her internship involved performing data analysis related to carbon emissions. In addition, she developed actionable recommendations for conducting a comprehensive supply chain inventory.

    “Anna demonstrated unwavering diligence and attention to detail throughout her work to conduct a greenhouse gas inventory of our supply chain,” says Palardy. “She showcased exceptional skills in market research as she investigated best practices and emerging technologies to ensure that we stay at the forefront of sustainable practices. Her keen insights and forward-thinking approach have equipped us with valuable information for shaping our path forward on our sustainability goals.”

    Doering, a chemical engineering major, guided several departments in an internal assessment of best practices, vulnerabilities, and future directions to integrate climate resilience into the medical center’s operations. She has continued to work this fall to help finalize the climate resilience plan, and she has also been analyzing food procurement data to identify ways to reduce BIDMC’s Scope 3 emissions.

    Climate resilience isn’t an area of sustainability that Doering had considered before, but the internship experience has inspired her to continue pursuing other sustainability roles in the future. “I’m so thankful for all I’ve learned from BIDMC, so I’m really glad that my work was helpful to them. It is an honor that they trusted me to work with them on something that will have such a wonderful impact on our community,” she says.

    “The impact of Nicole’s contributions cannot be overstated,” notes Palardy. “From planning and organizing crucial focus groups to crafting our climate resilience plan, she played a pivotal role in shaping our climate resilience strategies for the better. I’m so grateful for the collaborative spirit, passion, and leadership that she brought to our team. She helped to drive innovation in health-care climate resilience that is necessary for us to ensure this continues to be a priority.” More

  • in

    Celebrating five years of MIT.nano

    There is vast opportunity for nanoscale innovation to transform the world in positive ways — expressed MIT.nano Director Vladimir Bulović as he posed two questions to attendees at the start of the inaugural Nano Summit: “Where are we heading? And what is the next big thing we can develop?”

    “The answer to that puts into perspective our main purpose — and that is to change the world,” Bulović, the Fariborz Maseeh Professor of Emerging Technologies, told an audience of more than 325 in-person and 150 virtual participants gathered for an exploration of nano-related research at MIT and a celebration of MIT.nano’s fifth anniversary.

    Over a decade ago, MIT embarked on a massive project for the ultra-small — building an advanced facility to support research at the nanoscale. Construction of MIT.nano in the heart of MIT’s campus, a process compared to assembling a ship in a bottle, began in 2015, and the facility launched in October 2018.

    Fast forward five years: MIT.nano now contains nearly 170 tools and instruments serving more than 1,200 trained researchers. These individuals come from over 300 principal investigator labs, representing more than 50 MIT departments, labs, and centers. The facility also serves external users from industry, other academic institutions, and over 130 startup and multinational companies.

    A cross section of these faculty and researchers joined industry partners and MIT community members to kick off the first Nano Summit, which is expected to become an annual flagship event for MIT.nano and its industry consortium. Held on Oct. 24, the inaugural conference was co-hosted by the MIT Industrial Liaison Program.

    Six topical sessions highlighted recent developments in quantum science and engineering, materials, advanced electronics, energy, biology, and immersive data technology. The Nano Summit also featured startup ventures and an art exhibition.

    Watch the videos here.

    Seeing and manipulating at the nanoscale — and beyond

    “We need to develop new ways of building the next generation of materials,” said Frances Ross, the TDK Professor in Materials Science and Engineering (DMSE). “We need to use electron microscopy to help us understand not only what the structure is after it’s built, but how it came to be. I think the next few years in this piece of the nano realm are going to be really amazing.”

    Speakers in the session “The Next Materials Revolution,” chaired by MIT.nano co-director for Characterization.nano and associate professor in DMSE James LeBeau, highlighted areas in which cutting-edge microscopy provides insights into the behavior of functional materials at the nanoscale, from anti-ferroelectrics to thin-film photovoltaics and 2D materials. They shared images and videos collected using the instruments in MIT.nano’s characterization suites, which were specifically designed and constructed to minimize mechanical-vibrational and electro-magnetic interference.

    Later, in the “Biology and Human Health” session chaired by Boris Magasanik Professor of Biology Thomas Schwartz, biologists echoed the materials scientists, stressing the importance of the ultra-quiet, low-vibration environment in Characterization.nano to obtain high-resolution images of biological structures.

    “Why is MIT.nano important for us?” asked Schwartz. “An important element of biology is to understand the structure of biology macromolecules. We want to get to an atomic resolution of these structures. CryoEM (cryo-electron microscopy) is an excellent method for this. In order to enable the resolution revolution, we had to get these instruments to MIT. For that, MIT.nano was fantastic.”

    Seychelle Vos, the Robert A. Swanson (1969) Career Development Professor of Life Sciences, shared CryoEM images from her lab’s work, followed by biology Associate Professor Joey Davis who spoke about image processing. When asked about the next stage for CryoEM, Davis said he’s most excited about in-situ tomography, noting that there are new instruments being designed that will improve the current labor-intensive process.

    To chart the future of energy, chemistry associate professor Yogi Surendranath is also using MIT.nano to see what is happening at the nanoscale in his research to use renewable electricity to change carbon dioxide into fuel.

    “MIT.nano has played an immense role, not only in facilitating our ability to make nanostructures, but also to understand nanostructures through advanced imaging capabilities,” said Surendranath. “I see a lot of the future of MIT.nano around the question of how nanostructures evolve and change under the conditions that are relevant to their function. The tools at MIT.nano can help us sort that out.”

    Tech transfer and quantum computing

    The “Advanced Electronics” session chaired by Jesús del Alamo, the Donner Professor of Science in the Department of Electrical Engineering and Computer Science (EECS), brought together industry partners and MIT faculty for a panel discussion on the future of semiconductors and microelectronics. “Excellence in innovation is not enough, we also need to be excellent in transferring these to the marketplace,” said del Alamo. On this point, panelists spoke about strengthening the industry-university connection, as well as the importance of collaborative research environments and of access to advanced facilities, such as MIT.nano, for these environments to thrive.

    The session came on the heels of a startup exhibit in which eleven START.nano companies presented their technologies in health, energy, climate, and virtual reality, among other topics. START.nano, MIT.nano’s hard-tech accelerator, provides participants use of MIT.nano’s facilities at a discounted rate and access to MIT’s startup ecosystem. The program aims to ease hard-tech startups’ transition from the lab to the marketplace, surviving common “valleys of death” as they move from idea to prototype to scaling up.

    When asked about the state of quantum computing in the “Quantum Science and Engineering” session, physics professor Aram Harrow related his response to these startup challenges. “There are quite a few valleys to cross — there are the technical valleys, and then also the commercial valleys.” He spoke about scaling superconducting qubits and qubits made of suspended trapped ions, and the need for more scalable architectures, which we have the ingredients for, he said, but putting everything together is quite challenging.

    Throughout the session, William Oliver, professor of physics and the Henry Ellis Warren (1894) Professor of Electrical Engineering and Computer Science, asked the panelists how MIT.nano can address challenges in assembly and scalability in quantum science.

    “To harness the power of students to innovate, you really need to allow them to get their hands dirty, try new things, try all their crazy ideas, before this goes into a foundry-level process,” responded Kevin O’Brien, associate professor in EECS. “That’s what my group has been working on at MIT.nano, building these superconducting quantum processors using the state-of-the art fabrication techniques in MIT.nano.”

    Connecting the digital to the physical

    In his reflections on the semiconductor industry, Douglas Carlson, senior vice president for technology at MACOM, stressed connecting the digital world to real-world application. Later, in the “Immersive Data Technology” session, MIT.nano associate director Brian Anthony explained how, at the MIT.nano Immersion Lab, researchers are doing just that.

    “We think about and facilitate work that has the human immersed between hardware, data, and experience,” said Anthony, principal research scientist in mechanical engineering. He spoke about using the capabilities of the Immersion Lab to apply immersive technologies to different areas — health, sports, performance, manufacturing, and education, among others. Speakers in this session gave specific examples in hardware, pediatric health, and opera.

    Anthony connected this third pillar of MIT.nano to the fab and characterization facilities, highlighting how the Immersion Lab supports work conducted in other parts of the building. The Immersion Lab’s strength, he said, is taking novel work being developed inside MIT.nano and bringing it up to the human scale to think about applications and uses.

    Artworks that are scientifically inspired

    The Nano Summit closed with a reception at MIT.nano where guests could explore the facility and gaze through the cleanroom windows, where users were actively conducting research. Attendees were encouraged to visit an exhibition on MIT.nano’s first- and second-floor galleries featuring work by students from the MIT Program in Art, Culture, and Technology (ACT) who were invited to utilize MIT.nano’s tool sets and environments as inspiration for art.

    In his closing remarks, Bulović reflected on the community of people who keep MIT.nano running and who are using the tools to advance their research. “Today we are celebrating the facility and all the work that has been done over the last five years to bring it to where it is today. It is there to function not just as a space, but as an essential part of MIT’s mission in research, innovation, and education. I hope that all of us here today take away a deep appreciation and admiration for those who are leading the journey into the nano age.” More

  • in

    Microbes could help reduce the need for chemical fertilizers

    Production of chemical fertilizers accounts for about 1.5 percent of the world’s greenhouse gas emissions. MIT chemists hope to help reduce that carbon footprint by replacing some chemical fertilizer with a more sustainable source — bacteria.

    Bacteria that can convert nitrogen gas to ammonia could not only provide nutrients that plants need, but also help regenerate soil and protect plants from pests. However, these bacteria are sensitive to heat and humidity, so it’s difficult to scale up their manufacture and ship them to farms.

    To overcome that obstacle, MIT chemical engineers have devised a metal-organic coating that protects bacterial cells from damage without impeding their growth or function. In a new study, they found that these coated bacteria improved the germination rate of a variety of seeds, including vegetables such as corn and bok choy.

    This coating could make it much easier for farmers to deploy microbes as fertilizers, says Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering at MIT and the senior author of the study.

    “We can protect them from the drying process, which would allow us to distribute them much more easily and with less cost because they’re a dried powder instead of in liquid,” she says. “They can also withstand heat up to 132 degrees Fahrenheit, which means that you wouldn’t have to use cold storage for these microbes.”

    Benjamin Burke ’23 and postdoc Gang Fan are the lead authors of the open-access paper, which appears in the Journal of the American Chemical Society Au. MIT undergraduate Pris Wasuwanich and Evan Moore ’23 are also authors of the study.

    Protecting microbes

    Chemical fertilizers are manufactured using an energy-intensive process known as Haber-Bosch, which uses extremely high pressures to combine nitrogen from the air with hydrogen to make ammonia.

    In addition to the significant carbon footprint of this process, another drawback to chemical fertilizers is that long-term use eventually depletes the nutrients in the soil. To help restore soil, some farmers have turned to “regenerative agriculture,” which uses a variety of strategies, including crop rotation and composting, to keep soil healthy. Nitrogen-fixing bacteria, which convert nitrogen gas to ammonia, can aid in this approach.

    Some farmers have already begun deploying these “microbial fertilizers,” growing them in large onsite fermenters before applying them to the soil. However, this is cost-prohibitive for many farmers.

    Shipping these bacteria to rural areas is not currently a viable option, because they are susceptible to heat damage. The microbes are also too delicate to survive the freeze-drying process that would make them easier to transport.

    To protect the microbes from both heat and freeze-drying, Furst decided to apply a coating called a metal-phenol network (MPN), which she has previously developed to encapsulate microbes for other uses, such as protecting therapeutic bacteria delivered to the digestive tract.

    The coatings contain two components — a metal and an organic compound called a polyphenol — that can self-assemble into a protective shell. The metals used for the coatings, including iron, manganese, aluminum, and zinc, are considered safe as food additives. Polyphenols, which are often found in plants, include molecules such as tannins and other antioxidants. The FDA classifies many of these polyphenols as GRAS (generally regarded as safe).

    “We are using these natural food-grade compounds that are known to have benefits on their own, and then they form these little suits of armor that protect the microbes,” Furst says.

    For this study, the researchers created 12 different MPNs and used them to encapsulate Pseudomonas chlororaphis, a nitrogen-fixing bacterium that also protects plants against harmful fungi and other pests. They found that all of the coatings protected the bacteria from temperatures up to 50 degrees Celsius (122 degrees Fahrenheit), and also from relative humidity up to 48 percent. The coatings also kept the microbes alive during the freeze-drying process.

    A boost for seeds

    Using microbes coated with the most effective MPN — a combination of manganese and a polyphenol called epigallocatechin gallate (EGCG) — the researchers tested their ability to help seeds germinate in a lab dish. They heated the coated microbes to 50 C before placing them in the dish, and compared them to fresh uncoated microbes and freeze-dried uncoated microbes.

    The researchers found that the coated microbes improved the seeds’ germination rate by 150 percent, compared to seeds treated with fresh, uncoated microbes. This result was consistent across several different types of seeds, including dill, corn, radishes, and bok choy.

    Furst has started a company called Seia Bio to commercialize the coated bacteria for large-scale use in regenerative agriculture. She hopes that the low cost of the manufacturing process will help make microbial fertilizers accessible to small-scale farmers who don’t have the fermenters needed to grow such microbes.

    “When we think about developing technology, we need to intentionally design it to be inexpensive and accessible, and that’s what this technology is. It would help democratize regenerative agriculture,” she says.

    The research was funded by the Army Research Office, a National Institutes of Health New Innovator Award, a National Institute for Environmental Health Sciences Core Center Grant, the CIFAR Azrieli Global Scholars Program, the MIT J-WAFS Program, the MIT Climate and Sustainability Consortium, and the MIT Deshpande Center. More

  • in

    The power of knowledge

    In his early career at MIT, Josh Kuffour’s academic interests spanned mathematics, engineering, and physics. He decided to major in chemical engineering, figuring it would draw on all three areas. Then, he found himself increasingly interested in the mathematical components of his studies and added a second major, applied mathematics.

    Now, with a double major and energy studies minor, Kuffour is still seeking to learn even more. He has made it a goal to take classes from as many different departments as he can before he graduates. So far, he has taken classes from 17 different departments, ranging from Civil and Environmental Engineering to Earth, Atmospheric, and Planetary Sciences to Linguistics and Philosophy.

    “It’s taught me about valuing different ways of thinking,” he says about this wide-ranging approach to the course catalog. “It’s also taught me to value blending disciplines as a whole. Learning about how other people think about the same problems from different perspectives allows for better solutions to be developed.”

    After graduation, Kuffour plans to pursue a master’s degree at MIT, either in the Technology and Policy Program or in the Department of Chemical Engineering. He intends to make renewable energy, and its role in addressing societal inequalities, the focus of his career after graduating, and eventually plans to become a teacher.

    Serving the public

    Recognizing the power of knowledge, Kuffour says he enjoys helping to educate others “in any way I can.” He is involved with several extracurriculars in which he can be a mentor for both peers and high school students.

    Kuffour has volunteered with the Educational Studies Program since his first semester at MIT. This club runs Splash, “a weekend-long learning extravaganza,” as Kuffour puts it, in which MIT students teach over 400 free classes on a huge variety of topics for local high school students.

    For his peers, Kuffour also participates in the Gordon Engineering Leadership Program (GEL). Here, he teaches first-year GEL students leadership skills that engineers may require in their future careers. In doing this, Kuffour says he develops his own leadership skills as well. He is also working as a teaching assistant for multivariable calculus this semester.

    Kuffour has also served as an advisor for the Concourse learning community; as president of his fraternity, Beta Theta Pi; as a student representative on the HASS requirement subcommittee; and as a publicist for the Reason for God series, which invites the MIT community to discuss the intersections of religion with various facets of human life.

    Renewable energy

    Kuffour’s interest in energy issues has grown and evolved in recent years. He first learned about the ecological condition of the world in the eighth grade after watching the climate change documentary “Earth 2100” in school. Going into high school and college, Kuffour says he started reading books, taking classes, watching documentaries, participating in beach and city clean ups, to learn as much as possible about the environment and      global warming.

    During the summer of 2023, Kuffour worked as an energy and climate analysis intern for the consulting company Keylogic and has continued helping the company shift programming languages to Python for evaluating the economics of different methods of decarbonizing electricity sectors in the U.S. He has also assisted in analyzing trends in U.S. natural gas imports, exports, production, and consumption since the early 2000s.            

    In his time as an undergraduate, Kuffour’s interest in renewable energy has taken on a more justice-focused perspective. He’s learned over the course of his that due to historical inequalities in the U.S., pollution and other environmental problems have disproportionately impacted people of lower economic status and people of color. Since global warming will exacerbate these impacts, Kuffour seeks to address these growing inequalities through his work in energy data analysis.        

    Translating interests into activity

    Kuffour’s pursuit to expand his worldview never rests, even outside of the classroom. In his free time, he enjoys listening to podcasts or watching documentaries on any subject. When attempting to list all his favorite podcasts, he cuts himself off, saying, “This could go on for a while.”

    In 2022, Kuffour participated on a whim with a group of friends in an American Institute of Chemical Engineers competition, where he was tasked with creating a 1-by-1 foot cube that could filter water to specifications provided by the competition. He says it was fun to apply what he was learning at MIT to a project all the way in Arizona. 

    Kuffour enjoys discovering new things with friends as much as on his own. Three years ago, he started an intramural soccer team with friends from the Interphase EDGE program, which attracted many people he had never interacted with before. The team has been playing nearly every week since and Kuffour says the experience has been, “very enriching.”

    Kuffour hopes other students will also seek out knowledge and experiences from a wide range of sources during their undergraduate years. He offers: “Try as many things as possible even if you think you know what you want to do, and appreciate everything life has to offer.” More

  • in

    Ayomikun Ayodeji ’22 named a 2024 Rhodes Scholar

    Ayomikun “Ayo” Ayodeji ’22 from Lagos, Nigeria, has been selected as a Rhodes Scholar for West Africa. He will begin fully funded postgraduate studies at Oxford University in the U.K. next fall.

    Ayodeji was supported by Associate Dean Kim Benard and the Distinguished Fellowships team in Career Advising and Professional Development, and received additional mentorship from the Presidential Committee on Distinguished Fellowships.

    “Ayo has worked hard to develop his vision and to express it in ways that will capture the imagination of the broader world. It is a thrill to see him recognized this year as a Rhodes Scholar,” says Professor Nancy Kanwisher, who co-chairs the committee along with Professor Will Broadhead.

    Ayodeji graduated from MIT in 2022 with BS degrees in chemical engineering and management. He is currently an associate at Boston Consulting Group.

    He is passionate about championing reliable energy access across the African landscape and fostering culturally inclusive communities. As a Rhodes Scholar, he will pursue an MSc in energy systems and an MSc in global governance and diplomacy.

    During his time at MIT, Ayodeji’s curiosity for energy innovations was fueled by his research on perovskite solar cells under the MIT Energy Initiative. He then went on to intern at Pioneer Natural Resources where he explored the boundless applications of machine learning tools in completions. At BCG, Ayodeji supports both public and private sector clients on a variety of renewable energy topics including clean energy transition, decarbonization roadmaps, and workforce development.

    Ayodeji’s community-oriented mindset led him to team up with a group of friends and partner with the Northeast Children’s Trust (NECT), an organization that helps children affected by the Boko Haram insurgency in northeastern Nigeria. The project, sponsored by Davis Projects for Peace and MIT’s PKG Center, expanded NECT’s programs via an offline, portable classroom server.

    Ayodeji served as an undergraduate representative on the MIT Department of Chemical Engineering’s Diversity, Equity, and Inclusion Committee. He was also vice president of the MIT African Students’ Association and a coordinator for the annual MIT International Students Orientation. More

  • in

    MIT startup has big plans to pull carbon from the air

    In order to avoid the worst effects of climate change, the United Nations has said we’ll need to not only reduce emissions but also remove carbon dioxide from the atmosphere. One method for achieving carbon removal is direct air capture and storage. Such technologies are still in their infancy, but many efforts are underway to scale them up quickly in hopes of heading off the most catastrophic effects of climate change.

    The startup Noya, founded by Josh Santos ’14, is working to accelerate direct-air carbon removal with a low-power, modular system that can be mass manufactured and deployed around the world. The company plans to power its system with renewable energy and build its facilities near injection wells to store carbon underground.

    Using third-party auditors to verify the amount of carbon dioxide captured and stored, Noya is selling carbon credits to help organizations reach net-zero emissions targets.

    “Think of our systems for direct air capture like solar panels for carbon negativity,” says Santos, who formerly played a role in Tesla’s much-publicized manufacturing scale-up for its Model 3 electric sedan. “We can stack these boxes in a LEGO-like fashion to achieve scale in the field.”

    The three-year old company is currently building its first commercial pilot facility, and says its first full-scale commercial facility will have the capacity to pull millions of tons of carbon from the air each year. Noya has already secured millions of dollars in presales to help build its first facilities from organizations including Shopify, Watershed, and a university endowment.

    Santos says the ambitious approach, which is driven by the urgent need to scale carbon removal solutions, was influenced by his time at MIT.

    “I need to thank all of my MIT professors,” Santos says. “I don’t think any of this would be possible without the way in which MIT opened up my horizons by showing me what’s possible when you work really hard.”

    Finding a purpose

    Growing up in the southeastern U.S., Santos says he first recognized climate change as an issue by experiencing the increasing intensity of hurricanes in his neighborhood. One year a hurricane forced his family to evacuate their town. When they returned, their church was gone.

    “The storm left a really big mark on me and how I thought about the world,” Santos says. “I realized how much climate change can impact people.”

    When Santos came to MIT as an undergraduate, he took coursework related to climate change and energy systems, eventually majoring in chemical engineering. He also learned about startups through courses he took at the MIT Sloan School of Management and by taking part in MIT’s Undergraduate Research Opportunities Program (UROP), which exposed him to researchers in the early stages of commercializing research from MIT labs.

    More than the coursework, though, Santos says MIT instilled in him a desire to make a positive impact on the world, in part through a four-day development workshop called LeaderShape that he took one January during the Institute’s Independent Activities Period (IAP).

    “LeaderShape teaches students how to lead with integrity, and the core lesson is that any privilege you have you should try to leverage to improve the lives of other people,” Santos says. “That really stuck with me. Going to MIT is a huge privilege, and it makes me feel like I have a responsibility to put that privilege to work to the betterment of society. It shaped a lot of how I view my career.”

    After graduation, Santos worked at Tesla, then at Harley Davidson, where he worked on electric powertrains. Eventually he decided electric vehicle technology couldn’t solve climate change on its own, so in the spring of 2020 he founded Noya with friend Daniel Cavaro.

    The initial idea for Noya was to attach carbon capture devices to cooling towers to keep equipment costs low. The founders pivoted in response to the passage of the Inflation Reduction Act in 2022 because their machines weren’t big enough to qualify for the new tax credits in the law, which required each system to capture at least 1,000 tons of CO2 per year.

    Noya’s new systems will combine thousands of its modular units to create massive facilities that can capture millions of tons of CO2 right next to existing injection wells.

    Each of Noya’s units is about the size of a solar panel at about 6 feet wide, 4.5 feet tall, and 1 foot thick. A fan blows air through tiny channels in each unit that contain Noya’s carbon capture material. The company’s material solution consists of an activated carbon monolith and a proprietary chemical feedstock that binds to the carbon in the air. When the material becomes saturated with carbon, electricity is applied to the material and a light vacuum collects a pure stream of carbon.

    The goal is for each of Noya’s modules to remove about 60 tons of CO2 from the atmosphere per year.

    “Other direct air capture companies need a big hot piece of equipment — like an oven, steam generator, or kiln — that takes electricity and converts it to get heat to the material,” Santos says. “Any lost heat into the surrounding environment is excess cost. We skip the need for the excess equipment and their inefficiencies by adding the electricity directly to the material itself.”

    Scaling with urgency

    From its office in Oakland, California, Noya is putting an experimental module through tests to optimize its design. Noya will launch its first testing facility, which should remove about 350 tons of CO2 per year, in 2024. It has already secured renewable energy and injection storage partners for that facility. Over the next few years Noya plans to capture and remove thousands of tons of CO2, and the company’s first commercial-scale facility will aim to remove about 3 million tons of carbon annually.

    “That design is what we’ll replicate across the world to grow our planetary impact,” Santos says. “We’re trying to scale up as fast as possible.”

    Noya has already sold all of the carbon credits it expects to generate in its first five years, and the founders believe the growing demand from companies and governments to purchase high-quality carbon credits will outstrip supply for at least the next 10 years in the nascent carbon removal industry, which also includes approaches like enhanced rock weathering, biomass carbon storage, and ocean alkalinity enhancement.

    “We’re going to need something like 30 companies the size of Shell to achieve the scale we need,” Santos says. “I think there will be large companies in each of those verticals. We’re in the early innings here.”

    Santos believes the carbon removal market can scale without government mandates, but he also sees increasing government and public support for carbon removal technologies around the world.

    “Carbon removal is a waste management problem,” Santos says. “You can’t just throw trash in the middle of the street. The way we currently deal with trash is polluters pay to clean up their waste. Carbon removal should be like that. CO2 is a waste product, and we should have regulations in place that are requiring polluters, like businesses, to clean up their waste emissions. It’s a public good to provide cleaner air.” More

  • in

    Pixel-by-pixel analysis yields insights into lithium-ion batteries

    By mining data from X-ray images, researchers at MIT, Stanford University, SLAC National Accelerator, and the Toyota Research Institute have made significant new discoveries about the reactivity of lithium iron phosphate, a material used in batteries for electric cars and in other rechargeable batteries.

    The new technique has revealed several phenomena that were previously impossible to see, including variations in the rate of lithium intercalation reactions in different regions of a lithium iron phosphate nanoparticle.

    The paper’s most significant practical finding — that these variations in reaction rate are correlated with differences in the thickness of the carbon coating on the surface of the particles — could lead to improvements in the efficiency of charging and discharging such batteries.

    “What we learned from this study is that it’s the interfaces that really control the dynamics of the battery, especially in today’s modern batteries made from nanoparticles of the active material. That means that our focus should really be on engineering that interface,” says Martin Bazant, the E.G. Roos Professor of Chemical Engineering and a professor of mathematics at MIT, who is the senior author of the study.

    This approach to discovering the physics behind complex patterns in images could also be used to gain insights into many other materials, not only other types of batteries but also biological systems, such as dividing cells in a developing embryo.

    “What I find most exciting about this work is the ability to take images of a system that’s undergoing the formation of some pattern, and learning the principles that govern that,” Bazant says.

    Hongbo Zhao PhD ’21, a former MIT graduate student who is now a postdoc at Princeton University, is the lead author of the new study, which appears today in Nature. Other authors include Richard Bratz, the Edwin R. Gilliland Professor of Chemical Engineering at MIT; William Chueh, an associate professor of materials science and engineering at Stanford and director of the SLAC-Stanford Battery Center; and Brian Storey, senior director of Energy and Materials at the Toyota Research Institute.

    “Until now, we could make these beautiful X-ray movies of battery nanoparticles at work, but it was challenging to measure and understand subtle details of how they function because the movies were so information-rich,” Chueh says. “By applying image learning to these nanoscale movies, we can extract insights that were not previously possible.”

    Modeling reaction rates

    Lithium iron phosphate battery electrodes are made of many tiny particles of lithium iron phosphate, surrounded by an electrolyte solution. A typical particle is about 1 micron in diameter and about 100 nanometers thick. When the battery discharges, lithium ions flow from the electrolyte solution into the material by an electrochemical reaction known as ion intercalation. When the battery charges, the intercalation reaction is reversed, and ions flow in the opposite direction.

    “Lithium iron phosphate (LFP) is an important battery material due to low cost, a good safety record, and its use of abundant elements,” Storey says. “We are seeing an increased use of LFP in the EV market, so the timing of this study could not be better.”

    Before the current study, Bazant had done a great deal of theoretical modeling of patterns formed by lithium-ion intercalation. Lithium iron phosphate prefers to exist in one of two stable phases: either full of lithium ions or empty. Since 2005, Bazant has been working on mathematical models of this phenomenon, known as phase separation, which generates distinctive patterns of lithium-ion flow driven by intercalation reactions. In 2015, while on sabbatical at Stanford, he began working with Chueh to try to interpret images of lithium iron phosphate particles from scanning tunneling X-ray microscopy.

    Using this type of microscopy, the researchers can obtain images that reveal the concentration of lithium ions, pixel-by-pixel, at every point in the particle. They can scan the particles several times as the particles charge or discharge, allowing them to create movies of how lithium ions flow in and out of the particles.

    In 2017, Bazant and his colleagues at SLAC received funding from the Toyota Research Institute to pursue further studies using this approach, along with other battery-related research projects.

    By analyzing X-ray images of 63 lithium iron phosphate particles as they charged and discharged, the researchers found that the movement of lithium ions within the material could be nearly identical to the computer simulations that Bazant had created earlier. Using all 180,000 pixels as measurements, the researchers trained the computational model to produce equations that accurately describe the nonequilibrium thermodynamics and reaction kinetics of the battery material.
    By analyzing X-ray images of lithium iron phosphate particles as they charged and discharged, researchers have shown that the movement of lithium ions within the material was nearly identical to computer simulations they had created earlier.  In each pair, the actual particles are on the left and the simulations are on the right.Courtesy of the researchers

    “Every little pixel in there is jumping from full to empty, full to empty. And we’re mapping that whole process, using our equations to understand how that’s happening,” Bazant says.

    The researchers also found that the patterns of lithium-ion flow that they observed could reveal spatial variations in the rate at which lithium ions are absorbed at each location on the particle surface.

    “It was a real surprise to us that we could learn the heterogeneities in the system — in this case, the variations in surface reaction rate — simply by looking at the images,” Bazant says. “There are regions that seem to be fast and others that seem to be slow.”

    Furthermore, the researchers showed that these differences in reaction rate were correlated with the thickness of the carbon coating on the surface of the lithium iron phosphate particles. That carbon coating is applied to lithium iron phosphate to help it conduct electricity — otherwise the material would conduct too slowly to be useful as a battery.

    “We discovered at the nano scale that variation of the carbon coating thickness directly controls the rate, which is something you could never figure out if you didn’t have all of this modeling and image analysis,” Bazant says.

    The findings also offer quantitative support for a hypothesis Bazant formulated several years ago: that the performance of lithium iron phosphate electrodes is limited primarily by the rate of coupled ion-electron transfer at the interface between the solid particle and the carbon coating, rather than the rate of lithium-ion diffusion in the solid.

    Optimized materials

    The results from this study suggest that optimizing the thickness of the carbon layer on the electrode surface could help researchers to design batteries that would work more efficiently, the researchers say.

    “This is the first study that’s been able to directly attribute a property of the battery material with a physical property of the coating,” Bazant says. “The focus for optimizing and designing batteries should be on controlling reaction kinetics at the interface of the electrolyte and electrode.”

    “This publication is the culmination of six years of dedication and collaboration,” Storey says. “This technique allows us to unlock the inner workings of the battery in a way not previously possible. Our next goal is to improve battery design by applying this new understanding.”  

    In addition to using this type of analysis on other battery materials, Bazant anticipates that it could be useful for studying pattern formation in other chemical and biological systems.

    This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery program. More