More stories

  • in

    Climate and sustainability classes expand at MIT

    In fall 2019, a new class, 6.S898/12.S992 (Climate Change Seminar), arrived at MIT. It was, at the time, the only course in the Department of Electrical Engineering and Computer Science (EECS) to tackle the science of climate change. The class covered climate models and simulations alongside atmospheric science, policy, and economics.

    Ron Rivest, MIT Institute Professor of Computer Science, was one of the class’s three instructors, with Alan Edelman of the Computer Science and Artificial Intelligence Laboratory (CSAIL) and John Fernández of the Department of Urban Studies and Planning. “Computer scientists have much to contribute to climate science,” Rivest says. “In particular, the modeling and simulation of climate can benefit from advances in computer science.”

    Rivest is one of many MIT faculty members who have been working in recent years to bring topics in climate, sustainability, and the environment to students in a growing variety of fields. And students have said they want this trend to continue.

    “Sustainability is something that touches all disciplines,” says Megan Xu, a rising senior in biological engineering and advisory chair of the Undergraduate Association Sustainability Committee. “As students who have grown up knowing that climate change is real and witnessed climate disaster after disaster, we know this is a huge problem that needs to be addressed by our generation.”

    Expanding the course catalog

    As education program manager at the MIT Environmental Solutions Initiative, Sarah Meyers has repeatedly had a hand in launching new sustainability classes. She has steered grant money to faculty, brought together instructors, and helped design syllabi — all in the service of giving MIT students the same world-class education in climate and sustainability that they get in science and engineering.

    Her work has given Meyers a bird’s-eye view of MIT’s course offerings in this area. By her count, there are now over 120 undergraduate classes, across 23 academic departments, that teach climate, environment, and sustainability principles.

    “Educating the next generation is the most important way that MIT can have an impact on the world’s environmental challenges,” she says. “MIT students are going to be leaders in their fields, whatever they may be. If they really understand sustainable design practices, if they can balance the needs of all stakeholders to make ethical decisions, then that actually changes the way our world operates and can move humanity towards a more sustainable future.”

    Some sustainability classes are established institutions at MIT. Success stories include 2.00A (Fundamentals of Engineering Design: Explore Space, Sea and Earth), a hands-on engineering class popular with first-year students; and 21W.775 (Writing About Nature and Environmental Issues), which has helped undergraduates fulfill their HASS-H (humanities distribution subject) and CI-H (Communication Intensive subject in the Humanities, Arts, and Social Sciences) graduation requirements for 15 years.

    Expanding this list of classes is an institutional priority. In the recently released Climate Action Plan for the Decade, MIT pledged to recruit at least 20 additional faculty members who will teach climate-related classes.

    “I think it’s easy to find classes if you’re looking for sustainability classes to take,” says Naomi Lutz, a senior in mechanical engineering who helped advise the MIT administration on education measures in the Climate Action Plan. “I usually scroll through the titles of the classes in courses 1, 2, 11, and 12 to see if any are of interest. I also have used the Environment & Sustainability Minor class list to look for sustainability-related classes to take.

    “The coming years are critical for the future of our planet, so it’s important that we all learn about sustainability and think about how to address it,” she adds.

    Working with students’ schedules

    Still, despite all this activity, climate and sustainability are not yet mainstream parts of an MIT education. Last year, a survey of over 800 MIT undergraduates, taken by the Undergraduate Association Sustainability Committee, found that only one in four had ever taken a class related to sustainability. But it doesn’t seem to be from lack of interest in the topic. More than half of those surveyed said that sustainability is a factor in their career planning, and almost 80 percent try to practice sustainability in their daily lives.

    “I’ve often had conversations with students who were surprised to learn there are so many classes available,” says Meyers. “We do need to do a better job communicating about them, and making it as easy as possible to enroll.”

    A recurring challenge is helping students fit sustainability into their plans for graduation, which are often tightly mapped-out.

    “We each only have four years — around 32 to 40 classes — to absorb all that we can from this amazing place,” says Xu. “Many of these classes are mandated to be GIRs [General Institute Requirements] and major requirements. Many students recognize that sustainability is important, but might not have the time to devote an entire class to the topic if it would not count toward their requirements.”

    This was a central focus for the students who were involved in forming education recommendations for the Climate Action Plan. “We propose that more sustainability-related courses or tracks are offered in the most common majors, especially in Course 6 [EECS],” says Lutz. “If students can fulfill major requirements while taking courses that address environmental problems, we believe more students will pursue research and careers related to sustainability.”

    She also recommends that students look into the dozens of climate and sustainability classes that fulfill GIRs. “It’s really easy to take sustainability-related courses that fulfill HASS [Humanities, Arts, and Social Sciences] requirements,” she says. For example, students can meet their HASS-S (social sciences sistribution subject) requirement by taking 21H.185 (Environment and History), or fulfill their HASS-A requirement with CMS.374 (Transmedia Art, Extraction and Environmental Justice).

    Classes with impact

    For those students who do seek out sustainability classes early in their MIT careers, the experience can shape their whole education.

    “My first semester at MIT, I took Environment and History, co-taught by professors Susan Solomon and Harriet Ritvo,” says Xu. “It taught me that there is so much more involved than just science and hard facts to solving problems in sustainability and climate. I learned to look at problems with more of a focus on people, which has informed much of the extracurricular work that I’ve gone on to do at MIT.”

    And the faculty, too, sometimes find that teaching in this area opens new doors for them. Rivest, who taught the climate change seminar in Course 6, is now working to build a simplified climate model with his co-instructor Alan Edelman, their teaching assistant Henri Drake, and Professor John Deutch of the Department of Chemistry, who joined the class as a guest lecturer. “I very much enjoyed meeting new colleagues from all around MIT,” Rivest says. “Teaching a class like this fosters connections between computer scientists and climate scientists.”

    Which is why Meyers will continue helping to get these classes off the ground. “We know students think climate is a huge issue for their futures. We know faculty agree with them,” she says. “Everybody wants this to be part of an MIT education. The next step is to really reach out to students and departments to fill the classrooms. That’s the start of a virtuous cycle where enrollment drives more sustainability instruction in every part of MIT.” More

  • in

    Energy storage from a chemistry perspective

    The transition toward a more sustainable, environmentally sound electrical grid has driven an upsurge in renewables like solar and wind. But something as simple as cloud cover can cause grid instability, and wind power is inherently unpredictable. This intermittent nature of renewables has invigorated the competitive landscape for energy storage companies looking to enhance power system flexibility while enabling the integration of renewables.

    “Impact is what drives PolyJoule more than anything else,” says CEO Eli Paster. “We see impact from a renewable integration standpoint, from a curtailment standpoint, and also from the standpoint of transitioning from a centralized to a decentralized model of energy-power delivery.”

    PolyJoule is a Billerica, Massachusetts-based startup that’s looking to reinvent energy storage from a chemistry perspective. Co-founders Ian Hunter of MIT’s Department of Mechanical Engineering and Tim Swager of the Department of Chemistry are longstanding MIT professors considered luminaries in their respective fields. Meanwhile, the core team is a small but highly skilled collection of chemists, manufacturing specialists, supply chain optimizers, and entrepreneurs, many of whom have called MIT home at one point or another.

    “The ideas that we work on in the lab, you’ll see turned into products three to four years from now, and they will still be innovative and well ahead of the curve when they get to market,” Paster says. “But the concepts come from the foresight of thinking five to 10 years in advance. That’s what we have in our back pocket, thanks to great minds like Ian and Tim.”

    PolyJoule takes a systems-level approach married to high-throughput, analytical electrochemistry that has allowed the company to pinpoint a chemical cell design based on 10,000 trials. The result is a battery that is low-cost, safe, and has a long lifetime. It’s capable of responding to base loads and peak loads in microseconds, allowing the same battery to participate in multiple power markets and deployment use cases.

    In the energy storage sphere, interesting technologies abound, but workable solutions are few and far between. But Paster says PolyJoule has managed to bridge the gap between the lab and the real world by taking industry concerns into account from the beginning. “We’ve taken a slightly contrarian view to all of the other energy storage companies that have come before us that have said, ‘If we build it, they will come.’ Instead, we’ve gone directly to the customer and asked, ‘If you could have a better battery storage platform, what would it look like?’”

    With commercial input feeding into the thought processes behind their technological and commercial deployment, PolyJoule says they’ve designed a battery that is less expensive to make, less expensive to operate, safer, and easier to deploy.

    Traditionally, lithium-ion batteries have been the go-to energy storage solution. But lithium has its drawbacks, including cost, safety issues, and detrimental effects on the environment. But PolyJoule isn’t interested in lithium — or metals of any kind, in fact. “We start with the periodic table of organic elements,” says Paster, “and from there, we derive what works at economies of scale, what is easy to converge and convert chemically.”

    Having an inherently safer chemistry allows PolyJoule to save on system integration costs, among other things. PolyJoule batteries don’t contain flammable solvents, which means no added expenses related to fire mitigation. Safer chemistry also means ease of storage, and PolyJoule batteries are currently undergoing global safety certification (UL approval) to be allowed indoors and on airplanes. Finally, with high power built into the chemistry, PolyJoule’s cells can be charged and discharged to extremes, without the need for heating or cooling systems.

    “From raw material to product delivery, we examine each step in the value chain with an eye towards reducing costs,” says Paster. It all starts with designing the chemistry around earth-abundant elements, which allows the small startup to compete with larger suppliers, even at smaller scales. Consider the fact that PolyJoule’s differentiating material cost is less than $1 per kilogram, whereas lithium carbonate sells for $20 per kilogram.

    On the manufacturing side, Paster explains that PolyJoule cuts costs by making their cells in old paper mills and warehouses, employing off-the-shelf equipment previously used for tissue paper or newspaper printing. “We use equipment that has been around for decades because we don’t want to create a cutting-edge technology that requires cutting-edge manufacturing,” he says. “We want to create a cutting-edge technology that can be deployed in industrialized nations and in other nations that can benefit the most from energy storage.”

    PolyJoule’s first customer is an industrial distributed energy consumer with baseline energy consumption that increases by a factor of 10 when the heavy machinery kicks on twice a day. In the early morning and late afternoon, it consumes about 50 kilowatts for 20 minutes to an hour, compared to a baseline rate of 5  kilowatts. It’s an application model that is translatable to a variety of industries. Think wastewater treatment, food processing, and server farms — anything with a fluctuation in power consumption over a 24-hour period.

    By the end of the year, PolyJoule will have delivered its first 10 kilowatt-hour system, exiting stealth mode and adding commercial viability to demonstrated technological superiority. “What we’re seeing, now is massive amounts of energy storage being added to renewables and grid-edge applications,” says Paster. “We anticipated that by 12-18 months, and now we’re ramping up to catch up with some of the bigger players.” More

  • in

    Chemistry Undergraduate Teaching Lab hibernates fume hoods, drastically reducing energy costs

    The Department of Chemistry’s state-of-the-art Undergraduate Teaching Lab (UGTL), which opened on the fifth floor of MIT.nano in fall 2018, is home to 69 fume hoods. The hoods, ranging from four to seven feet wide, protect students and staff from potential exposure to hazardous materials while working in the lab. Fume hoods represent a tremendous energy consumption on the MIT campus; in addition to the energy required to operate them, the air that replaces what is exhausted must be heated or cooled. Thus, any lab with a large number of fume hoods is destined to be faced with high operational energy cost.

    “When the UGTL’s fume hoods are in use, the air-change rates — the number of times fresh air is exchanged in the space in a given time frame — averages between 25 and 30 air changes per hour (ACH),” says Nicole Imbergamo, senior sustainability project manager in MIT Campus Construction. “When the lab is unoccupied, that air-change rate averages 11 ACH. For context, in a laboratory with a single fume hood, typically MIT’s EHS [Environment, Health, and Safety] department would require six ACH when occupied and four ACH when unoccupied. Hibernation of the fume hoods allowed us to close the gap between the current unoccupied air-change rate and what is typical on campus in a non-teaching lab environment.”

    Fifty-eight of the 69 fume hoods in the UGTL are consistently unused between the hours of 6:30 p.m. and 12 p.m., as well as all weekend long, totaling 135 hours per week. Based on these numbers, the team determined it was safe to “hibernate” the fume hoods during the off hours, saving the Institute on fan energy and the cost of heating and cooling the air that gets flushed into each hood.

    John Dolhun PhD ’73 is the director of the UGTL. “The project started when MIT Green Labs — a division of the Environment, Health, and Safety Office now known as the Safe & Sustainable Labs Program — contacted the UGTL in October 2018, followed by an initial meeting in November 2018 with all the key players, including Safe and Sustainable Labs, the EHS Office, the Department of Facilities, and the Department of Chemistry,” says Dolhun. “It was during these initial discussions that the UGTL recognized this was something we had to do. The project was completed in April 2021.”

    Now, through a scheduled time clock in the Building Management System (BMS), the 58 fume hoods are flipped into hibernation mode at the end of each day. “In hibernation mode, the exhaust air valves go to their minimum airflow, which is lower than a fume hood minimum required when in use,” says Imbergamo. “As a safety feature, if the sash of a fume hood is opened while it is in standby mode, the valve and hood are automatically released from hibernation until the next scheduled time.” The BMS allows Dolhun and all with access to instantly view the hibernation status of every hood online, at any time, from any location. As an additional safety measure, the lab is equipped with an emergency kill switch that, when activated, instantly takes all 58 fume hoods out of hibernation, increasing the air changes per hour by about 37 percent, at one touch.

    The MIT operations team worked with the building controls vendor to create graphics that allow the UGTL users to easily see the hood sash positions and their current status as either hibernated or in normal operating mode. This virtual visibility allows the UGTL team to confirm the hoods are all closed before leaving the lab at the end of each day, and to confirm the energy reductions. This visual access also lends itself to educating the students on the importance of closing the sash at the end of their lab work, and gives an opportunity for educating the students on relevant fume hood management best practices that will serve them far beyond their undergraduate chemistry classes.

    Since employing the use of hibernation mode, the unoccupied UGTL air change rate has plummeted from 11 ACH to seven ACH, drastically shrinking unnecessary energy outflow, saving MIT an estimated $21,000 per year. The annual utility cost savings of both reduced supply and exhaust fan energy, as well as the heating and cooling required of the supply air to the space, will result in a less-than three-year payback for MIT. The overall success of the hood hibernation program, and the savings that it has afforded the UGTL, is very motivational for the Green Initiative. The highlights of this system will be shared with other labs, both at MIT and beyond, that may also benefit from similar adjustments. More