More stories

  • in

    Surprise discovery could lead to improved catalysts for industrial reactions

    The process of catalysis — in which a material speeds up a chemical reaction — is crucial to the production of many of the chemicals used in our everyday lives. But even though these catalytic processes are widespread, researchers often lack a clear understanding of exactly how they work.A new analysis by researchers at MIT has shown that an important industrial synthesis process, the production of vinyl acetate, requires a catalyst to take two different forms, which cycle back and forth from one to the other as the chemical process unfolds.Previously, it had been thought that only one of the two forms was needed. The new findings are published today in the journal Science, in a paper by MIT graduate students Deiaa Harraz and Kunal Lodaya, Bryan Tang PhD ’23, and MIT professor of chemistry and chemical engineering Yogesh Surendranath.There are two broad classes of catalysts: homogeneous catalysts, which consist of dissolved molecules, and heterogeneous catalysts, which are solid materials whose surface provides the site for the chemical reaction. “For the longest time,” Surendranath says, “there’s been a general view that you either have catalysis happening on these surfaces, or you have them happening on these soluble molecules.” But the new research shows that in the case of vinyl acetate — an important material that goes into many polymer products such as the rubber in the soles of your shoes — there is an interplay between both classes of catalysis.“What we discovered,” Surendranath explains, “is that you actually have these solid metal materials converting into molecules, and then converting back into materials, in a cyclic dance.”He adds: “This work calls into question this paradigm where there’s either one flavor of catalysis or another. Really, there could be an interplay between both of them in certain cases, and that could be really advantageous for having a process that’s selective and efficient.”The synthesis of vinyl acetate has been a large-scale industrial reaction since the 1960s, and it has been well-researched and refined over the years to improve efficiency. This has happened largely through a trial-and-error approach, without a precise understanding of the underlying mechanisms, the researchers say.While chemists are often more familiar with homogeneous catalysis mechanisms, and chemical engineers are often more familiar with surface catalysis mechanisms, fewer researchers study both. This is perhaps part of the reason that the full complexity of this reaction was not previously captured. But Harraz says he and his colleagues are working at the interface between disciplines. “We’ve been able to appreciate both sides of this reaction and find that both types of catalysis are critical,” he says.The reaction that produces vinyl acetate requires something to activate the oxygen molecules that are one of the constituents of the reaction, and something else to activate the other ingredients, acetic acid and ethylene. The researchers found that the form of the catalyst that worked best for one part of the process was not the best for the other. It turns out that the molecular form of the catalyst does the key chemistry with the ethylene and the acetic acid, while it’s the surface that ends up doing the activation of the oxygen.They found that the underlying process involved in interconverting the two forms of the catalyst is actually corrosion, similar to the process of rusting. “It turns out that in rusting, you actually go through a soluble molecular species somewhere in the sequence,” Surendranath says.The team borrowed techniques traditionally used in corrosion research to study the process. They used electrochemical tools to study the reaction, even though the overall reaction does not require a supply of electricity. By making potential measurements, the researchers determined that the corrosion of the palladium catalyst material to soluble palladium ions is driven by an electrochemical reaction with the oxygen, converting it to water. Corrosion is “one of the oldest topics in electrochemistry,” says Lodaya, “but applying the science of corrosion to understand catalysis is much newer, and was essential to our findings.”By correlating measurements of catalyst corrosion with other measurements of the chemical reaction taking place, the researchers proposed that it was the corrosion rate that was limiting the overall reaction. “That’s the choke point that’s controlling the rate of the overall process,” Surendranath says.The interplay between the two types of catalysis works efficiently and selectively “because it actually uses the synergy of a material surface doing what it’s good at and a molecule doing what it’s good at,” Surendranath says. The finding suggests that, when designing new catalysts, rather than focusing on either solid materials or soluble molecules alone, researchers should think about how the interplay of both may open up new approaches.“Now, with an improved understanding of what makes this catalyst so effective, you can try to design specific materials or specific interfaces that promote the desired chemistry,” Harraz says. Since this process has been worked on for so long, these findings may not necessarily lead to improvements in this specific process of making vinyl acetate, but it does provide a better understanding of why the materials work as they do, and could lead to improvements in other catalytic processes.Understanding that “catalysts can transit between molecule and material and back, and the role that electrochemistry plays in those transformations, is a concept that we are really excited to expand on,” Lodaya says.Harraz adds: “With this new understanding that both types of catalysis could play a role, what other catalytic processes are out there that actually involve both? Maybe those have a lot of room for improvement that could benefit from this understanding.”This work is “illuminating, something that will be worth teaching at the undergraduate level,” says Christophe Coperet, a professor of inorganic chemistry at ETH Zurich, who was not associated with the research. “The work highlights new ways of thinking. … [It] is notable in the sense that it not only reconciles homogeneous and heterogeneous catalysis, but it describes these complex processes as half reactions, where electron transfers can cycle between distinct entities.”The research was supported, in part, by the National Science Foundation as a Phase I Center for Chemical Innovation; the Center for Interfacial Ionics; and the Gordon and Betty Moore Foundation. More

  • in

    J-WAFS: Supporting food and water research across MIT

    MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) has transformed the landscape of water and food research at MIT, driving faculty engagement and catalyzing new research and innovation in these critical areas. With philanthropic, corporate, and government support, J-WAFS’ strategic approach spans the entire research life cycle, from support for early-stage research to commercialization grants for more advanced projects.Over the past decade, J-WAFS has invested approximately $25 million in direct research funding to support MIT faculty pursuing transformative research with the potential for significant impact. “Since awarding our first cohort of seed grants in 2015, it’s remarkable to look back and see that over 10 percent of the MIT faculty have benefited from J-WAFS funding,” observes J-WAFS Executive Director Renee J. Robins ’83. “Many of these professors hadn’t worked on water or food challenges before their first J-WAFS grant.” By fostering interdisciplinary collaborations and supporting high-risk, high-reward projects, J-WAFS has amplified the capacity of MIT faculty to pursue groundbreaking research that addresses some of the world’s most pressing challenges facing our water and food systems.Drawing MIT faculty to water and food researchJ-WAFS open calls for proposals enable faculty to explore bold ideas and develop impactful approaches to tackling critical water and food system challenges. Professor Patrick Doyle’s work in water purification exemplifies this impact. “Without J-WAFS, I would have never ventured into the field of water purification,” Doyle reflects. While previously focused on pharmaceutical manufacturing and drug delivery, exposure to J-WAFS-funded peers led him to apply his expertise in soft materials to water purification. “Both the funding and the J-WAFS community led me to be deeply engaged in understanding some of the key challenges in water purification and water security,” he explains.Similarly, Professor Otto Cordero of the Department of Civil and Environmental Engineering (CEE) leveraged J-WAFS funding to pivot his research into aquaculture. Cordero explains that his first J-WAFS seed grant “has been extremely influential for my lab because it allowed me to take a step in a new direction, with no preliminary data in hand.” Cordero’s expertise is in microbial communities. He was previous unfamiliar with aquaculture, but he saw the relevance of microbial communities the health of farmed aquatic organisms.Supporting early-career facultyNew assistant professors at MIT have particularly benefited from J-WAFS funding and support. J-WAFS has played a transformative role in shaping the careers and research trajectories of many new faculty members by encouraging them to explore novel research areas, and in many instances providing their first MIT research grant.Professor Ariel Furst reflects on how pivotal J-WAFS’ investment has been in advancing her research. “This was one of the first grants I received after starting at MIT, and it has truly shaped the development of my group’s research program,” Furst explains. With J-WAFS’ backing, her lab has achieved breakthroughs in chemical detection and remediation technologies for water. “The support of J-WAFS has enabled us to develop the platform funded through this work beyond the initial applications to the general detection of environmental contaminants and degradation of those contaminants,” she elaborates. Karthish Manthiram, now a professor of chemical engineering and chemistry at Caltech, explains how J-WAFS’ early investment enabled him and other young faculty to pursue ambitious ideas. “J-WAFS took a big risk on us,” Manthiram reflects. His research on breaking the nitrogen triple bond to make ammonia for fertilizer was initially met with skepticism. However, J-WAFS’ seed funding allowed his lab to lay the groundwork for breakthroughs that later attracted significant National Science Foundation (NSF) support. “That early funding from J-WAFS has been pivotal to our long-term success,” he notes. These stories underscore the broad impact of J-WAFS’ support for early-career faculty, and its commitment to empowering them to address critical global challenges and innovate boldly.Fueling follow-on funding J-WAFS seed grants enable faculty to explore nascent research areas, but external funding for continued work is usually necessary to achieve the full potential of these novel ideas. “It’s often hard to get funding for early stage or out-of-the-box ideas,” notes J-WAFS Director Professor John H. Lienhard V. “My hope, when I founded J-WAFS in 2014, was that seed grants would allow PIs [principal investigators] to prove out novel ideas so that they would be attractive for follow-on funding. And after 10 years, J-WAFS-funded research projects have brought more than $21 million in subsequent awards to MIT.”Professor Retsef Levi led a seed study on how agricultural supply chains affect food safety, with a team of faculty spanning the MIT schools Engineering and Science as well as the MIT Sloan School of Management. The team parlayed their seed grant research into a multi-million-dollar follow-on initiative. Levi reflects, “The J-WAFS seed funding allowed us to establish the initial credibility of our team, which was key to our success in obtaining large funding from several other agencies.”Dave Des Marais was an assistant professor in the Department of CEE when he received his first J-WAFS seed grant. The funding supported his research on how plant growth and physiology are controlled by genes and interact with the environment. The seed grant helped launch his lab’s work addressing enhancing climate change resilience in agricultural systems. The work led to his Faculty Early Career Development (CAREER) Award from the NSF, a prestigious honor for junior faculty members. Now an associate professor, Des Marais’ ongoing project to further investigate the mechanisms and consequences of genomic and environmental interactions is supported by the five-year, $1,490,000 NSF grant. “J-WAFS providing essential funding to get my new research underway,” comments Des Marais.Stimulating interdisciplinary collaborationDes Marais’ seed grant was also key to developing new collaborations. He explains, “the J-WAFS grant supported me to develop a collaboration with Professor Caroline Uhler in EECS/IDSS [the Department of Electrical Engineering and Computer Science/Institute for Data, Systems, and Society] that really shaped how I think about framing and testing hypotheses. One of the best things about J-WAFS is facilitating unexpected connections among MIT faculty with diverse yet complementary skill sets.”Professors A. John Hart of the Department of Mechanical Engineering and Benedetto Marelli of CEE also launched a new interdisciplinary collaboration with J-WAFS funding. They partnered to join expertise in biomaterials, microfabrication, and manufacturing, to create printed silk-based colorimetric sensors that detect food spoilage. “The J-WAFS Seed Grant provided a unique opportunity for multidisciplinary collaboration,” Hart notes.Professors Stephen Graves in the MIT Sloan School of Management and Bishwapriya Sanyal in the Department of Urban Studies and Planning (DUSP) partnered to pursue new research on agricultural supply chains. With field work in Senegal, their J-WAFS-supported project brought together international development specialists and operations management experts to study how small firms and government agencies influence access to and uptake of irrigation technology by poorer farmers. “We used J-WAFS to spur a collaboration that would have been improbable without this grant,” they explain. Being part of the J-WAFS community also introduced them to researchers in Professor Amos Winter’s lab in the Department of Mechanical Engineering working on irrigation technologies for low-resource settings. DUSP doctoral candidate Mark Brennan notes, “We got to share our understanding of how irrigation markets and irrigation supply chains work in developing economies, and then we got to contrast that with their understanding of how irrigation system models work.”Timothy Swager, professor of chemistry, and Rohit Karnik, professor of mechanical engineering and J-WAFS associate director, collaborated on a sponsored research project supported by Xylem, Inc. through the J-WAFS Research Affiliate program. The cross-disciplinary research, which targeted the development of ultra-sensitive sensors for toxic PFAS chemicals, was conceived following a series of workshops hosted by J-WAFS. Swager and Karnik were two of the participants, and their involvement led to the collaborative proposal that Xylem funded. “J-WAFS funding allowed us to combine Swager lab’s expertise in sensing with my lab’s expertise in microfluidics to develop a cartridge for field-portable detection of PFAS,” says Karnik. “J-WAFS has enriched my research program in so many ways,” adds Swager, who is now working to commercialize the technology.Driving global collaboration and impactJ-WAFS has also helped MIT faculty establish and advance international collaboration and impactful global research. By funding and supporting projects that connect MIT researchers with international partners, J-WAFS has not only advanced technological solutions, but also strengthened cross-cultural understanding and engagement.Professor Matthew Shoulders leads the inaugural J-WAFS Grand Challenge project. In response to the first J-WAFS call for “Grand Challenge” proposals, Shoulders assembled an interdisciplinary team based at MIT to enhance and provide climate resilience to agriculture by improving the most inefficient aspect of photosynthesis, the notoriously-inefficient carbon dioxide-fixing plant enzyme RuBisCO. J-WAFS funded this high-risk/high-reward project following a competitive process that engaged external reviewers through a several rounds of iterative proposal development. The technical feedback to the team led them to researchers with complementary expertise from the Australian National University. “Our collaborative team of biochemists and synthetic biologists, computational biologists, and chemists is deeply integrated with plant biologists and field trial experts, yielding a robust feedback loop for enzyme engineering,” Shoulders says. “Together, this team will be able to make a concerted effort using the most modern, state-of-the-art techniques to engineer crop RuBisCO with an eye to helping make meaningful gains in securing a stable crop supply, hopefully with accompanying improvements in both food and water security.”Professor Leon Glicksman and Research Engineer Eric Verploegen’s team designed a low-cost cooling chamber to preserve fruits and vegetables harvested by smallholder farmers with no access to cold chain storage. J-WAFS’ guidance motivated the team to prioritize practical considerations informed by local collaborators, ensuring market competitiveness. “As our new idea for a forced-air evaporative cooling chamber was taking shape, we continually checked that our solution was evolving in a direction that would be competitive in terms of cost, performance, and usability to existing commercial alternatives,” explains Verploegen. Following the team’s initial seed grant, the team secured a J-WAFS Solutions commercialization grant, which Verploegen say “further motivated us to establish partnerships with local organizations capable of commercializing the technology earlier in the project than we might have done otherwise.” The team has since shared an open-source design as part of its commercialization strategy to maximize accessibility and impact.Bringing corporate sponsored research opportunities to MIT facultyJ-WAFS also plays a role in driving private partnerships, enabling collaborations that bridge industry and academia. Through its Research Affiliate Program, for example, J-WAFS provides opportunities for faculty to collaborate with industry on sponsored research, helping to convert scientific discoveries into licensable intellectual property (IP) that companies can turn into commercial products and services.J-WAFS introduced professor of mechanical engineering Alex Slocum to a challenge presented by its research affiliate company, Xylem: how to design a more energy-efficient pump for fluctuating flows. With centrifugal pumps consuming an estimated 6 percent of U.S. electricity annually, Slocum and his then-graduate student Hilary Johnson SM ’18, PhD ’22 developed an innovative variable volute mechanism that reduces energy usage. “Xylem envisions this as the first in a new category of adaptive pump geometry,” comments Johnson. The research produced a pump prototype and related IP that Xylem is working on commercializing. Johnson notes that these outcomes “would not have been possible without J-WAFS support and facilitation of the Xylem industry partnership.” Slocum adds, “J-WAFS enabled Hilary to begin her work on pumps, and Xylem sponsored the research to bring her to this point … where she has an opportunity to do far more than the original project called for.”Swager speaks highly of the impact of corporate research sponsorship through J-WAFS on his research and technology translation efforts. His PFAS project with Karnik described above was also supported by Xylem. “Xylem was an excellent sponsor of our research. Their engagement and feedback were instrumental in advancing our PFAS detection technology, now on the path to commercialization,” Swager says.Looking forwardWhat J-WAFS has accomplished is more than a collection of research projects; a decade of impact demonstrates how J-WAFS’ approach has been transformative for many MIT faculty members. As Professor Mathias Kolle puts it, his engagement with J-WAFS “had a significant influence on how we think about our research and its broader impacts.” He adds that it “opened my eyes to the challenges in the field of water and food systems and the many different creative ideas that are explored by MIT.” This thriving ecosystem of innovation, collaboration, and academic growth around water and food research has not only helped faculty build interdisciplinary and international partnerships, but has also led to the commercialization of transformative technologies with real-world applications. C. Cem Taşan, the POSCO Associate Professor of Metallurgy who is leading a J-WAFS Solutions commercialization team that is about to launch a startup company, sums it up by noting, “Without J-WAFS, we wouldn’t be here at all.”  As J-WAFS looks to the future, its continued commitment — supported by the generosity of its donors and partners — builds on a decade of success enabling MIT faculty to advance water and food research that addresses some of the world’s most pressing challenges. More

  • in

    Seeking climate connections among the oceans’ smallest organisms

    Andrew Babbin tries to pack light for work trips. Along with the travel essentials, though, he also brings a roll each of electrical tape, duct tape, lab tape, a pack of cable ties, and some bungee cords.“It’s my MacGyver kit: You never know when you have to rig something on the fly in the field or fix a broken bag,” Babbin says.The trips Babbin takes are far out to sea, on month-long cruises, where he works to sample waters off the Pacific coast and out in the open ocean. In remote locations, repair essentials often come in handy, as when Babbin had to zip-tie a wrench to a sampling device to help it sink through an icy Antarctic lake.Babbin is an oceanographer and marine biogeochemist who studies marine microbes and the ways in which they control the cycling of nitrogen between the ocean and the atmosphere. This exchange helps maintain healthy ocean ecosystems and supports the ocean’s capacity to store carbon.By combining measurements that he takes in the ocean with experiments in his MIT lab, Babbin is working to understand the connections between microbes and ocean nitrogen, which could in turn help scientists identify ways to maintain the ocean’s health and productivity. His work has taken him to many coastal and open-ocean regions around the globe.“You really become an oceanographer and an Earth scientist to see the world,” says Babbin, who recently earned tenure as the Cecil and Ida Green Career Development Professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences. “We embrace the diversity of places and cultures on this planet. To see just a small fraction of that is special.”A powerful cycleThe ocean has been a constant presence for Babbin since childhood. His family is from Monmouth County, New Jersey, where he and his twin sister grew up playing along the Jersey shore. When they were teenagers, their parents took the kids on family cruise vacations.“I always loved being on the water,” he says. “My favorite parts of any of those cruises were the days at sea, where you were just in the middle of some ocean basin with water all around you.”In school, Babbin gravitated to the sciences, and chemistry in particular. After high school, he attended Columbia University, where a visit to the school’s Earth and environmental engineering department catalyzed a realization.“For me, it was always this excitement about the water and about chemistry, and it was this pop of, ‘Oh wow, it doesn’t have to be one or the other,’” Babbin says.He chose to major in Earth and environmental engineering, with a concentration in water resources and climate risks. After graduating in 2008, Babbin returned to his home state, where he attended Princeton University and set a course for a PhD in geosciences, with a focus on chemical oceanography and environmental microbiology. His advisor, oceanographer Bess Ward, took Babbin on as a member of her research group and invited him on several month-long cruises to various parts of the eastern tropical Pacific.“I still remember that first trip,” Babbin recalls. “It was a whirlwind. Everyone else had been to sea a gazillion times and was loading the boat and strapping things down, and I had no idea of anything. And within a few hours, I was doing an experiment as the ship rocked back and forth!”Babbin learned to deploy sampling cannisters overboard, then haul them back up and analyze the seawater inside for signs of nitrogen — an essential nutrient for all living things on Earth.As it turns out, the plants and animals that depend on nitrogen to survive are unable to take it up from the atmosphere themselves. They require a sort of go-between, in the form of microbes that “fix” nitrogen, converting it from nitrogen gas to more digestible forms. In the ocean, this nitrogen fixation is done by highly specialized microbial species, which work to make nitrogen available to phytoplankton — microscopic plant-like organisms that are the foundation of the marine food chain. Phytoplankton are also a main route by which the ocean absorbs carbon dioxide from the atmosphere.Microorganisms may also use these biologically available forms of nitrogen for energy under certain conditions, returning nitrogen to the atmosphere. These microbes can also release a byproduct of nitrous oxide, which is a potent greenhouse gas that also can catalyze ozone loss in the stratosphere.Through his graduate work, at sea and in the lab, Babbin became fascinated with the cycling of nitrogen and the role that nitrogen-fixing microbes play in supporting the ocean’s ecosystems and the climate overall. A balance of nitrogen inputs and outputs sustains phytoplankton and maintains the ocean’s ability to soak up carbon dioxide.“Some of the really pressing questions in ocean biogeochemistry pertain to this cycling of nitrogen,” Babbin says. “Understanding the ways in which this one element cycles through the ocean, and how it is central to ecosystem health and the planet’s climate, has been really powerful.”In the lab and out to seaAfter completing his PhD in 2014, Babbin arrived at MIT as a postdoc in the Department of Civil and Environmental Engineering.“My first feeling when I came here was, wow, this really is a nerd’s playground,” Babbin says. “I embraced being part of a culture where we seek to understand the world better, while also doing the things we really want to do.”In 2017, he accepted a faculty position in MIT’s Department of Earth, Atmospheric and Planetary Sciences. He set up his laboratory space, painted in his favorite brilliant orange, on the top floor of the Green Building.His group uses 3D printers to fabricate microfluidic devices in which they reproduce the conditions of the ocean environment and study microbe metabolism and its effects on marine chemistry. In the field, Babbin has led research expeditions to the Galapagos Islands and parts of the eastern Pacific, where he has collected and analyzed samples of air and water for signs of nitrogen transformations and microbial activity. His new measuring station in the Galapagos is able to infer marine emissions of nitrous oxide across a large swath of the eastern tropical Pacific Ocean. His group has also sailed to southern Cuba, where the researchers studied interactions of microbes in coral reefs.Most recently, Babbin traveled to Antarctica, where he set up camp next to frozen lakes and plumbed for samples of pristine ice water that he will analyze for genetic remnants of ancient microbes. Such preserved bacterial DNA could help scientists understand how microbes evolved and influenced the Earth’s climate over billions of years.“Microbes are the terraformers,” Babbin notes. “They have been, since life evolved more than 3 billion years ago. We have to think about how they shape the natural world and how they will respond to the Anthropocene as humans monkey with the planet ourselves.”Collective actionBabbin is now charting new research directions. In addition to his work at sea and in the lab, he is venturing into engineering, with a new project to design denitrifying capsules. While nitrogen is an essential nutrient for maintaining a marine ecosystem, too much nitrogen, such as from fertilizer that runs off into lakes and streams, can generate blooms of toxic algae. Babbin is looking to design eco-friendly capsules that scrub excess anthropogenic nitrogen from local waterways. He’s also beginning the process of designing a new sensor to measure low-oxygen concentrations in the ocean. As the planet warms, the oceans are losing oxygen, creating “dead zones” where fish cannot survive. While others including Babbin have tried to map these oxygen minimum zones, or OMZs, they have done so sporadically, by dropping sensors into the ocean over limited range, depth, and times. Babbin’s sensors could potentially provide a more complete map of OMZs, as they would be deployed on wide-ranging, deep-diving, and naturally propulsive vehicles: sharks.“We want to measure oxygen. Sharks need oxygen. And if you look at where the sharks don’t go, you might have a sense of where the oxygen is not,” says Babbin, who is working with marine biologists on ways to tag sharks with oxygen sensors. “A number of these large pelagic fish move up and down the water column frequently, so you can map the depth to which they dive to, and infer something about the behavior. And my suggestion is, you might also infer something about the ocean’s chemistry.”When he reflects on what stimulates new ideas and research directions, Babbin credits working with others, in his own group and across MIT.“My best thoughts come from this collective action,” Babbin says. “Particularly because we all have different upbringings and approach things from a different perspective.”He’s bringing this collaborative spirit to his new role, as a mission director for MIT’s Climate Project. Along with Jesse Kroll, who is a professor of civil and environmental engineering and of chemical engineering, Babbin co-leads one of the project’s six missions: Restoring the Atmosphere, Protecting the Land and Oceans. Babbin and Kroll are planning a number of workshops across campus that they hope will generate new connections, and spark new ideas, particularly around ways to evaluate the effectiveness of different climate mitigation strategies and better assess the impacts of climate on society.“One area we want to promote is thinking of climate science and climate interventions as two sides of the same coin,” Babbin says. “There’s so much action that’s trying to be catalyzed. But we want it to be the best action. Because we really have one shot at doing this. Time is of the essence.” More

  • in

    Startup turns mining waste into critical metals for the U.S.

    At the heart of the energy transition is a metal transition. Wind farms, solar panels, and electric cars require many times more copper, zinc, and nickel than their gas-powered alternatives. They also require more exotic metals with unique properties, known as rare earth elements, which are essential for the magnets that go into things like wind turbines and EV motors.Today, China dominates the processing of rare earth elements, refining around 60 percent of those materials for the world. With demand for such materials forecasted to skyrocket, the Biden administration has said the situation poses national and economic security threats.Substantial quantities of rare earth metals are sitting unused in the United States and many other parts of the world today. The catch is they’re mixed with vast quantities of toxic mining waste.Phoenix Tailings is scaling up a process for harvesting materials, including rare earth metals and nickel, from mining waste. The company uses water and recyclable solvents to collect oxidized metal, then puts the metal into a heated molten salt mixture and applies electricity.The company, co-founded by MIT alumni, says its pilot production facility in Woburn, Massachusetts, is the only site in the world producing rare earth metals without toxic byproducts or carbon emissions. The process does use electricity, but Phoenix Tailings currently offsets that with renewable energy contracts.The company expects to produce more than 3,000 tons of the metals by 2026, which would have represented about 7 percent of total U.S. production last year.Now, with support from the Department of Energy, Phoenix Tailings is expanding the list of metals it can produce and accelerating plans to build a second production facility.For the founding team, including MIT graduates Tomás Villalón ’14 and Michelle Chao ’14 along with Nick Myers and Anthony Balladon, the work has implications for geopolitics and the planet.“Being able to make your own materials domestically means that you’re not at the behest of a foreign monopoly,” Villalón says. “We’re focused on creating critical materials for the next generation of technologies. More broadly, we want to get these materials in ways that are sustainable in the long term.”Tackling a global problemVillalón got interested in chemistry and materials science after taking Course 3.091 (Introduction to Solid-State Chemistry) during his first year at MIT. In his senior year, he got a chance to work at Boston Metal, another MIT spinoff that uses an electrochemical process to decarbonize steelmaking at scale. The experience got Villalón, who majored in materials science and engineering, thinking about creating more sustainable metallurgical processes.But it took a chance meeting with Myers at a 2018 Bible study for Villalón to act on the idea.“We were discussing some of the major problems in the world when we came to the topic of electrification,” Villalón recalls. “It became a discussion about how the U.S. gets its materials and how we should think about electrifying their production. I was finally like, ‘I’ve been working in the space for a decade, let’s go do something about it.’ Nick agreed, but I thought he just wanted to feel good about himself. Then in July, he randomly called me and said, ‘I’ve got [$7,000]. When do we start?’”Villalón brought in Chao, his former MIT classmate and fellow materials science and engineering major, and Myers brought Balladon, a former co-worker, and the founders started experimenting with new processes for producing rare earth metals.“We went back to the base principles, the thermodynamics I learned with MIT professors Antoine Allanore and Donald Sadoway, and understanding the kinetics of reactions,” Villalón says. “Classes like Course 3.022 (Microstructural Evolution in Materials) and 3.07 (Introduction to Ceramics) were also really useful. I touched on every aspect I studied at MIT.”The founders also received guidance from MIT’s Venture Mentoring Service (VMS) and went through the U.S. National Science Foundation’s I-Corps program. Sadoway served as an advisor for the company.After drafting one version of their system design, the founders bought an experimental quantity of mining waste, known as red sludge, and set up a prototype reactor in Villalón’s backyard. The founders ended up with a small amount of product, but they had to scramble to borrow the scientific equipment needed to determine what exactly it was. It turned out to be a small amount of rare earth concentrate along with pure iron.Today, at the company’s refinery in Woburn, Phoenix Tailings puts mining waste rich in rare earth metals into its mixture and heats it to around 1,300 degrees Fahrenheit. When it applies an electric current to the mixture, pure metal collects on an electrode. The process leaves minimal waste behind.“The key for all of this isn’t just the chemistry, but how everything is linked together, because with rare earths, you have to hit really high purities compared to a conventionally produced metal,” Villalón explains. “As a result, you have to be thinking about the purity of your material the entire way through.”From rare earths to nickel, magnesium, and moreVillalón says the process is economical compared to conventional production methods, produces no toxic byproducts, and is completely carbon free when renewable energy sources are used for electricity.The Woburn facility is currently producing several rare earth elements for customers, including neodymium and dysprosium, which are important in magnets. Customers are using the materials for things likewind turbines, electric cars, and defense applications.The company has also received two grants with the U.S. Department of Energy’s ARPA-E program totaling more than $2 million. Its 2023 grant supports the development of a system to extract nickel and magnesium from mining waste through a process that uses carbonization and recycled carbon dioxide. Both nickel and magnesium are critical materials for clean energy applications like batteries.The most recent grant will help the company adapt its process to produce iron from mining waste without emissions or toxic byproducts. Phoenix Tailings says its process is compatible with a wide array of ore types and waste materials, and the company has plenty of material to work with: Mining and processing mineral ores generates about 1.8 billion tons of waste in the U.S. each year.“We want to take our knowledge from processing the rare earth metals and slowly move it into other segments,” Villalón explains. “We simply have to refine some of these materials here. There’s no way we can’t. So, what does that look like from a regulatory perspective? How do we create approaches that are economical and environmentally compliant not just now, but 30 years from now?” More

  • in

    Translating MIT research into real-world results

    Inventive solutions to some of the world’s most critical problems are being discovered in labs, classrooms, and centers across MIT every day. Many of these solutions move from the lab to the commercial world with the help of over 85 Institute resources that comprise MIT’s robust innovation and entrepreneurship (I&E) ecosystem. The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) draws on MIT’s wealth of I&E knowledge and experience to help researchers commercialize their breakthrough technologies through the J-WAFS Solutions grant program. By collaborating with I&E programs on campus, J-WAFS prepares MIT researchers for the commercial world, where their novel innovations aim to improve productivity, accessibility, and sustainability of water and food systems, creating economic, environmental, and societal benefits along the way.The J-WAFS Solutions program launched in 2015 with support from Community Jameel, an international organization that advances science and learning for communities to thrive. Since 2015, J-WAFS Solutions has supported 19 projects with one-year grants of up to $150,000, with some projects receiving renewal grants for a second year of support. Solutions projects all address challenges related to water or food. Modeled after the esteemed grant program of MIT’s Deshpande Center for Technological Innovation, and initially administered by Deshpande Center staff, the J-WAFS Solutions program follows a similar approach by supporting projects that have already completed the basic research and proof-of-concept phases. With technologies that are one to three years away from commercialization, grantees work on identifying their potential markets and learn to focus on how their technology can meet the needs of future customers.“Ingenuity thrives at MIT, driving inventions that can be translated into real-world applications for widespread adoption, implantation, and use,” says J-WAFS Director Professor John H. Lienhard V. “But successful commercialization of MIT technology requires engineers to focus on many challenges beyond making the technology work. MIT’s I&E network offers a variety of programs that help researchers develop technology readiness, investigate markets, conduct customer discovery, and initiate product design and development,” Lienhard adds. “With this strong I&E framework, many J-WAFS Solutions teams have established startup companies by the completion of the grant. J-WAFS-supported technologies have had powerful, positive effects on human welfare. Together, the J-WAFS Solutions program and MIT’s I&E ecosystem demonstrate how academic research can evolve into business innovations that make a better world,” Lienhard says.Creating I&E collaborationsIn addition to support for furthering research, J-WAFS Solutions grants allow faculty, students, postdocs, and research staff to learn the fundamentals of how to transform their work into commercial products and companies. As part of the grant requirements, researchers must interact with mentors through MIT Venture Mentoring Service (VMS). VMS connects MIT entrepreneurs with teams of carefully selected professionals who provide free and confidential mentorship, guidance, and other services to help advance ideas into for-profit, for-benefit, or nonprofit ventures. Since 2000, VMS has mentored over 4,600 MIT entrepreneurs across all industries, through a dynamic and accomplished group of nearly 200 mentors who volunteer their time so that others may succeed. The mentors provide impartial and unbiased advice to members of the MIT community, including MIT alumni in the Boston area. J-WAFS Solutions teams have been guided by 21 mentors from numerous companies and nonprofits. Mentors often attend project events and progress meetings throughout the grant period.“Working with VMS has provided me and my organization with a valuable sounding board for a range of topics, big and small,” says Eric Verploegen PhD ’08, former research engineer in MIT’s D-Lab and founder of J-WAFS spinout CoolVeg. Along with professors Leon Glicksman and Daniel Frey, Verploegen received a J-WAFS Solutions grant in 2021 to commercialize cold-storage chambers that use evaporative cooling to help farmers preserve fruits and vegetables in rural off-grid communities. Verploegen started CoolVeg in 2022 to increase access and adoption of open-source, evaporative cooling technologies through collaborations with businesses, research institutions, nongovernmental organizations, and government agencies. “Working as a solo founder at my nonprofit venture, it is always great to have avenues to get feedback on communications approaches, overall strategy, and operational issues that my mentors have experience with,” Verploegen says. Three years after the initial Solutions grant, one of the VMS mentors assigned to the evaporative cooling team still acts as a mentor to Verploegen today.Another Solutions grant requirement is for teams to participate in the Spark program — a free, three-week course that provides an entry point for researchers to explore the potential value of their innovation. Spark is part of the National Science Foundation’s (NSF) Innovation Corps (I-Corps), which is an “immersive, entrepreneurial training program that facilitates the transformation of invention to impact.” In 2018, MIT received an award from the NSF, establishing the New England Regional Innovation Corps Node (NE I-Corps) to deliver I-Corps training to participants across New England. Trainings are open to researchers, engineers, scientists, and others who want to engage in a customer discovery process for their technology. Offered regularly throughout the year, the Spark course helps participants identify markets and explore customer needs in order to understand how their technologies can be positioned competitively in their target markets. They learn to assess barriers to adoption, as well as potential regulatory issues or other challenges to commercialization. NE-I-Corps reports that since its start, over 1,200 researchers from MIT have completed the program and have gone on to launch 175 ventures, raising over $3.3 billion in funding from grants and investors, and creating over 1,800 jobs.Constantinos Katsimpouras, a research scientist in the Department of Chemical Engineering, went through the NE I-Corps Spark program to better understand the customer base for a technology he developed with professors Gregory Stephanopoulos and Anthony Sinskey. The group received a J-WAFS Solutions grant in 2021 for their microbial platform that converts food waste from the dairy industry into valuable products. “As a scientist with no prior experience in entrepreneurship, the program introduced me to important concepts and tools for conducting customer interviews and adopting a new mindset,” notes Katsimpouras. “Most importantly, it encouraged me to get out of the building and engage in interviews with potential customers and stakeholders, providing me with invaluable insights and a deeper understanding of my industry,” he adds. These interviews also helped connect the team with companies willing to provide resources to test and improve their technology — a critical step to the scale-up of any lab invention.In the case of Professor Cem Tasan’s research group in the Department of Materials Science and Engineering, the I-Corps program led them to the J-WAFS Solutions grant, instead of the other way around. Tasan is currently working with postdoc Onur Guvenc on a J-WAFS Solutions project to manufacture formable sheet metal by consolidating steel scrap without melting, thereby reducing water use compared to traditional steel processing. Before applying for the Solutions grant, Guvenc took part in NE I-Corps. Like Katsimpouras, Guvenc benefited from the interaction with industry. “This program required me to step out of the lab and engage with potential customers, allowing me to learn about their immediate challenges and test my initial assumptions about the market,” Guvenc recalls. “My interviews with industry professionals also made me aware of the connection between water consumption and steelmaking processes, which ultimately led to the J-WAFS 2023 Solutions Grant,” says Guvenc.After completing the Spark program, participants may be eligible to apply for the Fusion program, which provides microgrants of up to $1,500 to conduct further customer discovery. The Fusion program is self-paced, requiring teams to conduct 12 additional customer interviews and craft a final presentation summarizing their key learnings. Professor Patrick Doyle’s J-WAFS Solutions team completed the Spark and Fusion programs at MIT. Most recently, their team was accepted to join the NSF I-Corps National program with a $50,000 award. The intensive program requires teams to complete an additional 100 customer discovery interviews over seven weeks. Located in the Department of Chemical Engineering, the Doyle lab is working on a sustainable microparticle hydrogel system to rapidly remove micropollutants from water. The team’s focus has expanded to higher value purifications in amino acid and biopharmaceutical manufacturing applications. Devashish Gokhale PhD ’24 worked with Doyle on much of the underlying science.“Our platform technology could potentially be used for selective separations in very diverse market segments, ranging from individual consumers to large industries and government bodies with varied use-cases,” Gokhale explains. He goes on to say, “The I-Corps Spark program added significant value by providing me with an effective framework to approach this problem … I was assigned a mentor who provided critical feedback, teaching me how to formulate effective questions and identify promising opportunities.” Gokhale says that by the end of Spark, the team was able to identify the best target markets for their products. He also says that the program provided valuable seminars on topics like intellectual property, which was helpful in subsequent discussions the team had with MIT’s Technology Licensing Office.Another member of Doyle’s team, Arjav Shah, a recent PhD from MIT’s Department of Chemical Engineering and a current MBA candidate at the MIT Sloan School of Management, is spearheading the team’s commercialization plans. Shah attended Fusion last fall and hopes to lead efforts to incorporate a startup company called hydroGel.  “I admire the hypothesis-driven approach of the I-Corps program,” says Shah. “It has enabled us to identify our customers’ biggest pain points, which will hopefully lead us to finding a product-market fit.” He adds “based on our learnings from the program, we have been able to pivot to impact-driven, higher-value applications in the food processing and biopharmaceutical industries.” Postdoc Luca Mazzaferro will lead the technical team at hydroGel alongside Shah.In a different project, Qinmin Zheng, a postdoc in the Department of Civil and Environmental Engineering, is working with Professor Andrew Whittle and Lecturer Fábio Duarte. Zheng plans to take the Fusion course this fall to advance their J-WAFS Solutions project that aims to commercialize a novel sensor to quantify the relative abundance of major algal species and provide early detection of harmful algal blooms. After completing Spark, Zheng says he’s “excited to participate in the Fusion program, and potentially the National I-Corps program, to further explore market opportunities and minimize risks in our future product development.”Economic and societal benefitsCommercializing technologies developed at MIT is one of the ways J-WAFS helps ensure that MIT research advances will have real-world impacts in water and food systems. Since its inception, the J-WAFS Solutions program has awarded 28 grants (including renewals), which have supported 19 projects that address a wide range of global water and food challenges. The program has distributed over $4 million to 24 professors, 11 research staff, 15 postdocs, and 30 students across MIT. Nearly half of all J-WAFS Solutions projects have resulted in spinout companies or commercialized products, including eight companies to date plus two open-source technologies.Nona Technologies is an example of a J-WAFS spinout that is helping the world by developing new approaches to produce freshwater for drinking. Desalination — the process of removing salts from seawater — typically requires a large-scale technology called reverse osmosis. But Nona created a desalination device that can work in remote off-grid locations. By separating salt and bacteria from water using electric current through a process called ion concentration polarization (ICP), their technology also reduces overall energy consumption. The novel method was developed by Jongyoon Han, professor of electrical engineering and biological engineering, and research scientist Junghyo Yoon. Along with Bruce Crawford, a Sloan MBA alum, Han and Yoon created Nona Technologies to bring their lightweight, energy-efficient desalination technology to the market.“My feeling early on was that once you have technology, commercialization will take care of itself,” admits Crawford. The team completed both the Spark and Fusion programs and quickly realized that much more work would be required. “Even in our first 24 interviews, we learned that the two first markets we envisioned would not be viable in the near term, and we also got our first hints at the beachhead we ultimately selected,” says Crawford. Nona Technologies has since won MIT’s $100K Entrepreneurship Competition, received media attention from outlets like Newsweek and Fortune, and hired a team that continues to further the technology for deployment in resource-limited areas where clean drinking water may be scarce. Food-borne diseases sicken millions of people worldwide each year, but J-WAFS researchers are addressing this issue by integrating molecular engineering, nanotechnology, and artificial intelligence to revolutionize food pathogen testing. Professors Tim Swager and Alexander Klibanov, of the Department of Chemistry, were awarded one of the first J-WAFS Solutions grants for their sensor that targets food safety pathogens. The sensor uses specialized droplets that behave like a dynamic lens, changing in the presence of target bacteria in order to detect dangerous bacterial contamination in food. In 2018, Swager launched Xibus Systems Inc. to bring the sensor to market and advance food safety for greater public health, sustainability, and economic security.“Our involvement with the J-WAFS Solutions Program has been vital,” says Swager. “It has provided us with a bridge between the academic world and the business world and allowed us to perform more detailed work to create a usable application,” he adds. In 2022, Xibus developed a product called XiSafe, which enables the detection of contaminants like salmonella and listeria faster and with higher sensitivity than other food testing products. The innovation could save food processors billions of dollars worldwide and prevent thousands of food-borne fatalities annually.J-WAFS Solutions companies have raised nearly $66 million in venture capital and other funding. Just this past June, J-WAFS spinout SiTration announced that it raised an $11.8 million seed round. Jeffrey Grossman, a professor in MIT’s Department of Materials Science and Engineering, was another early J-WAFS Solutions grantee for his work on low-cost energy-efficient filters for desalination. The project enabled the development of nanoporous membranes and resulted in two spinout companies, Via Separations and SiTration. SiTration was co-founded by Brendan Smith PhD ’18, who was a part of the original J-WAFS team. Smith is CEO of the company and has overseen the advancement of the membrane technology, which has gone on to reduce cost and resource consumption in industrial wastewater treatment, advanced manufacturing, and resource extraction of materials such as lithium, cobalt, and nickel from recycled electric vehicle batteries. The company also recently announced that it is working with the mining company Rio Tinto to handle harmful wastewater generated at mines.But it’s not just J-WAFS spinout companies that are producing real-world results. Products like the ECC Vial — a portable, low-cost method for E. coli detection in water — have been brought to the market and helped thousands of people. The test kit was developed by MIT D-Lab Lecturer Susan Murcott and Professor Jeffrey Ravel of the MIT History Section. The duo received a J-WAFS Solutions grant in 2018 to promote safely managed drinking water and improved public health in Nepal, where it is difficult to identify which wells are contaminated by E. coli. By the end of their grant period, the team had manufactured approximately 3,200 units, of which 2,350 were distributed — enough to help 12,000 people in Nepal. The researchers also trained local Nepalese on best manufacturing practices.“It’s very important, in my life experience, to follow your dream and to serve others,” says Murcott. Economic success is important to the health of any venture, whether it’s a company or a product, but equally important is the social impact — a philosophy that J-WAFS research strives to uphold. “Do something because it’s worth doing and because it changes people’s lives and saves lives,” Murcott adds.As J-WAFS prepares to celebrate its 10th anniversary this year, we look forward to continued collaboration with MIT’s many I&E programs to advance knowledge and develop solutions that will have tangible effects on the world’s water and food systems.Learn more about the J-WAFS Solutions program and about innovation and entrepreneurship at MIT. More

  • in

    Scientists find a human “fingerprint” in the upper troposphere’s increasing ozone

    Ozone can be an agent of good or harm, depending on where you find it in the atmosphere. Way up in the stratosphere, the colorless gas shields the Earth from the sun’s harsh ultraviolet rays. But closer to the ground, ozone is a harmful air pollutant that can trigger chronic health problems including chest pain, difficulty breathing, and impaired lung function.And somewhere in between, in the upper troposphere — the layer of the atmosphere just below the stratosphere, where most aircraft cruise — ozone contributes to warming the planet as a potent greenhouse gas.There are signs that ozone is continuing to rise in the upper troposphere despite efforts to reduce its sources at the surface in many nations. Now, MIT scientists confirm that much of ozone’s increase in the upper troposphere is likely due to humans.In a paper appearing today in the journal Environmental Science and Technology, the team reports that they detected a clear signal of human influence on upper tropospheric ozone trends in a 17-year satellite record starting in 2005.“We confirm that there’s a clear and increasing trend in upper tropospheric ozone in the northern midlatitudes due to human beings rather than climate noise,” says study lead author Xinyuan Yu, a graduate student in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS).“Now we can do more detective work and try to understand what specific human activities are leading to this ozone trend,” adds co-author Arlene Fiore, the Peter H. Stone and Paola Malanotte Stone Professor in Earth, Atmospheric and Planetary Sciences.The study’s MIT authors include Sebastian Eastham and Qindan Zhu, along with Benjamin Santer at the University of California at Los Angeles, Gustavo Correa of Columbia University, Jean-François Lamarque at the National Center for Atmospheric Research, and Jerald Zimeke at NASA Goddard Space Flight Center.Ozone’s tangled webUnderstanding ozone’s causes and influences is a challenging exercise. Ozone is not emitted directly, but instead is a product of “precursors” — starting ingredients, such as nitrogen oxides and volatile organic compounds (VOCs), that react in the presence of sunlight to form ozone. These precursors are generated from vehicle exhaust, power plants, chemical solvents, industrial processes, aircraft emissions, and other human-induced activities.Whether and how long ozone lingers in the atmosphere depends on a tangle of variables, including the type and extent of human activities in a given area, as well as natural climate variability. For instance, a strong El Niño year could nudge the atmosphere’s circulation in a way that affects ozone’s concentrations, regardless of how much ozone humans are contributing to the atmosphere that year.Disentangling the human- versus climate-driven causes of ozone trend, particularly in the upper troposphere, is especially tricky. Complicating matters is the fact that in the lower troposphere — the lowest layer of the atmosphere, closest to ground level — ozone has stopped rising, and has even fallen in some regions at northern midlatitudes in the last few decades. This decrease in lower tropospheric ozone is mainly a result of efforts in North America and Europe to reduce industrial sources of air pollution.“Near the surface, ozone has been observed to decrease in some regions, and its variations are more closely linked to human emissions,” Yu notes. “In the upper troposphere, the ozone trends are less well-monitored but seem to decouple with those near the surface, and ozone is more easily influenced by climate variability. So, we don’t know whether and how much of that increase in observed ozone in the upper troposphere is attributed to humans.”A human signal amid climate noiseYu and Fiore wondered whether a human “fingerprint” in ozone levels, caused directly by human activities, could be strong enough to be detectable in satellite observations in the upper troposphere. To see such a signal, the researchers would first have to know what to look for.For this, they looked to simulations of the Earth’s climate and atmospheric chemistry. Following approaches developed in climate science, they reasoned that if they could simulate a number of possible climate variations in recent decades, all with identical human-derived sources of ozone precursor emissions, but each starting with a slightly different climate condition, then any differences among these scenarios should be due to climate noise. By inference, any common signal that emerged when averaging over the simulated scenarios should be due to human-driven causes. Such a signal, then, would be a “fingerprint” revealing human-caused ozone, which the team could look for in actual satellite observations.With this strategy in mind, the team ran simulations using a state-of-the-art chemistry climate model. They ran multiple climate scenarios, each starting from the year 1950 and running through 2014.From their simulations, the team saw a clear and common signal across scenarios, which they identified as a human fingerprint. They then looked to tropospheric ozone products derived from multiple instruments aboard NASA’s Aura satellite.“Quite honestly, I thought the satellite data were just going to be too noisy,” Fiore admits. “I didn’t expect that the pattern would be robust enough.”But the satellite observations they used gave them a good enough shot. The team looked through the upper tropospheric ozone data derived from the satellite products, from the years 2005 to 2021, and found that, indeed, they could see the signal of human-caused ozone that their simulations predicted. The signal is especially pronounced over Asia, where industrial activity has risen significantly in recent decades and where abundant sunlight and frequent weather events loft pollution, including ozone and its precursors, to the upper troposphere.Yu and Fiore are now looking to identify the specific human activities that are leading to ozone’s increase in the upper troposphere.“Where is this increasing trend coming from? Is it the near-surface emissions from combusting fossil fuels in vehicle engines and power plants? Is it the aircraft that are flying in the upper troposphere? Is it the influence of wildland fires? Or some combination of all of the above?” Fiore says. “Being able to separate human-caused impacts from natural climate variations can help to inform strategies to address climate change and air pollution.”This research was funded, in part, by NASA. More

  • in

    Q&A: What past environmental success can teach us about solving the climate crisis

    Susan Solomon, MIT professor of Earth, atmospheric, and planetary sciences (EAPS) and of chemistry, played a critical role in understanding how a class of chemicals known as chlorofluorocarbons were creating a hole in the ozone layer. Her research was foundational to the creation of the Montreal Protocol, an international agreement established in the 1980s that phased out products releasing chlorofluorocarbons. Since then, scientists have documented signs that the ozone hole is recovering thanks to these measures.Having witnessed this historical process first-hand, Solomon, the Lee and Geraldine Martin Professor of Environmental Studies, is aware of how people can come together to make successful environmental policy happen. Using her story, as well as other examples of success — including combating smog, getting rid of DDT, and more — Solomon draws parallels from then to now as the climate crisis comes into focus in her new book, “Solvable: How we Healed the Earth and How we can do it Again.”Solomon took a moment to talk about why she picked the stories in her book, the students who inspired her, and why we need hope and optimism now more than ever.Q: You have first-hand experience seeing how we’ve altered the Earth, as well as the process of creating international environmental policy. What prompted you to write a book about your experiences?A: Lots of things, but one of the main ones is the things that I see in teaching. I have taught a class called Science, Politics and Environmental Policy for many years here at MIT. Because my emphasis is always on how we’ve actually fixed problems, students come away from that class feeling hopeful, like they really want to stay engaged with the problem.It strikes me that students today have grown up in a very contentious and difficult era in which they feel like nothing ever gets done. But stuff does get done, even now. Looking at how we did things so far really helps you to see how we can do things in the future.Q: In the book, you use five different stories as examples of successful environmental policy, and then end talking about how we can apply these lessons to climate change. Why did you pick these five stories?A: I picked some of them because I’m closer to those problems in my own professional experience, like ozone depletion and smog. I did other issues partly because I wanted to show that even in the 21st century, we’ve actually got some stuff done — that’s the story of the Kigali Amendment to the Montreal Protocol, which is a binding international agreement on some greenhouse gases.Another chapter is on DDT. One of the reasons I included that is because it had an enormous effect on the birth of the environmental movement in the United States. Plus, that story allows you to see how important the environmental groups can be.Lead in gasoline and paint is the other one. I find it a very moving story because the idea that we were poisoning millions of children and not even realizing it is so very, very sad. But it’s so uplifting that we did figure out the problem, and it happened partly because of the civil rights movement, that made us aware that the problem was striking minority communities much more than non-minority communities.Q: What surprised you the most during your research for the book?A: One of the things that that I didn’t realize and should have, was the outsized role played by one single senator, Ed Muskie of Maine. He made pollution control his big issue and devoted incredible energy to it. He clearly had the passion and wanted to do it for many years, but until other factors helped him, he couldn’t. That’s where I began to understand the role of public opinion and the way in which policy is only possible when public opinion demands change.Another thing about Muskie was the way in which his engagement with these issues demanded that science be strong. When I read what he put into congressional testimony I realized how highly he valued the science. Science alone is never enough, but it’s always necessary. Over the years, science got a lot stronger, and we developed ways of evaluating what the scientific wisdom across many different studies and many different views actually is. That’s what scientific assessment is all about, and it’s crucial to environmental progress.Q: Throughout the book you argue that for environmental action to succeed, three things must be met which you call the three Ps: a threat much be personal, perceptible, and practical. Where did this idea come from?A: My observations. You have to perceive the threat: In the case of the ozone hole, you could perceive it because those false-color images of the ozone loss were so easy to understand, and it was personal because few things are scarier than cancer, and a reduced ozone layer leads to too much sun, increasing skin cancers. Science plays a role in communicating what can be readily understood by the public, and that’s important to them perceiving it as a serious problem.Nowadays, we certainly perceive the reality of climate change. We also see that it’s personal. People are dying because of heat waves in much larger numbers than they used to; there are horrible problems in the Boston area, for example, with flooding and sea level rise. People perceive the reality of the problem and they feel personally threatened.The third P is practical: People have to believe that there are practical solutions. It’s interesting to watch how the battle for hearts and minds has shifted. There was a time when the skeptics would just attack the whole idea that the climate was changing. Eventually, they decided ‘we better accept that because people perceive it, so let’s tell them that it’s not caused by human activity.’ But it’s clear enough now that human activity does play a role. So they’ve moved on to attacking that third P, that somehow it’s not practical to have any kind of solutions. This is progress! So what about that third P?What I tried to do in the book is to point out some of the ways in which the problem has also become eminently practical to deal with in the last 10 years, and will continue to move in that direction. We’re right on the cusp of success, and we just have to keep going. People should not give in to eco despair; that’s the worst thing you could do, because then nothing will happen. If we continue to move at the rate we have, we will certainly get to where we need to be.Q: That ties in very nicely with my next question. The book is very optimistic; what gives you hope?A: I’m optimistic because I’ve seen so many examples of where we have succeeded, and because I see so many signs of movement right now that are going to push us in the same direction.If we had kept conducting business as usual as we had been in the year 2000, we’d be looking at 4 degrees of future warming. Right now, I think we’re looking at 3 degrees. I think we can get to 2 degrees. We have to really work on it, and we have to get going seriously in the next decade, but globally right now over 30 percent of our energy is from renewables. That’s fantastic! Let’s just keep going.Q: Throughout the book, you show that environmental problems won’t be solved by individual actions alone, but requires policy and technology driving. What individual actions can people take to help push for those bigger changes?A: A big one is choose to eat more sustainably; choose alternative transportation methods like public transportation or reducing the amount of trips that you make. Older people usually have retirement investments, you can shift them over to a social choice funds and away from index funds that end up funding companies that you might not be interested in. You can use your money to put pressure: Amazon has been under a huge amount of pressure to cut down on their plastic packaging, mainly coming from consumers. They’ve just announced they’re not going to use those plastic pillows anymore. I think you can see lots of ways in which people really do matter, and we can matter more.Q: What do you hope people take away from the book?A: Hope for their future and resolve to do the best they can getting engaged with it. More

  • in

    Pioneering the future of materials extraction

    The next time you cook pasta, imagine that you are cooking spaghetti, rigatoni, and seven other varieties all together, and they need to be separated onto 10 different plates before serving. A colander can remove the water — but you still have a mound of unsorted noodles. Now imagine that this had to be done for thousands of tons of pasta a day. That gives you an idea of the scale of the problem facing Brendan Smith PhD ’18, co-founder and CEO of SiTration, a startup formed out of MIT’s Department of Materials Science and Engineering (DMSE) in 2020. SiTration, which raised $11.8 million in seed capital led by venture capital firm 2150 earlier this month, is revolutionizing the extraction and refining of copper, cobalt, nickel, lithium, precious metals, and other materials critical to manufacturing clean-energy technologies such as electric motors, wind turbines, and batteries. Its initial target applications are recovering the materials from complex mining feed streams, spent lithium-ion batteries from electric vehicles, and various metals refining processes. The company’s breakthrough lies in a new silicon membrane technology that can be adjusted to efficiently recover disparate materials, providing a more sustainable and economically viable alternative to conventional, chemically intensive processes. Think of a colander with adjustable pores to strain different types of pasta. SiTration’s technology has garnered interest from industry players, including mining giant Rio Tinto. Some observers may question whether targeting such different industries could cause the company to lose focus. “But when you dig into these markets, you discover there is actually a significant overlap in how all of these materials are recovered, making it possible for a single solution to have impact across verticals,” Smith says.Powering up materials recoveryConventional methods of extracting critical materials in mining, refining, and recycling lithium-ion batteries involve heavy use of chemicals and heat, which harm the environment. Typically, raw ore from mines or spent batteries are ground into fine particles before being dissolved in acid or incinerated in a furnace. Afterward, they undergo intensive chemical processing to separate and purify the valuable materials. “It requires as much as 10 tons of chemical input to produce one ton of critical material recovered from the mining or battery recycling feedstock,” says Smith. Operators can then sell the recaptured materials back into the supply chain, but suffer from wide swings in profitability due to uncertain market prices. Lithium prices have been the most volatile, having surged more than 400 percent before tumbling back to near-original levels in the past two years. Despite their poor economics and negative environmental impact, these processes remain the state of the art today. By contrast, SiTration is electrifying the critical-materials recovery process, improving efficiency, producing less chemical waste, and reducing the use of chemicals and heat. What’s more, the company’s processing technology is built to be highly adaptable, so it can handle all kinds of materials. The core technology is based on work done at MIT to develop a novel type of membrane made from silicon, which is durable enough to withstand harsh chemicals and high temperatures while conducting electricity. It’s also highly tunable, meaning it can be modified or adjusted to suit different conditions or target specific materials. SiTration’s technology also incorporates electro-extraction, a technique that uses electrochemistry to further isolate and extract specific target materials. This powerful combination of methods in a single system makes it more efficient and effective at isolating and recovering valuable materials, Smith says. So depending on what needs to be separated or extracted, the filtration and electro-extraction processes are adjusted accordingly. “We can produce membranes with pore sizes from the molecular scale up to the size of a human hair in diameter, and everything in between. Combined with the ability to electrify the membrane and separate based on a material’s electrochemical properties, this tunability allows us to target a vast array of different operations and separation applications across industrial fields,” says Smith. Efficient access to materials like lithium, cobalt, and copper — and precious metals like platinum, gold, silver, palladium, and rare-earth elements — is key to unlocking innovation in business and sustainability as the world moves toward electrification and away from fossil fuels.“This is an era when new materials are critical,” says Professor Jeffrey Grossman, co-founder and chief scientist of SiTration and the Morton and Claire Goulder and Family Professor in Environmental Systems at DMSE. “For so many technologies, they’re both the bottleneck and the opportunity, offering tremendous potential for non-incremental advances. And the role they’re having in commercialization and in entrepreneurship cannot be overstated.”SiTration’s commercial frontierSmith became interested in separation technology in 2013 as a PhD student in Grossman’s DMSE research group, which has focused on the design of new membrane materials for a range of applications. The two shared a curiosity about separation of critical materials and a hunger to advance the technology. After years of study under Grossman’s mentorship, and with support from several MIT incubators and foundations including the Abdul Latif Jameel Water and Food Systems Lab’s Solutions Program, the Deshpande Center for Technological Innovation, the Kavanaugh Fellowship, MIT Sandbox, and Venture Mentoring Service, Smith was ready to officially form SiTration in 2020. Grossman has a seat on the board and plays an active role as a strategic and technical advisor. Grossman is involved in several MIT spinoffs and embraces the different imperatives of research versus commercialization. “At SiTration, we’re driving this technology to work at scale. There’s something super exciting about that goal,” he says. “The challenges that come with scaling are very different than the challenges that come in a university lab.” At the same time, although not every research breakthrough becomes a commercial product, open-ended, curiosity-driven knowledge pursuit holds its own crucial value, he adds.It has been rewarding for Grossman to see his technically gifted student and colleague develop a host of other skills the role of CEO demands. Getting out to the market and talking about the technology with potential partners, putting together a dynamic team, discovering the challenges facing industry, drumming up support, early on — those became the most pressing activities on Smith’s agenda. “What’s most fun to me about being a CEO of an early-stage startup is that there are 100 different factors, most people-oriented, that you have to navigate every day. Each stakeholder has different motivations and objectives. And you basically try to fit that all together, to create value for our partners and customers, the company, and for society,” says Smith. “You start with just an idea, and you have to keep leveraging that to form a more and more tangible product, to multiply and progress commercial relationships, and do it all at an ever-expanding scale.” MIT DNA runs deep in the nine-person company, with DMSE grad and former Grossman student Jatin Patil as director of product; Ahmed Helal, from MIT’s Department of Mechanical Engineering, as vice president of research and development; Daniel Bregante, from the Department of Chemistry, as VP of technology; and Sarah Melvin, from the departments of Physics and Political Science, as VP of strategy and operations. Melvin is the first hire devoted to business development. Smith plans to continue expanding the team following the closing of the company’s seed round.  Strategic alliancesBeing a good communicator was important when it came to securing funding, Smith says. SiTration received $2.35 million in pre-seed funding in 2022 led by Azolla Ventures, which reserves its $239 million in investment capital for startups that would not otherwise easily obtain funding. “We invest only in solution areas that can achieve gigaton-scale climate impact by 2050,” says Matthew Nordan, a general partner at Azolla and now SiTration board member. The MIT-affiliated E14 Fund also contributed to the pre-seed round; Azolla and E14 both participated in the recent seed funding round. “Brendan demonstrated an extraordinary ability to go from being a thoughtful scientist to a business leader and thinker who has punched way above his weight in engaging with customers and recruiting a well-balanced team and navigating tricky markets,” says Nordan. One of SiTration’s first partnerships is with Rio Tinto, one of the largest mining companies in the world. As SiTration evaluated various uses cases in its early days, identifying critical materials as its target market, Rio Tinto was looking for partners to recover valuable metals such as cobalt and copper from the wastewater generated at mines. These metals were typically trapped in the water, creating harmful waste and resulting in lost revenue. “We thought this was a great innovation challenge and posted it on our website to scout for companies to partner with who can help us solve this water challenge,” said Nick Gurieff, principal advisor for mine closure, in an interview with MIT’s Industrial Liaison Program in 2023. At SiTration, mining was not yet a market focus, but Smith couldn’t help noticing that Rio Tinto’s needs were in alignment with what his young company offered. SiTration submitted its proposal in August 2022. Gurieff said SiTration’s tunable membrane set it apart. The companies formed a business partnership in June 2023, with SiTration adjusting its membrane to handle mine wastewater and incorporating Rio Tinto feedback to refine the technology. After running tests with water from mine sites, SiTration will begin building a small-scale critical-materials recovery unit, followed by larger-scale systems processing up to 100 cubic meters of water an hour.SiTration’s focused technology development with Rio Tinto puts it in a good position for future market growth, Smith says. “Every ounce of effort and resource we put into developing our product is geared towards creating real-world value. Having an industry-leading partner constantly validating our progress is a tremendous advantage.”It’s a long time from the days when Smith began tinkering with tiny holes in silicon in Grossman’s DMSE lab. Now, they work together as business partners who are scaling up technology to meet a global need. Their joint passion for applying materials innovation to tough problems has served them well. “Materials science and engineering is an engine for a lot of the innovation that is happening today,” Grossman says. “When you look at all of the challenges we face to make the transition to a more sustainable planet, you realize how many of these are materials challenges.” More