More stories

  • in

    Q&A: Climate Grand Challenges finalists on accelerating reductions in global greenhouse gas emissions

    This is the second article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalists, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    Last month, the Intergovernmental Panel on Climate Change (IPCC), an expert body of the United Nations representing 195 governments, released its latest scientific report on the growing threats posed by climate change, and called for drastic reductions in greenhouse gas emissions to avert the most catastrophic outcomes for humanity and natural ecosystems.

    Bringing the global economy to net-zero carbon dioxide emissions by midcentury is complex and demands new ideas and novel approaches. The first-ever MIT Climate Grand Challenges competition focuses on four problem areas including removing greenhouse gases from the atmosphere and identifying effective, economic solutions for managing and storing these gases. The other Climate Grand Challenges research themes address using data and science to forecast climate-related risk, decarbonizing complex industries and processes, and building equity and fairness into climate solutions.

    In the following conversations prepared for MIT News, faculty from three of the teams working to solve “Removing, managing, and storing greenhouse gases” explain how they are drawing upon geological, biological, chemical, and oceanic processes to develop game-changing techniques for carbon removal, management, and storage. Their responses have been edited for length and clarity.

    Directed evolution of biological carbon fixation

    Agricultural demand is estimated to increase by 50 percent in the coming decades, while climate change is simultaneously projected to drastically reduce crop yield and predictability, requiring a dramatic acceleration of land clearing. Without immediate intervention, this will have dire impacts on wild habitat, rob the livelihoods of hundreds of millions of subsistence farmers, and create hundreds of gigatons of new emissions. Matthew Shoulders, associate professor in the Department of Chemistry, talks about the working group he is leading in partnership with Ed Boyden, the Y. Eva Tan professor of neurotechnology and Howard Hughes Medical Institute investigator at the McGovern Institute for Brain Research, that aims to massively reduce carbon emissions from agriculture by relieving core biochemical bottlenecks in the photosynthetic process using the most sophisticated synthetic biology available to science.

    Q: Describe the two pathways you have identified for improving agricultural productivity and climate resiliency.

    A: First, cyanobacteria grow millions of times faster than plants and dozens of times faster than microalgae. Engineering these cyanobacteria as a source of key food products using synthetic biology will enable food production using less land, in a fundamentally more climate-resilient manner. Second, carbon fixation, or the process by which carbon dioxide is incorporated into organic compounds, is the rate-limiting step of photosynthesis and becomes even less efficient under rising temperatures. Enhancements to Rubisco, the enzyme mediating this central process, will both improve crop yields and provide climate resilience to crops needed by 2050. Our team, led by Robbie Wilson and Max Schubert, has created new directed evolution methods tailored for both strategies, and we have already uncovered promising early results. Applying directed evolution to photosynthesis, carbon fixation, and food production has the potential to usher in a second green revolution.

    Q: What partners will you need to accelerate the development of your solutions?

    A: We have already partnered with leading agriculture institutes with deep experience in plant transformation and field trial capacity, enabling the integration of our improved carbon-dioxide-fixing enzymes into a wide range of crop plants. At the deployment stage, we will be positioned to partner with multiple industry groups to achieve improved agriculture at scale. Partnerships with major seed companies around the world will be key to leverage distribution channels in manufacturing supply chains and networks of farmers, agronomists, and licensed retailers. Support from local governments will also be critical where subsidies for seeds are necessary for farmers to earn a living, such as smallholder and subsistence farming communities. Additionally, our research provides an accessible platform that is capable of enabling and enhancing carbon dioxide sequestration in diverse organisms, extending our sphere of partnership to a wide range of companies interested in industrial microbial applications, including algal and cyanobacterial, and in carbon capture and storage.

    Strategies to reduce atmospheric methane

    One of the most potent greenhouse gases, methane is emitted by a range of human activities and natural processes that include agriculture and waste management, fossil fuel production, and changing land use practices — with no single dominant source. Together with a diverse group of faculty and researchers from the schools of Humanities, Arts, and Social Sciences; Architecture and Planning; Engineering; and Science; plus the MIT Schwarzman College of Computing, Desiree Plata, associate professor in the Department of Civil and Environmental Engineering, is spearheading the MIT Methane Network, an integrated approach to formulating scalable new technologies, business models, and policy solutions for driving down levels of atmospheric methane.

    Q: What is the problem you are trying to solve and why is it a “grand challenge”?

    A: Removing methane from the atmosphere, or stopping it from getting there in the first place, could change the rates of global warming in our lifetimes, saving as much as half a degree of warming by 2050. Methane sources are distributed in space and time and tend to be very dilute, making the removal of methane a challenge that pushes the boundaries of contemporary science and engineering capabilities. Because the primary sources of atmospheric methane are linked to our economy and culture — from clearing wetlands for cultivation to natural gas extraction and dairy and meat production — the social and economic implications of a fundamentally changed methane management system are far-reaching. Nevertheless, these problems are tractable and could significantly reduce the effects of climate change in the near term.

    Q: What is known about the rapid rise in atmospheric methane and what questions remain unanswered?

    A: Tracking atmospheric methane is a challenge in and of itself, but it has become clear that emissions are large, accelerated by human activity, and cause damage right away. While some progress has been made in satellite-based measurements of methane emissions, there is a need to translate that data into actionable solutions. Several key questions remain around improving sensor accuracy and sensor network design to optimize placement, improve response time, and stop leaks with autonomous controls on the ground. Additional questions involve deploying low-level methane oxidation systems and novel catalytic materials at coal mines, dairy barns, and other enriched sources; evaluating the policy strategies and the socioeconomic impacts of new technologies with an eye toward decarbonization pathways; and scaling technology with viable business models that stimulate the economy while reducing greenhouse gas emissions.

    Deploying versatile carbon capture technologies and storage at scale

    There is growing consensus that simply capturing current carbon dioxide emissions is no longer sufficient — it is equally important to target distributed sources such as the oceans and air where carbon dioxide has accumulated from past emissions. Betar Gallant, the American Bureau of Shipping Career Development Associate Professor of Mechanical Engineering, discusses her work with Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering and director of the School of Chemical Engineering Practice, to dramatically advance the portfolio of technologies available for carbon capture and permanent storage at scale. (A team led by Assistant Professor Matěj Peč of EAPS is also addressing carbon capture and storage.)

    Q: Carbon capture and storage processes have been around for several decades. What advances are you seeking to make through this project?

    A: Today’s capture paradigms are costly, inefficient, and complex. We seek to address this challenge by developing a new generation of capture technologies that operate using renewable energy inputs, are sufficiently versatile to accommodate emerging industrial demands, are adaptive and responsive to varied societal needs, and can be readily deployed to a wider landscape.

    New approaches will require the redesign of the entire capture process, necessitating basic science and engineering efforts that are broadly interdisciplinary in nature. At the same time, incumbent technologies have been optimized largely for integration with coal- or natural gas-burning power plants. Future applications must shift away from legacy emitters in the power sector towards hard-to-mitigate sectors such as cement, iron and steel, chemical, and hydrogen production. It will become equally important to develop and optimize systems targeted for much lower concentrations of carbon dioxide, such as in oceans or air. Our effort will expand basic science studies as well as human impacts of storage, including how public engagement and education can alter attitudes toward greater acceptance of carbon dioxide geologic storage.

    Q: What are the expected impacts of your proposed solution, both positive and negative?

    A: Renewable energy cannot be deployed rapidly enough everywhere, nor can it supplant all emissions sources, nor can it account for past emissions. Carbon capture and storage (CCS) provides a demonstrated method to address emissions that will undoubtedly occur before the transition to low-carbon energy is completed. CCS can succeed even if other strategies fail. It also allows for developing nations, which may need to adopt renewables over longer timescales, to see equitable economic development while avoiding the most harmful climate impacts. And, CCS enables the future viability of many core industries and transportation modes, many of which do not have clear alternatives before 2050, let alone 2040 or 2030.

    The perceived risks of potential leakage and earthquakes associated with geologic storage can be minimized by choosing suitable geologic formations for storage. Despite CCS providing a well-understood pathway for removing enough of the carbon dioxide already emitted into the atmosphere, some environmentalists vigorously oppose it, fearing that CCS rewards oil companies and disincentivizes the transition away from fossil fuels. We believe that it is more important to keep in mind the necessity of meeting key climate targets for the sake of the planet, and welcome those who can help. More

  • in

    Using soap to remove micropollutants from water

    Imagine millions of soapy sponges the size of human cells that can clean water by soaking up contaminants. This simplistic model is used to describe technology that MIT chemical engineers have recently developed to remove micropollutants from water — a concerning, worldwide problem.

    Patrick S. Doyle, the Robert T. Haslam Professor of Chemical Engineering, PhD student Devashish Pratap Gokhale, and undergraduate Ian Chen recently published their research on micropollutant removal in the journal ACS Applied Polymer Materials. The work is funded by MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS).

    In spite of their low concentrations (about 0.01–100 micrograms per liter), micropollutants can be hazardous to the ecosystem and to human health. They come from a variety of sources and have been detected in almost all bodies of water, says Gokhale. Pharmaceuticals passing through people and animals, for example, can end up as micropollutants in the water supply. Others, like endocrine disruptor bisphenol A (BPA), can leach from plastics during industrial manufacturing. Pesticides, dyes, petrochemicals, and per-and polyfluoroalkyl substances, more commonly known as PFAS, are also examples of micropollutants, as are some heavy metals like lead and arsenic. These are just some of the kinds of micropollutants, all of which can be toxic to humans and animals over time, potentially causing cancer, organ damage, developmental defects, or other adverse effects.

    Micropollutants are numerous but since their collective mass is small, they are difficult to remove from water. Currently, the most common practice for removing micropollutants from water is activated carbon adsorption. In this process, water passes through a carbon filter, removing only 30 percent of micropollutants. Activated carbon requires high temperatures to produce and regenerate, requiring specialized equipment and consuming large amounts of energy. Reverse osmosis can also be used to remove micropollutants from water; however, “it doesn’t lead to good elimination of this class of molecules, because of both their concentration and their molecular structure,” explains Doyle.

    Inspired by soap

    When devising their solution for how to remove micropollutants from water, the MIT researchers were inspired by a common household cleaning supply — soap. Soap cleans everything from our hands and bodies to dirty dishes to clothes, so perhaps the chemistry of soap could also be applied to sanitizing water. Soap has molecules called surfactants which have both hydrophobic (water-hating) and hydrophilic (water-loving) components. When water comes in contact with soap, the hydrophobic parts of the surfactant stick together, assembling into spherical structures called micelles with the hydrophobic portions of the molecules in the interior. The hydrophobic micelle cores trap and help carry away oily substances like dirt. 

    Doyle’s lab synthesized micelle-laden hydrogel particles to essentially cleanse water. Gokhale explains that they used microfluidics which “involve processing fluids on very small, micron-like scales” to generate uniform polymeric hydrogel particles continuously and reproducibly. These hydrogels, which are porous and absorbent, incorporate a surfactant, a photoinitiator (a molecule that creates reactive species), and a cross-linking agent known as PEGDA. The surfactant assembles into micelles that are chemically bonded to the hydrogel using ultraviolet light. When water flows through this micro-particle system, micropollutants latch onto the micelles and separate from the water. The physical interaction used in the system is strong enough to pull micropollutants from water, but weak enough that the hydrogel particles can be separated from the micropollutants, restabilized, and reused. Lab testing shows that both the speed and extent of pollutant removal increase when the amount of surfactant incorporated into the hydrogels is increased.

    “We’ve shown that in terms of rate of pullout, which is what really matters when you scale this up for industrial use, that with our initial format, we can already outperform the activated carbon,” says Doyle. “We can actually regenerate these particles very easily at room temperature. Nearly 10 regeneration cycles with minimal change in performance,” he adds.

    Regeneration of the particles occurs by soaking the micelles in 90 percent ethanol, whereby “all the pollutants just come out of the particles and back into the ethanol” says Gokhale. Ethanol is biosafe at low concentrations, inexpensive, and combustible, allowing for safe and economically feasible disposal. The recycling of the hydrogel particles makes this technology sustainable, which is a large advantage over activated carbon. The hydrogels can also be tuned to any hydrophobic micropollutant, making this system a novel, flexible approach to water purification.

    Scaling up

    The team experimented in the lab using 2-naphthol, a micropollutant that is an organic pollutant of concern and known to be difficult to remove by using conventional water filtration methods. They hope to continue testing with real water samples. 

    “Right now, we spike one micropollutant into pure lab water. We’d like to get water samples from the natural environment, that we can study and look at experimentally,” says Doyle. 

    By using microfluidics to increase particle production, Doyle and his lab hope to make household-scale filters to be tested with real wastewater. They then anticipate scaling up to municipal water treatment or even industrial wastewater treatment. 

    The lab recently filed an international patent application for their hydrogel technology that uses immobilized micelles. They plan to continue this work by experimenting with different kinds of hydrogels for the removal of heavy metal contaminants like lead from water. 

    Societal impacts

    Funded by a 2019 J-WAFS seed grant that is currently ongoing, this research has the potential to improve the speed, precision, efficiency, and environmental sustainability of water purification systems across the world. 

    “I always wanted to do work which had a social impact, and I was also always interested in water, because I think it’s really cool,” says Gokhale. He notes, “it’s really interesting how water sort of fits into different kinds of fields … we have to consider the cultures of peoples, how we’re going to use this, and then just the equity of these water processes.” Originally from India, Gokhale says he’s seen places that have barely any water at all and others that have floods year after year. “There’s a lot of interesting work to be done, and I think it’s work in this area that’s really going to impact a lot of people’s lives in years to come,” Gokhale says.

    Doyle adds, “water is the most important thing, perhaps for the next decades to come, so it’s very fulfilling to work on something that is so important to the whole world.” More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Energizing communities in Africa

    Growing up in Lagos, Nigeria, Ayomikun Ayodeji enjoyed the noisy hustle and bustle of his neighborhood. The cacophony included everything from vendors hawking water sachets and mini sausages, to commuters shouting for the next bus.

    Another common sound was the cry of “Up NEPA!” — an acronym for the Nigerian Electrical Power Authority — which Ayodeji would chant in unison with other neighborhood children when power had been restored after an outage. He remembers these moments fondly because, despite the difficulties of the frequent outages, the call also meant that people finally did have long-awaited electricity in their homes.

    “I grew up without reliable electricity, so power is something I’ve always been interested in,” says Ayodeji, who is now a senior studying chemical engineering. He hopes to use the knowledge he has gained during his time at MIT to expand energy access in his home country and elsewhere in Africa.

    Before coming to MIT, Ayodeji spent two years in Italy at United World College, where he embarked on chemistry projects, specifically focusing on dye-sensitized solar cells. He then transferred to the Institute, seeking a more technical grounding. He hoped that the knowledge gained in and out of the classroom would equip him with the tools to help combat the energy crisis in Lagos.

    “The questions that remained in the back of my mind were: How can I give back to the community I came from? How can I use the resources around me to help others?”  he says.

    This community-oriented mindset led Ayodeji to team up with a group of friends and brainstorm ideas for how they could help communities close to them. They eventually partnered with the Northeast Children’s Trust (NECT), an organization that helps children affected by the extremist group Boko Haram. Ayodeji and his friends looked at how to expand NECT’s educational program, and decided to build an offline, portable classroom server with a repository of books, animations, and activities for students at the primary and secondary education levels. The project was sponsored by Davis Projects for Peace and MIT’s PKG Center.

    Because of travel restrictions, Ayodeji was the only member of his team able to fly to Nigeria in the summer of 2019 to facilitate installing the servers. He says he wished his team could have been there, but he appreciated the opportunity to speak with the children directly, inspired by their excitement to learn and grow. The experience reaffirmed Ayodeji’s desire to pursue social impact projects, especially in Nigeria.

    “We knew we hadn’t just taken a step in providing the kids with a well-rounded education, but we also supported the center, NECT, in raising the next generation of future leaders that would guide that region to a sustainable, peaceful future,” he says.

    Ayodeji has also sought out energy-related opportunities on campus, pursuing an undergraduate research program (UROP) in the Buonassisi Lab in his sophomore year. He was tasked with testing perovskite solar cells, which have the potential to reach high efficiencies at low production costs. He characterized the cells using X-ray diffraction, studying their stability and degradation pathways. While Ayodeji enjoyed his first experience doing hands-on energy research, he found he was more curious about how energy technologies were implemented to reach various communities. “I wanted to see how things were being done in the industry,” he says.

    In the summer after his sophomore year, Ayodeji interned with Pioneer Natural Resources, an independent oil and gas company in Texas. Ayodeji worked as part of the completions projects team to assess the impact of design changes on cluster efficiency, that is, how evenly fluid is distributed along the wellbore. By using fiberoptic and photographic data to analyze perforation erosion, he discovered ways to lower costs while maintaining environmental stability during completions. The experience taught Ayodeji about the corporate side of the energy industry and enabled him to observe how approaches to alternative energy sources differ across countries, especially in the U.S. and Nigeria.

    “Some developing economies don’t have the capacity to pour resources into expanding renewable energy infrastructure at the rate that most developed economies do. While it is important to think sustainably for the long run, it is also important for us to understand that a clean energy transition is not something that can be done overnight,” he says.

    Ayodeji also employs his community-oriented mindset on campus. He is currently the vice president of the African Students’ Association (ASA), where he formerly chaired the African Learning Circle, a weekly discussion panel spotlighting key development and innovation events taking place on the African continent. He is also involved with student outreach, both within the ASA and as an international orientation student coordinator for the International Students Office.

    As a member of Cru, a Christian community on campus, Ayodeji helps lead a bible study and says the group supports him as he navigates college life. “It is a wonderful community of people I explore faith with and truly lean on when things get tough,” he says.

    After graduating, Ayodeji plans to start work at Boston Consulting Group, where he interned last summer. He expects he’ll have opportunities to engage with private equity issues and tackle energy-related cases while learning more about where the industry is headed.

    His long-term goal is to help expand renewable energy access and production across the African continent.

    “A key element of what the world needs to develop and grow is access to reliable energy. I hope to keep expanding my problem-solving toolkit so that, one day, it can be useful in electrifying communities back home,” he says. More

  • in

    Institute Professor Paula Hammond named to White House science council

    Paula Hammond, an MIT Institute Professor and head of MIT’s Department of Chemical Engineering, has been chosen to serve on the President’s Council of Advisors on Science and Technology (PCAST), the White House announced today.

    The council advises the president on matters involving science, technology, education, and innovation policy. It also provides the White House with scientific and technical information that is needed to inform public policy relating to the U.S. economy, U.S. workers, and national security.

    “For me, this is an exciting opportunity,” Hammond says. “I have always been interested in considering how science can solve important problems in our community, in our country, and globally. It’s very meaningful for me to have a chance to have an advisory role at that level.”

    Hammond is one of 30 members named to the council, which is co-chaired by Frances Arnold, a professor at Caltech, and Maria Zuber, MIT’s vice president for research.

    “Paula is an extraordinary engineer, teacher, and colleague, and President Biden’s decision to appoint her to the council is an excellent one,” Zuber says. “I think about the work ahead of us — not just to restore science and technology to their proper place in policymaking, but also to make sure that they lead to real improvements in the lives of everyone in our country — and I can’t think of anyone better suited to the challenge than Paula.”

    Hammond, whose research as a chemical engineer touches on the fields of both medicine and energy, said she hopes to help address critical issues such as equal access to health care and efforts to mitigate climate change.

    “I’m very excited about the opportunities presented at the interface of engineering and health, and in particular, how we might be able to expand the benefits that we gain from our work to a broader set of communities, so that we’re able to address some of the disparities we see in health, which have been so obvious during the pandemic,” says Hammond, who is also a member of MIT’s Koch Institute for Integrative Cancer Research. “How we might be able to use everything from computational modeling and data science to technological innovation to equalize access to health is one area that I care a lot about.”

    Hammond’s research focuses on developing novel polymers and nanomaterials for a variety of applications in drug delivery, noninvasive imaging, solar cells, and battery technology. Using techniques for building polymers with highly controlled architectures, she has designed drug-delivering nanoparticles that can home in on tumors, as well as polymer films that dramatically improve the efficiency of methanol fuel cells.

    As an MIT faculty member and mentor to graduate students, Hammond has worked to increase opportunities for underrepresented minorities in science and engineering fields. That is a goal she also hopes to pursue in her new role.

    “There’s a lot of work to be done when we look at the low numbers of students of color who are actually going on to science and engineering fields,” she says. “When I think about my work related to increasing diversity in those areas, part of the reason I do it is because that’s where we gain excellence, and where we gain solutions and the foresight to work on the right problems. I also think that it’s important for there to be broad access to the power that science brings.”

    Hammond, who earned both her bachelor’s degree and PhD from MIT, has been a member of the faculty since 1995. She has been a full professor since 2006 and has chaired the Department of Chemical Engineering since 2015. Earlier this year, she was named an Institute Professor, MIT’s highest faculty honor. She is also one of only 25 people who have been elected to all three National Academies — Engineering, Science, and Medicine.

    She has previously served on the U.S. Secretary of Energy Scientific Advisory Board, the NIH Center for Scientific Review Advisory Council, and the Board of Directors of the American Institute of Chemical Engineers. She also chaired or co-chaired two committees that contributed landmark reports on gender and race at MIT: the Initiative for Faculty Race and Diversity, and the Academic and Organizational Relationships Working Group. More

  • in

    Researchers design sensors to rapidly detect plant hormones

    Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) interdisciplinary research group of the Singapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL) and Nanyang Technological University (NTU), have developed the first-ever nanosensor to enable rapid testing of synthetic auxin plant hormones. The novel nanosensors are safer and less tedious than existing techniques for testing plants’ response to compounds such as herbicide, and can be transformative in improving agricultural production and our understanding of plant growth.

    The scientists designed sensors for two plant hormones — 1-naphthalene acetic acid (NAA) and 2,4-dichlorophenoxyacetic acid (2,4-D) — which are used extensively in the farming industry for regulating plant growth and as herbicides, respectively. Current methods to detect NAA and 2,4-D cause damage to plants, and are unable to provide real-time in vivo monitoring and information.

    Based on the concept of corona phase molecular recognition (​​CoPhMoRe) pioneered by the Strano Lab at SMART DiSTAP and MIT, the new sensors are able to detect the presence of NAA and 2,4-D in living plants at a swift pace, providing plant information in real-time, without causing any harm. The team has successfully tested both sensors on a number of everyday crops including pak choi, spinach, and rice across various planting mediums such as soil, hydroponic, and plant tissue culture.

    Explained in a paper titled “Nanosensor Detection of Synthetic Auxins In Planta using Corona Phase Molecular Recognition” published in the journal ACS Sensors, the research can facilitate more efficient use of synthetic auxins in agriculture and hold tremendous potential to advance plant biology study.

    “Our CoPhMoRe technique has previously been used to detect compounds such as hydrogen peroxide and heavy-metal pollutants like arsenic — but this is the first successful case of CoPhMoRe sensors developed for detecting plant phytohormones that regulate plant growth and physiology, such as sprays to prevent premature flowering and dropping of fruits,” says DiSTAP co-lead principal investigator Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. “This technology can replace current state-of-the-art sensing methods which are laborious, destructive, and unsafe.”

    Of the two sensors developed by the research team, the 2,4-D nanosensor also showed the ability to detect herbicide susceptibility, enabling farmers and agricultural scientists to quickly find out how vulnerable or resistant different plants are to herbicides without the need to monitor crop or weed growth over days. “This could be incredibly beneficial in revealing the mechanism behind how 2,4-D works within plants and why crops develop herbicide resistance,” says DiSTAP and TLL Principal Investigator Rajani Sarojam.

    “Our research can help the industry gain a better understanding of plant growth dynamics and has the potential to completely change how the industry screens for herbicide resistance, eliminating the need to monitor crop or weed growth over days,” says Mervin Chun-Yi Ang, a research scientist at DiSTAP. “It can be applied across a variety of plant species and planting mediums, and could easily be used in commercial setups for rapid herbicide susceptibility testing, such as urban farms.”

    NTU Professor Mary Chan-Park Bee Eng says, “Using nanosensors for in planta detection eliminates the need for extensive extraction and purification processes, which saves time and money. They also use very low-cost electronics, which makes them easily adaptable for commercial setups.”

    The team says their research can lead to future development of real-time nanosensors for other dynamic plant hormones and metabolites in living plants as well.

    The development of the nanosensor, optical detection system, and image processing algorithms for this study was done by SMART, NTU, and MIT, while TLL validated the nanosensors and provided knowledge of plant biology and plant signaling mechanisms. The research is carried out by SMART and supported by NRF under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    DiSTAP is one of the five interdisciplinary research roups in SMART. The DiSTAP program addresses deep problems in food production in Singapore and the world by developing a suite of impactful and novel analytical, genetic, and biosynthetic technologies. The goal is to fundamentally change how plant biosynthetic pathways are discovered, monitored, engineered, and ultimately translated to meet the global demand for food and nutrients.

    Scientists from MIT, TTL, NTU, and National University of Singapore (NUS) are collaboratively developing new tools for the continuous measurement of important plant metabolites and hormones for novel discovery, deeper understanding and control of plant biosynthetic pathways in ways not yet possible, especially in the context of green leafy vegetables; leveraging these new techniques to engineer plants with highly desirable properties for global food security, including high yield density production, drought, and pathogen resistance and biosynthesis of high-value commercial products; developing tools for producing hydrophobic food components in industry-relevant microbes; developing novel microbial and enzymatic technologies to produce volatile organic compounds that can protect and/or promote growth of leafy vegetables; and applying these technologies to improve urban farming.

    DiSTAP is led by Michael Strano and Singapore co-lead principal investigator Professor Chua Nam Hai.

    SMART was established by MIT, in partnership with the NRF, in 2007. SMART, the first entity in CREATE, serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both. SMART currently comprises an Innovation Center and five interdisciplinary research groups: Antimicrobial Resistance (AMR), Critical Analytics for Manufacturing Personalized-Medicine (CAMP), DiSTAP, Future Urban Mobility (FM), and Low Energy Electronic Systems (LEES). SMART is funded by the NRF. More

  • in

    J-WAFS announces 2021 Solutions Grants for commercializing water and food technologies

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the 2021 J-WAFS Solutions grant recipients. The J-WAFS Solutions program aims to propel MIT water- and food-related research toward commercialization. Grant recipients receive one year of financial support, as well as mentorship, networking, and guidance from industry experts, to begin their journey into the commercial world — whether that be in the form of bringing innovative products to market or launching cutting-edge startup companies. 

    This year, three projects will receive funding across water, food, and agriculture spaces. The winning projects will advance nascent technologies for off-grid refrigeration, portable water filtration, and dairy waste recycling. Each provides an efficient, accessible solution to the respective challenge being addressed.

    Since the start of the J-WAFS Solutions program in 2015, grants have provided instrumental support in creating a number of key MIT startups that focus on major water and food challenges. A 2015-16 grant helped the team behind Via Separations develop their business plan to massively decarbonize industrial separations processes. Other successful J-WAFS Solutions alumni include researchers who created a low-cost water filter made from tree branches and the team that launched the startup Xibus Systems, which is developing a handheld food safety sensor.

    “New technological advances are being made at MIT every day, and J-WAFS Solutions grants provide critical resources and support for these technologies to make it to market so that they can transform our local and global water and food systems,” says J-WAFS Executive Director Renee Robins. “This year’s grant recipients offer innovative tools that will provide more accessible food storage for smallholder farmers in places like Africa, safer drinking water, and a new approach to recycling food waste,” Robins notes. She adds, “J-WAFS is excited to work with these teams, and we look forward to seeing their impact on the water and food sectors.”

    The J-WAFS Solutions program is implemented in collaboration with Community Jameel, the global philanthropic organization founded by Mohammed Jameel ’78, and is supported by the MIT Venture Mentoring Service and the iCorps New England Regional Innovation Node at MIT.

    Mobile evaporative cooling rooms for vegetable preservation

    Food waste is a persistent problem across food systems supply chains, as 30-50 percent of food produced is lost before it reaches the table. The problem is compounded in areas without access to the refrigeration necessary to store food after it is harvested. Hot and dry climates in particular struggle to preserve food before it reaches consumers. A team led by Daniel Frey, faculty director for research at MIT D-Lab and professor of mechanical engineering, has pioneered a new approach to enable farmers to better preserve their produce and improve access to nutritious food in the community. The team includes Leon Glicksman, professor of building technology and mechanical engineering, and Eric Verploegen, a research engineer in MIT D-Lab.

    Instead of relying on traditional refrigeration with high energy and cost requirements, the team is utilizing forced-air evaporative cooling chambers. Their design, based on retrofitting shipping containers, will provide a lower-cost, better-performing solution enabling farmers to chill their produce without access to power. The research team was previously funded by J-WAFS through two different grants in 2019 to develop the off-grid technology in collaboration with researchers at the University of Nairobi and the Collectives for Integrated Livelihood Initiatives (CInI), Jamshedpur. Now, the cooling rooms are ready for pilot testing, which the MIT team will conduct with rural farmers in Kenya and India. The MIT team will deploy and test the storage chambers through collaborations with two Kenyan social enterprises and a nongovernmental organization in Gujarat, India. 

    Off-grid portable ion concentration polarization desalination unit

    Shrinking aquifers, polluted rivers, and increased drought are making fresh drinking water increasingly scarce, driving the need for improved desalination technologies. The water purifiers market, which was $45 billion in 2019, is expected to grow to $90.1 billion in 2025. However, current products on the market are limited in scope, in that they are designed to treat water that is already relatively low in salinity, and do not account for lead contamination or other technical challenges. A better solution is required to ensure access to clean and safe drinking water in the face of water shortages. 

    A team led by Jongyoon Han, professor of biological engineering and electrical engineering at MIT, has developed a portable desalination unit that utilizes an ion concentration polarization process. The compact and lightweight unit has the ability to remove dissolved and suspended solids from brackish water at a rate of one liter per hour, both in installed and remote field settings. The unit was featured in an award-winning video in the 2021 J-WAFS World Water Day Video Competition: MIT Research for a Water Secure Future. The team plans to develop the next-generation prototype of the desalination unit alongside a mass-production strategy and business model.

    Converting dairy industry waste into food and feed ingredients

    One of the trendiest foods in the last decade, Greek yogurt, has a hidden dark side: acid whey. This low-pH, liquid by-product of yogurt production has been a growing problem for producers, as untreated disposal of the whey can pose environmental risks due to its high organic content and acidic odor.

    With an estimated 3 million tons of acid whey generated in the United States each year, MIT researchers saw an opportunity to turn waste into a valuable resource for our food systems. Led by the Willard Henry Dow Professor in Chemical Engineering, Gregory Stephanopoulos, and Anthony J. Sinskey, professor of microbiology, the researchers are utilizing metabolic engineering to turn acid whey into carotenoids, the yellow and orange organic pigments found naturally in carrots, autumn leaves, and salmon. The team is hoping that these carotenoids can be utilized as food supplements or feed additives to make the most of what otherwise would have been wasted. More