More stories

  • in

    Researchers develop a detector for continuously monitoring toxic gases

    Most systems used to detect toxic gases in industrial or domestic settings can be used only once, or at best a few times. Now, researchers at MIT have developed a detector that could provide continuous monitoring for the presence of these gases, at low cost.The new system combines two existing technologies, bringing them together in a way that preserves the advantages of each while avoiding their limitations. The team used a material called a metal-organic framework, or MOF, which is highly sensitive to tiny traces of gas but whose performance quickly degrades, and combined it with a polymer material that is highly durable and easier to process, but much less sensitive.The results are reported today in the journal Advanced Materials, in a paper by MIT professors Aristide Gumyusenge, Mircea Dinca, Heather Kulik, and Jesus del Alamo, graduate student Heejung Roh, and postdocs Dong-Ha Kim, Yeongsu Cho, and Young-Moo Jo.Highly porous and with large surface areas, MOFs come in a variety of compositions. Some can be insulators, but the ones used for this work are highly electrically conductive. With their sponge-like form, they are effective at capturing molecules of various gases, and the sizes of their pores can be tailored to make them selective for particular kinds of gases. “If you are using them as a sensor, you can recognize if the gas is there if it has an effect on the resistivity of the MOF,” says Gumyusenge, the paper’s senior author and the Merton C. Flemings Career Development Assistant Professor of Materials Science and Engineering.The drawback for these materials’ use as detectors for gases is that they readily become saturated, and then can no longer detect and quantify new inputs. “That’s not what you want. You want to be able to detect and reuse,” Gumyusenge says. “So, we decided to use a polymer composite to achieve this reversibility.”The team used a class of conductive polymers that Gumyusenge and his co-workers had previously shown can respond to gases without permanently binding to them. “The polymer, even though it doesn’t have the high surface area that the MOFs do, will at least provide this recognize-and-release type of phenomenon,” he says.The team combined the polymers in a liquid solution along with the MOF material in powdered form, and deposited the mixture on a substrate, where they dry into a uniform, thin coating. By combining the polymer, with its quick detection capability, and the more sensitive MOFs, in a one-to-one ratio, he says, “suddenly we get a sensor that has both the high sensitivity we get from the MOF and the reversibility that is enabled by the presence of the polymer.”The material changes its electrical resistance when molecules of the gas are temporarily trapped in the material. These changes in resistance can be continuously monitored by simply attaching an ohmmeter to track the resistance over time. Gumyusenge and his students demonstrated the composite material’s ability to detect nitrogen dioxide, a toxic gas produced by many kinds of combustion, in a small lab-scale device. After 100 cycles of detection, the material was still maintaining its baseline performance within a margin of about 5 to 10 percent, demonstrating its long-term use potential.In addition, this material has far greater sensitivity than most presently used detectors for nitrogen dioxide, the team reports. This gas is often detected after the use of stove ovens. And, with this gas recently linked to many asthma cases in the U.S., reliable detection in low concentrations is important. The team demonstrated that this new composite could detect, reversibly, the gas at concentrations as low as 2 parts per million.While their demonstration was specifically aimed at nitrogen dioxide, Gumyusenge says, “we can definitely tailor the chemistry to target other volatile molecules,” as long as they are small polar analytes, “which tend to be most of the toxic gases.”Besides being compatible with a simple hand-held detector or a smoke-alarm type of device, one advantage of the material is that the polymer allows it to be deposited as an extremely thin uniform film, unlike regular MOFs, which are generally in an inefficient powder form. Because the films are so thin, there is little material needed and production material costs could be low; the processing methods could be typical of those used for industrial coating processes. “So, maybe the limiting factor will be scaling up the synthesis of the polymers, which we’ve been synthesizing in small amounts,” Gumyusenge says.“The next steps will be to evaluate these in real-life settings,” he says. For example, the material could be applied as a coating on chimneys or exhaust pipes to continuously monitor gases through readings from an attached resistance monitoring device. In such settings, he says, “we need tests to check if we truly differentiate it from other potential contaminants that we might have overlooked in the lab setting. Let’s put the sensors out in real-world scenarios and see how they do.”The work was supported by the MIT Climate and Sustainability Consortium (MCSC), the Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) at MIT, and the U.S. Department of Energy. More

  • in

    Featured video: Moooving the needle on methane

    Methane traps much more heat per pound than carbon dioxide, making it a powerful contributor to climate change. “In fact, methane emission removal is the fastest way that we can ensure immediate results for reduced global warming,” says Audrey Parker, a graduate student in the Department of Civil and Environmental Engineering.

    Parker and other researchers in the Methane Emission Removal Project are developing a catalyst that can convert methane to carbon dioxide. They are working to set up systems that would reduce methane in the air at dairy farms, which are major emitters of the gas. Overall, agricultural practices and waste generation are responsible for about 28 percent of the world’s methane emissions.

    “If we do our job really well, within the next five years, we will be able to reduce the operating temperature of this catalyst in a way that is net beneficial to the climate and potentially even economically incentivized for the farmer and for society,” says Desirée Plata, an associate professor of civil and environmental engineering who leads the Methane Emission Removal Project.

    Video by Melanie Gonick/MIT News | 4 minutes, 35 seconds More

  • in

    Engineers find a new way to convert carbon dioxide into useful products

    MIT chemical engineers have devised an efficient way to convert carbon dioxide to carbon monoxide, a chemical precursor that can be used to generate useful compounds such as ethanol and other fuels.

    If scaled up for industrial use, this process could help to remove carbon dioxide from power plants and other sources, reducing the amount of greenhouse gases that are released into the atmosphere.

    “This would allow you to take carbon dioxide from emissions or dissolved in the ocean, and convert it into profitable chemicals. It’s really a path forward for decarbonization because we can take CO2, which is a greenhouse gas, and turn it into things that are useful for chemical manufacture,” says Ariel Furst, the Paul M. Cook Career Development Assistant Professor of Chemical Engineering and the senior author of the study.

    The new approach uses electricity to perform the chemical conversion, with help from a catalyst that is tethered to the electrode surface by strands of DNA. This DNA acts like Velcro to keep all the reaction components in close proximity, making the reaction much more efficient than if all the components were floating in solution.

    Furst has started a company called Helix Carbon to further develop the technology. Former MIT postdoc Gang Fan is the lead author of the paper, which appears in the Journal of the American Chemical Society Au. Other authors include Nathan Corbin PhD ’21, Minju Chung PhD ’23, former MIT postdocs Thomas Gill and Amruta Karbelkar, and Evan Moore ’23.

    Breaking down CO2

    Converting carbon dioxide into useful products requires first turning it into carbon monoxide. One way to do this is with electricity, but the amount of energy required for that type of electrocatalysis is prohibitively expensive.

    To try to bring down those costs, researchers have tried using electrocatalysts, which can speed up the reaction and reduce the amount of energy that needs to be added to the system. One type of catalyst used for this reaction is a class of molecules known as porphyrins, which contain metals such as iron or cobalt and are similar in structure to the heme molecules that carry oxygen in blood. 

    During this type of electrochemical reaction, carbon dioxide is dissolved in water within an electrochemical device, which contains an electrode that drives the reaction. The catalysts are also suspended in the solution. However, this setup isn’t very efficient because the carbon dioxide and the catalysts need to encounter each other at the electrode surface, which doesn’t happen very often.

    To make the reaction occur more frequently, which would boost the efficiency of the electrochemical conversion, Furst began working on ways to attach the catalysts to the surface of the electrode. DNA seemed to be the ideal choice for this application.

    “DNA is relatively inexpensive, you can modify it chemically, and you can control the interaction between two strands by changing the sequences,” she says. “It’s like a sequence-specific Velcro that has very strong but reversible interactions that you can control.”

    To attach single strands of DNA to a carbon electrode, the researchers used two “chemical handles,” one on the DNA and one on the electrode. These handles can be snapped together, forming a permanent bond. A complementary DNA sequence is then attached to the porphyrin catalyst, so that when the catalyst is added to the solution, it will bind reversibly to the DNA that’s already attached to the electrode — just like Velcro.

    Once this system is set up, the researchers apply a potential (or bias) to the electrode, and the catalyst uses this energy to convert carbon dioxide in the solution into carbon monoxide. The reaction also generates a small amount of hydrogen gas, from the water. After the catalysts wear out, they can be released from the surface by heating the system to break the reversible bonds between the two DNA strands, and replaced with new ones.

    An efficient reaction

    Using this approach, the researchers were able to boost the Faradaic efficiency of the reaction to 100 percent, meaning that all of the electrical energy that goes into the system goes directly into the chemical reactions, with no energy wasted. When the catalysts are not tethered by DNA, the Faradaic efficiency is only about 40 percent.

    This technology could be scaled up for industrial use fairly easily, Furst says, because the carbon electrodes the researchers used are much less expensive than conventional metal electrodes. The catalysts are also inexpensive, as they don’t contain any precious metals, and only a small concentration of the catalyst is needed on the electrode surface.

    By swapping in different catalysts, the researchers plan to try making other products such as methanol and ethanol using this approach. Helix Carbon, the company started by Furst, is also working on further developing the technology for potential commercial use.

    The research was funded by the U.S. Army Research Office, the CIFAR Azrieli Global Scholars Program, the MIT Energy Initiative, and the MIT Deshpande Center. More

  • in

    A new sensor detects harmful “forever chemicals” in drinking water

    MIT chemists have designed a sensor that detects tiny quantities of perfluoroalkyl and polyfluoroalkyl substances (PFAS) — chemicals found in food packaging, nonstick cookware, and many other consumer products.

    These compounds, also known as “forever chemicals” because they do not break down naturally, have been linked to a variety of harmful health effects, including cancer, reproductive problems, and disruption of the immune and endocrine systems.

    Using the new sensor technology, the researchers showed that they could detect PFAS levels as low as 200 parts per trillion in a water sample. The device they designed could offer a way for consumers to test their drinking water, and it could also be useful in industries that rely heavily on PFAS chemicals, including the manufacture of semiconductors and firefighting equipment.

    “There’s a real need for these sensing technologies. We’re stuck with these chemicals for a long time, so we need to be able to detect them and get rid of them,” says Timothy Swager, the John D. MacArthur Professor of Chemistry at MIT and the senior author of the study, which appears this week in the Proceedings of the National Academy of Sciences.

    Other authors of the paper are former MIT postdoc and lead author Sohyun Park and MIT graduate student Collette Gordon.

    Detecting PFAS

    Coatings containing PFAS chemicals are used in thousands of consumer products. In addition to nonstick coatings for cookware, they are also commonly used in water-repellent clothing, stain-resistant fabrics, grease-resistant pizza boxes, cosmetics, and firefighting foams.

    These fluorinated chemicals, which have been in widespread use since the 1950s, can be released into water, air, and soil, from factories, sewage treatment plants, and landfills. They have been found in drinking water sources in all 50 states.

    In 2023, the Environmental Protection Agency created an “advisory health limit” for two of the most hazardous PFAS chemicals, known as perfluorooctanoic acid (PFOA) and perfluorooctyl sulfonate (PFOS). These advisories call for a limit of 0.004 parts per trillion for PFOA and 0.02 parts per trillion for PFOS in drinking water.

    Currently, the only way that a consumer could determine if their drinking water contains PFAS is to send a water sample to a laboratory that performs mass spectrometry testing. However, this process takes several weeks and costs hundreds of dollars.

    To create a cheaper and faster way to test for PFAS, the MIT team designed a sensor based on lateral flow technology — the same approach used for rapid Covid-19 tests and pregnancy tests. Instead of a test strip coated with antibodies, the new sensor is embedded with a special polymer known as polyaniline, which can switch between semiconducting and conducting states when protons are added to the material.

    The researchers deposited these polymers onto a strip of nitrocellulose paper and coated them with a surfactant that can pull fluorocarbons such as PFAS out of a drop of water placed on the strip. When this happens, protons from the PFAS are drawn into the polyaniline and turn it into a conductor, reducing the electrical resistance of the material. This change in resistance, which can be measured precisely using electrodes and sent to an external device such as a smartphone, gives a quantitative measurement of how much PFAS is present.

    This approach works only with PFAS that are acidic, which includes two of the most harmful PFAS — PFOA and perfluorobutanoic acid (PFBA).

    A user-friendly system

    The current version of the sensor can detect concentrations as low as 200 parts per trillion for PFBA, and 400 parts per trillion for PFOA. This is not quite low enough to meet the current EPA guidelines, but the sensor uses only a fraction of a milliliter of water. The researchers are now working on a larger-scale device that would be able to filter about a liter of water through a membrane made of polyaniline, and they believe this approach should increase the sensitivity by more than a hundredfold, with the goal of meeting the very low EPA advisory levels.

    “We do envision a user-friendly, household system,” Swager says. “You can imagine putting in a liter of water, letting it go through the membrane, and you have a device that measures the change in resistance of the membrane.”

    Such a device could offer a less expensive, rapid alternative to current PFAS detection methods. If PFAS are detected in drinking water, there are commercially available filters that can be used on household drinking water to reduce those levels. The new testing approach could also be useful for factories that manufacture products with PFAS chemicals, so they could test whether the water used in their manufacturing process is safe to release into the environment.

    The research was funded by an MIT School of Science Fellowship to Gordon, a Bose Research Grant, and a Fulbright Fellowship to Park. More

  • in

    With just a little electricity, MIT researchers boost common catalytic reactions

    A simple technique that uses small amounts of energy could boost the efficiency of some key chemical processing reactions, by up to a factor of 100,000, MIT researchers report. These reactions are at the heart of petrochemical processing, pharmaceutical manufacturing, and many other industrial chemical processes.

    The surprising findings are reported today in the journal Science, in a paper by MIT graduate student Karl Westendorff, professors Yogesh Surendranath and Yuriy Roman-Leshkov, and two others.

    “The results are really striking,” says Surendranath, a professor of chemistry and chemical engineering. Rate increases of that magnitude have been seen before but in a different class of catalytic reactions known as redox half-reactions, which involve the gain or loss of an electron. The dramatically increased rates reported in the new study “have never been observed for reactions that don’t involve oxidation or reduction,” he says.

    The non-redox chemical reactions studied by the MIT team are catalyzed by acids. “If you’re a first-year chemistry student, probably the first type of catalyst you learn about is an acid catalyst,” Surendranath says. There are many hundreds of such acid-catalyzed reactions, “and they’re super important in everything from processing petrochemical feedstocks to making commodity chemicals to doing transformations in pharmaceutical products. The list goes on and on.”

    “These reactions are key to making many products we use daily,” adds Roman-Leshkov, a professor of chemical engineering and chemistry.

    But the people who study redox half-reactions, also known as electrochemical reactions, are part of an entirely different research community than those studying non-redox chemical reactions, known as thermochemical reactions. As a result, even though the technique used in the new study, which involves applying a small external voltage, was well-known in the electrochemical research community, it had not been systematically applied to acid-catalyzed thermochemical reactions.

    People working on thermochemical catalysis, Surendranath says, “usually don’t consider” the role of the electrochemical potential at the catalyst surface, “and they often don’t have good ways of measuring it. And what this study tells us is that relatively small changes, on the order of a few hundred millivolts, can have huge impacts — orders of magnitude changes in the rates of catalyzed reactions at those surfaces.”

    “This overlooked parameter of surface potential is something we should pay a lot of attention to because it can have a really, really outsized effect,” he says. “It changes the paradigm of how we think about catalysis.”

    Chemists traditionally think about surface catalysis based on the chemical binding energy of molecules to active sites on the surface, which influences the amount of energy needed for the reaction, he says. But the new findings show that the electrostatic environment is “equally important in defining the rate of the reaction.”

    The team has already filed a provisional patent application on parts of the process and is working on ways to apply the findings to specific chemical processes. Westendorff says their findings suggest that “we should design and develop different types of reactors to take advantage of this sort of strategy. And we’re working right now on scaling up these systems.”

    While their experiments so far were done with a two-dimensional planar electrode, most industrial reactions are run in three-dimensional vessels filled with powders. Catalysts are distributed through those powders, providing a lot more surface area for the reactions to take place. “We’re looking at how catalysis is currently done in industry and how we can design systems that take advantage of the already existing infrastructure,” Westendorff says.

    Surendranath adds that these new findings “raise tantalizing possibilities: Is this a more general phenomenon? Does electrochemical potential play a key role in other reaction classes as well? In our mind, this reshapes how we think about designing catalysts and promoting their reactivity.”

    Roman-Leshkov adds that “traditionally people who work in thermochemical catalysis would not associate these reactions with electrochemical processes at all. However, introducing this perspective to the community will redefine how we can integrate electrochemical characteristics into thermochemical catalysis. It will have a big impact on the community in general.”

    While there has typically been little interaction between electrochemical and thermochemical catalysis researchers, Surendranath says, “this study shows the community that there’s really a blurring of the line between the two, and that there is a huge opportunity in cross-fertilization between these two communities.”

    Westerndorff adds that to make it work, “you have to design a system that’s pretty unconventional to either community to isolate this effect.” And that helps explain why such a dramatic effect had never been seen before. He notes that even their paper’s editor asked them why this effect hadn’t been reported before. The answer has to do with “how disparate those two ideologies were before this,” he says. “It’s not just that people don’t really talk to each other. There are deep methodological differences between how the two communities conduct experiments. And this work is really, we think, a great step toward bridging the two.”

    In practice, the findings could lead to far more efficient production of a wide variety of chemical materials, the team says. “You get orders of magnitude changes in rate with very little energy input,” Surendranath says. “That’s what’s amazing about it.”

    The findings, he says, “build a more holistic picture of how catalytic reactions at interfaces work, irrespective of whether you’re going to bin them into the category of electrochemical reactions or thermochemical reactions.” He adds that “it’s rare that you find something that could really revise our foundational understanding of surface catalytic reactions in general. We’re very excited.”

    “This research is of the highest quality,” says Costas Vayenas, a professor of engineering at the university of Patras, in Greece, who was not associated with the study. The work “is very promising for practical applications, particularly since it extends previous related work in redox catalytic systems,” he says.

    The team included MIT postdoc Max Hulsey PhD ’22 and graduate student Thejas Wesley PhD ’23, and was supported by the Air Force Office of Scientific Research and the U.S. Department of Energy Basic Energy Sciences. More

  • in

    Susan Solomon wins VinFuture Award for Female Innovators

    Lee and Geraldine Martin Professor of Environmental Studies Susan Solomon has been awarded the 2023 VinFuture Award for Female Innovators. Solomon was picked out of almost 1,400 international nominations across four categories for “The discovery of the ozone depletion mechanism in Antarctica, contributing to the establishment of the Montreal Protocol.” The award, which comes with a $500,000 prize, highlights outstanding female researchers and innovators that can serve as role models for aspiring scientists.

    “I’m tremendously humbled by that, and I’ll do my best to live up to it,” says Solomon, who attended the ceremony in Hanoi, Vietnam, on Dec. 20.

    The VinFuture Awards are given annually to “honor scientific research and breakthrough technological innovations that can make a significant difference” according to their site. In addition to Female Innovators, the award has two other special categories, Innovators from Developing Countries and Innovators with Outstanding Achievements in Emerging Fields, as well as their overall grand prize. The awards have been given out by the Vietnam-based VinFuture Foundation since 2021.

    “Countries all around the world are part of scientific progress and innovation, and that a developing country is honoring that is really very lovely,” says Solomon, whose career as an atmospheric chemist has brought her onto the international stage and has shown her firsthand how important developing countries are in crafting global policy.

    In 1986 Solomon led an expedition of 16 scientists to Antarctica to measure the degradation of the ozone layer; she was the only woman on the team. She and her collaborators were able to figure out the atmospheric chemistry of chlorofluorocarbons and other similar chemicals that are now known as ozone-depleting substances. This work became foundational to the creation of the Montreal Protocol, an international agreement that banned damaging chemicals and has allowed the ozone to recover.

    Solomon joined the MIT faculty in 2012 and holds joint appointments in the departments of Chemistry and Earth, Atmospheric and Planetary Sciences. The success of the Montreal Protocol demonstrates the ability for international cooperation to enact effective environmental agreements; Solomon sees it as a blueprint for crafting further policy when it comes to addressing global climate change.

    “Women can do anything, even help save the ozone layer and solve other environmental problems,” she says. “Today’s problem of climate change is for all of us to be involved in solving.” More

  • in

    Cobalt-free batteries could power cars of the future

    Many electric vehicles are powered by batteries that contain cobalt — a metal that carries high financial, environmental, and social costs.

    MIT researchers have now designed a battery material that could offer a more sustainable way to power electric cars. The new lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel (another metal often used in lithium-ion batteries).

    In a new study, the researchers showed that this material, which could be produced at much lower cost than cobalt-containing batteries, can conduct electricity at similar rates as cobalt batteries. The new battery also has comparable storage capacity and can be charged up faster than cobalt batteries, the researchers report.

    “I think this material could have a big impact because it works really well,” says Mircea Dincă, the W.M. Keck Professor of Energy at MIT. “It is already competitive with incumbent technologies, and it can save a lot of the cost and pain and environmental issues related to mining the metals that currently go into batteries.”

    Dincă is the senior author of the study, which appears today in the journal ACS Central Science. Tianyang Chen PhD ’23 and Harish Banda, a former MIT postdoc, are the lead authors of the paper. Other authors include Jiande Wang, an MIT postdoc; Julius Oppenheim, an MIT graduate student; and Alessandro Franceschi, a research fellow at the University of Bologna.

    Alternatives to cobalt

    Most electric cars are powered by lithium-ion batteries, a type of battery that is recharged when lithium ions flow from a positively charged electrode, called a cathode, to a negatively electrode, called an anode. In most lithium-ion batteries, the cathode contains cobalt, a metal that offers high stability and energy density.

    However, cobalt has significant downsides. A scarce metal, its price can fluctuate dramatically, and much of the world’s cobalt deposits are located in politically unstable countries. Cobalt extraction creates hazardous working conditions and generates toxic waste that contaminates land, air, and water surrounding the mines.

    “Cobalt batteries can store a lot of energy, and they have all of features that people care about in terms of performance, but they have the issue of not being widely available, and the cost fluctuates broadly with commodity prices. And, as you transition to a much higher proportion of electrified vehicles in the consumer market, it’s certainly going to get more expensive,” Dincă says.

    Because of the many drawbacks to cobalt, a great deal of research has gone into trying to develop alternative battery materials. One such material is lithium-iron-phosphate (LFP), which some car manufacturers are beginning to use in electric vehicles. Although still practically useful, LFP has only about half the energy density of cobalt and nickel batteries.

    Another appealing option are organic materials, but so far most of these materials have not been able to match the conductivity, storage capacity, and lifetime of cobalt-containing batteries. Because of their low conductivity, such materials typically need to be mixed with binders such as polymers, which help them maintain a conductive network. These binders, which make up at least 50 percent of the overall material, bring down the battery’s storage capacity.

    About six years ago, Dincă’s lab began working on a project, funded by Lamborghini, to develop an organic battery that could be used to power electric cars. While working on porous materials that were partly organic and partly inorganic, Dincă and his students realized that a fully organic material they had made appeared that it might be a strong conductor.

    This material consists of many layers of TAQ (bis-tetraaminobenzoquinone), an organic small molecule that contains three fused hexagonal rings. These layers can extend outward in every direction, forming a structure similar to graphite. Within the molecules are chemical groups called quinones, which are the electron reservoirs, and amines, which help the material to form strong hydrogen bonds.

    Those hydrogen bonds make the material highly stable and also very insoluble. That insolubility is important because it prevents the material from dissolving into the battery electrolyte, as some organic battery materials do, thereby extending its lifetime.

    “One of the main methods of degradation for organic materials is that they simply dissolve into the battery electrolyte and cross over to the other side of the battery, essentially creating a short circuit. If you make the material completely insoluble, that process doesn’t happen, so we can go to over 2,000 charge cycles with minimal degradation,” Dincă says.

    Strong performance

    Tests of this material showed that its conductivity and storage capacity were comparable to that of traditional cobalt-containing batteries. Also, batteries with a TAQ cathode can be charged and discharged faster than existing batteries, which could speed up the charging rate for electric vehicles.

    To stabilize the organic material and increase its ability to adhere to the battery’s current collector, which is made of copper or aluminum, the researchers added filler materials such as cellulose and rubber. These fillers make up less than one-tenth of the overall cathode composite, so they don’t significantly reduce the battery’s storage capacity.

    These fillers also extend the lifetime of the battery cathode by preventing it from cracking when lithium ions flow into the cathode as the battery charges.

    The primary materials needed to manufacture this type of cathode are a quinone precursor and an amine precursor, which are already commercially available and produced in large quantities as commodity chemicals. The researchers estimate that the material cost of assembling these organic batteries could be about one-third to one-half the cost of cobalt batteries.

    Lamborghini has licensed the patent on the technology. Dincă’s lab plans to continue developing alternative battery materials and is exploring possible replacement of lithium with sodium or magnesium, which are cheaper and more abundant than lithium. More

  • in

    Study reveals a reaction at the heart of many renewable energy technologies

    A key chemical reaction — in which the movement of protons between the surface of an electrode and an electrolyte drives an electric current — is a critical step in many energy technologies, including fuel cells and the electrolyzers used to produce hydrogen gas.

    For the first time, MIT chemists have mapped out in detail how these proton-coupled electron transfers happen at an electrode surface. Their results could help researchers design more efficient fuel cells, batteries, or other energy technologies.

    “Our advance in this paper was studying and understanding the nature of how these electrons and protons couple at a surface site, which is relevant for catalytic reactions that are important in the context of energy conversion devices or catalytic reactions,” says Yogesh Surendranath, a professor of chemistry and chemical engineering at MIT and the senior author of the study.

    Among their findings, the researchers were able to trace exactly how changes in the pH of the electrolyte solution surrounding an electrode affect the rate of proton motion and electron flow within the electrode.

    MIT graduate student Noah Lewis is the lead author of the paper, which appears today in Nature Chemistry. Ryan Bisbey, a former MIT postdoc; Karl Westendorff, an MIT graduate student; and Alexander Soudackov, a research scientist at Yale University, are also authors of the paper.

    Passing protons

    Proton-coupled electron transfer occurs when a molecule, often water or an acid, transfers a proton to another molecule or to an electrode surface, which stimulates the proton acceptor to also take up an electron. This kind of reaction has been harnessed for many energy applications.

    “These proton-coupled electron transfer reactions are ubiquitous. They are often key steps in catalytic mechanisms, and are particularly important for energy conversion processes such as hydrogen generation or fuel cell catalysis,” Surendranath says.

    In a hydrogen-generating electrolyzer, this approach is used to remove protons from water and add electrons to the protons to form hydrogen gas. In a fuel cell, electricity is generated when protons and electrons are removed from hydrogen gas and added to oxygen to form water.

    Proton-coupled electron transfer is common in many other types of chemical reactions, for example, carbon dioxide reduction (the conversion of carbon dioxide into chemical fuels by adding electrons and protons). Scientists have learned a great deal about how these reactions occur when the proton acceptors are molecules, because they can precisely control the structure of each molecule and observe how electrons and protons pass between them. However, when proton-coupled electron transfer occurs at the surface of an electrode, the process is much more difficult to study because electrode surfaces are usually very heterogenous, with many different sites that a proton could potentially bind to.

    To overcome that obstacle, the MIT team developed a way to design electrode surfaces that gives them much more precise control over the composition of the electrode surface. Their electrodes consist of sheets of graphene with organic, ring-containing compounds attached to the surface. At the end of each of these organic molecules is a negatively charged oxygen ion that can accept protons from the surrounding solution, which causes an electron to flow from the circuit into the graphitic surface.

    “We can create an electrode that doesn’t consist of a wide diversity of sites but is a uniform array of a single type of very well-defined sites that can each bind a proton with the same affinity,” Surendranath says. “Since we have these very well-defined sites, what this allowed us to do was really unravel the kinetics of these processes.”

    Using this system, the researchers were able to measure the flow of electrical current to the electrodes, which allowed them to calculate the rate of proton transfer to the oxygen ion at the surface at equilibrium — the state when the rates of proton donation to the surface and proton transfer back to solution from the surface are equal. They found that the pH of the surrounding solution has a significant effect on this rate: The highest rates occurred at the extreme ends of the pH scale — pH 0, the most acidic, and pH 14, the most basic.

    To explain these results, researchers developed a model based on two possible reactions that can occur at the electrode. In the first, hydronium ions (H3O+), which are in high concentration in strongly acidic solutions, deliver protons to the surface oxygen ions, generating water. In the second, water delivers protons to the surface oxygen ions, generating hydroxide ions (OH-), which are in high concentration in strongly basic solutions.

    However, the rate at pH 0 is about four times faster than the rate at pH 14, in part because hydronium gives up protons at a faster rate than water.

    A reaction to reconsider

    The researchers also discovered, to their surprise, that the two reactions have equal rates not at neutral pH 7, where hydronium and hydroxide concentrations are equal, but at pH 10, where the concentration of hydroxide ions is 1 million times that of hydronium. The model suggests this is because the forward reaction involving proton donation from hydronium or water contributes more to the overall rate than the backward reaction involving proton removal by water or hydroxide.

    Existing models of how these reactions occur at electrode surfaces assume that the forward and backward reactions contribute equally to the overall rate, so the new findings suggest that those models may need to be reconsidered, the researchers say.

    “That’s the default assumption, that the forward and reverse reactions contribute equally to the reaction rate,” Surendranath says. “Our finding is really eye-opening because it means that the assumption that people are using to analyze everything from fuel cell catalysis to hydrogen evolution may be something we need to revisit.”

    The researchers are now using their experimental setup to study how adding different types of ions to the electrolyte solution surrounding the electrode may speed up or slow down the rate of proton-coupled electron flow.

    “With our system, we know that our sites are constant and not affecting each other, so we can read out what the change in the solution is doing to the reaction at the surface,” Lewis says.

    The research was funded by the U.S. Department of Energy Office of Basic Energy Sciences. More