More stories

  • in

    Has remote work changed how people travel in the U.S?

    The prevalence of remote work since the start of the Covid-19 pandemic has significantly changed urban transportation patterns in the U.S., according to new study led by MIT researchers.

    The research finds significant variation between the effects of remote work on vehicle miles driven and on mass-transit ridership across the U.S.

    “A 1 percent decrease in onsite workers leads to a roughly 1 percent reduction in [automobile] vehicle miles driven, but a 2.3 percent reduction in mass transit ridership,” says Yunhan Zheng SM ’21, PhD ’24, an MIT postdoc who is co-author of a the study.

    “This is one of the first studies that identifies the causal effect of remote work on vehicle miles traveled and transit ridership across the U.S.,” adds Jinhua Zhao, an MIT professor and another co-author of the paper.

    By accounting for many of the nuances of the issue, across the lower 48 states and the District of Columbia as well as 217 metropolitan areas, the scholars believe they have arrived at a robust conclusion demonstrating the effects of working from home on larger mobility patterns.

    The paper, “Impacts of remote work on vehicle miles traveled and transit ridership in the USA,” appears today in the journal Nature Cities. The authors are Zheng, a doctoral graduate of MIT’s Department of Civil and Environmental Engineering and a postdoc at the Singapore–MIT Alliance for Research and Technology (SMART); Shenhao Wang PhD ’20, an assistant professor at the University of Florida; Lun Liu, an assistant professor at Peking University; Jim Aloisi, a lecturer in MIT’s Department of Urban Studies and Planning (DUSP); and Zhao, the Professor of Cities and Transportation, founder of the MIT Mobility Initiative, and director of MIT’s JTL Urban Mobility Lab and Transit Lab.

    The researchers gathered data on the prevalence of remote work from multiple sources, including Google location data, travel data from the U.S. Federal Highway Administration and the National Transit Database, and the monthly U.S. Survey of Working Arrangements and Attitudes (run jointly by Stanford University, the University of Chicago, ITAM, and MIT).

    The study reveals significant variation among U.S. states when it comes to how much the rise of remote work has affected mileage driven.

    “The impact of a 1 percent change in remote work on the reduction of vehicle miles traveled in New York state is only about one-quarter of that in Texas,” Zheng observes. “There is real variation there.”

    At the same time, remote work has had the biggest effect on mass-transit revenues in places with widely used systems, with New York City, Chicago, San Francisco, Boston, and Philadelphia making up the top five hardest-hit metro areas.

    The overall effect is surprisingly consistent over time, from early 2020 through late 2022.

    “In terms of the temporal variation, we found that the effect is quite consistent across our whole study period,” Zheng says. “It’s not just significant in the early stage of the pandemic, when remote work was a necessity for many. The magnitude remains consistent into the later period, when many people have the flexibility to choose where they want to work. We think this may have long-term implications.”

    Additionally, the study estimates the impact that still larger numbers of remote workers could have on the environment and mass transit.

    “On a national basis, we estimate that a 10 percent decrease in the number of onsite workers compared to prepandemic levels will reduce the annual total vehicle-related CO2 emissions by 191.8 million metric tons,” Wang says.

    The study also projects that across the 217 metropolitan areas in the study, a 10 percent decrease in the number of onsite workers, compared to prepandemic levels, would lead to an annual loss of 2.4 billion transit trips and $3.7 billion in fare revenue — equal to roughly 27 percent of the annual transit ridership and fare revenue in 2019.

    “The substantial influence of remote work on transit ridership highlights the need for transit agencies to adapt their services accordingly, investing in services tailored to noncommuting trips and implementing more flexible schedules to better accommodate the new demand patterns,” Zhao says.

    The research received support from the MIT Energy Initiative; the Barr Foundation; the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise program; the Research Opportunity Seed Fund 2023 from the University of Florida; and the Beijing Social Science Foundation. More

  • in

    Think globally, rebuild locally

    Building construction accounts for a huge chunk of greenhouse gas emissions: About 36 percent of carbon dioxide emissions and 40 percent of energy consumption in Europe, for instance. That’s why the European Union has developed regulations about the reuse of building materials.

    Some cities are adding more material reuse into construction already. Amsterdam, for example, is attempting to slash its raw material use by half by 2030. The Netherlands as a whole aims for a “circular economy” of completely reused materials by 2050.

    But the best way to organize the reuse of construction waste is still being determined. For one thing: Where should reusable building materials be stored before they are reused? A newly published study focusing on Amsterdam finds the optimal material reuse system for construction has many local storage “hubs” that keep materials within a few miles of where they will be needed.

    “Our findings provide a starting point for policymakers in Amsterdam to strategize land use effectively,” says Tanya Tsui, a postdoc at MIT and a co-author of the new paper. “By identifying key locations repeatedly favored across various hub scenarios, we underscore the importance of prioritizing these areas for future circular economy endeavors in Amsterdam.”

    The study adds to an emerging research area that connects climate change and urban planning.

    “The issue is where you put material in between demolition and new construction,” says Fábio Duarte, a principal researcher at MIT’s Senseable City Lab and a co-author of the new paper. “It will have huge impacts in terms of transportation. So you have to define the best sites. Should there be only one? Should we hold materials across a wide number of sites? Or is there an optimal number, even if it changes over time? This is what we examined in the paper.”

    The paper, “Spatial optimization of circular timber hubs,” is published in NPJ Nature Urban Sustainability. The authors are Tsui, who is a postdoc at the MIT Senseable Amsterdam Lab in the Amsterdam Institute for Advanced Metropolitan Solutions (AMS); Titus Venverloo, a research fellow at MIT Senseable Amsterdam Lab and AMS; Tom Benson, a researcher at the Senseable City Lab; and Duarte, who is also a lecturer in MIT’s Department of Urban Studies and Planning and the MIT Center for Real Estate.

    Numerous experts have previously studied at what scale the “circular economy” of reused materials might best operate. Some have suggested that very local circuits of materials recycling make the most sense; others have proposed that building-materials recycling will work best at a regional scale, with a radius of distribution covering 30 or more miles. Some analyses contend that global-scale reuse will be necessary to an extent.

    The current study adds to this examination of the best geographic scale for using construction materials again. Currently the storage hubs that do exist for such reused materials are chosen by individual companies, but those locations might not be optimal either economically or environmentally. 

    To conduct the study, the researchers essentially conducted a series of simulations of the Amsterdam metropolitan area, focused exclusively on timber reuse. The simulations examined how the system would work if anywhere from one to 135 timber storage hubs existed in greater Amsterdam. The modeling accounted for numerous variables, such as emissions reductions, logistical factors, and even how changing supply-and-demand scenarios would affect the viability of the reusehubs.

    Ultimately, the research found that Amsterdam’s optimal system would have 29 timber hubs, each serving a radius of about 2 miles. That setup generated 95 percent of the maximum reduction in CO2 emissions, while retaining logistical and economic benefits.

    That results also lands firmly on the side of having more localized networks for keeping construction materials in use.

    “If we have demolition happening in certain sites, then we can project where the best spots around the city are to have these circular economy hubs, as we call them,” Duarte says. “It’s not only one big hub — or one hub per construction site.”

    The study seeks to identify not only the optimal number of storage sites, but to identify where those sites might be.

    “[We hope] our research sparks discussions regarding the location and scale of circular hubs,” Tsui says. “While much attention has been given to governance aspects of the circular economy in cities, our study demonstrates the potential of utilizing location data on materials to inform decisions in urban planning.”

    The simulations also illuminated the dynamics of materials reuse. In scenarios where Amsterdam had from two to 20 timber recycling hubs, the costs involved lowered as the number of hubs increased — because having more hubs reduces transportation costs. But when the number of hubs went about 40, the system as a whole became more expensive — because each timber depot was not storing enough material to justify the land use.

    As such, the results may be of interest to climate policymakers, urban planners, and business interests getting involved in implementing the circular economy in the construction industry.

    “Ultimately,” Tsui says, “we envision our research catalyzing meaningful discussions and guiding policymakers toward more informed decisions in advancing the circular economy agenda in urban contexts.”

    The research was supported, in part, by the European Union’s Horizon 2020 research and innovation program. More

  • in

    Local journalism is a critical “gate” to engage Americans on climate change

    Last year, Pew Research Center data revealed that only 37 percent of Americans said addressing climate change should be a top priority for the president and Congress. Furthermore, climate change was ranked 17th out of 21 national issues included in a Pew survey. 

    But in reality, it’s not that Americans don’t care about climate change, says celebrated climate scientist and communicator MIT Professor Katharine Hayhoe. It’s that they don’t know that they already do. 

    To get Americans to care about climate change, she adds, it’s imperative to guide them to their gate. At first, it might not be clear where that gate is. But it exists. 

    That message was threaded through the Connecting with Americans on Climate Change webinar last fall, which featured a discussion with Hayhoe and the five journalists who made up the 2023 cohort of the MIT Environmental Solutions Journalism Fellowship. Hayhoe referred to a “gate” as a conversational entry point about climate impacts and solutions. The catch? It doesn’t have to be climate-specific. Instead, it can focus on the things that people already hold close to their heart.

    “If you show people … whether it’s a military veteran or a parent or a fiscal conservative or somebody who is in a rural farming area or somebody who loves kayaking or birds or who just loves their kids … how they’re the perfect person to care [about climate change], then it actually enhances their identity to advocate for and adopt climate solutions,” said Hayhoe. “It makes them a better parent, a more frugal fiscal conservative, somebody who’s more invested in the security of their country. It actually enhances who they already are instead of trying to turn them into someone else.”

    The MIT Environmental Solutions Journalism Fellowship provides financial and technical support to journalists dedicated to connecting local stories to broader climate contexts, especially in parts of the country where climate change is disputed or underreported. 

    Climate journalism is typically limited to larger national news outlets that have the resources to employ dedicated climate reporters. And since many local papers are already struggling — with the country on track to lose a third of its papers by the end of next year, leaving over 50 percent of counties in the United States with just one or no local news outlets — local climate beats can be neglected. This makes the work executed by the ESI’s fellows all the more imperative. Because for many Americans, the relevance of these stories to their own community is their gate to climate action. 

    “This is the only climate journalism fellowship that focuses exclusively on local storytelling,” says Laur Hesse Fisher, program director at MIT ESI and founder of the fellowship. “It’s a model for engaging some of the hardest audiences to reach: people who don’t think they care much about climate change. These talented journalists tell powerful, impactful stories that resonate directly with these audiences.”

    From March to June, the second cohort of ESI Journalism Fellows pursued local, high-impact climate reporting in Montana, Arizona, Maine, West Virginia, and Kentucky. 

    Collectively, their 26 stories had over 70,000 direct visits on their host outlets’ websites as of August 2023, gaining hundreds of responses from local voters, lawmakers, and citizen groups. Even though they targeted local audiences, they also had national appeal, as they were republished by 46 outlets — including Vox, Grist, WNYC, WBUR, the NPR homepage, and three separate stories on NPR’s “Here & Now” program, which is broadcast by 45 additional partner radio stations across the country — with a collective reach in the hundreds of thousands. 

    Micah Drew published an eight-part series in The Flathead Beacon titled, “Montana’s Climate Change Lawsuit.” It followed a landmark case of 16 young people in Montana suing the state for violating their right to a “clean and healthful environment.” Of the plaintiffs, Drew said, “They were able to articulate very clearly what they’ve seen, what they’ve lived through in a pretty short amount of life. Some of them talked about wildfires — which we have a lot of here in Montana — and [how] wildfire smoke has canceled soccer games at the high school level. It cancels cross-country practice; it cancels sporting events. I mean, that’s a whole section of your livelihood when you’re that young that’s now being affected.”

    Joan Meiners is a climate news reporter for the Arizona Republic. Her five-part series was situated at the intersection of Phoenix’s extreme heat and housing crises. “I found that we are building three times more sprawling, single-family detached homes … as the number of apartment building units,” she says. “And with an affordability crisis, with a climate crisis, we really need to rethink that. The good news, which I also found through research for this series … is that Arizona doesn’t have a statewide building code, so each municipality decides on what they’re going to require builders to follow … and there’s a lot that different municipalities can do just by showing up to their city council meetings [and] revising the building codes.”

    For The Maine Monitor, freelance journalist Annie Ropeik generated a four-part series, called “Hooked on Heating Oil,” on how Maine came to rely on oil for home heating more than any other state. When asked about solutions, Ropeik says, “Access to fossil fuel alternatives was really the central equity issue that I was looking at in my project, beyond just, ‘Maine is really relying on heating oil, that obviously has climate impacts, it’s really expensive.’ What does that mean for people in different financial situations, and what does that access to solutions look like for those different communities? What are the barriers there and how can we address those?”

    Energy and environment reporter Mike Tony created a four-part series in The Charleston Gazette-Mail on West Virginia’s flood vulnerabilities and the state’s lack of climate action. On connecting with audiences, Tony says, “The idea was to pick a topic like flooding that really affects the whole state, and from there, use that as a sort of an inroad to collect perspectives from West Virginians on how it’s affecting them. And then use that as a springboard to scrutinizing the climate politics that are precluding more aggressive action.”

    Finally, Ryan Van Velzer, Louisville Public Media’s energy and environment reporter, covered the decline of Kentucky’s fossil fuel industry and offered solutions for a sustainable future in a four-part series titled, “Coal’s Dying Light.” For him, it was “really difficult to convince people that climate change is real when the economy is fundamentally intertwined with fossil fuels. To a lot of these people, climate change, and the changes necessary to mitigate climate change, can cause real and perceived economic harm to these communities.” 

    With these projects in mind, someone’s gate to caring about climate change is probably nearby — in their own home, community, or greater region. 

    It’s likely closer than they think. 

    To learn more about the next fellowship cohort — which will support projects that report on climate solutions being implemented locally and how they reduce emissions while simultaneously solving pertinent local issues — sign up for the MIT Environmental Solutions Initiative newsletter. Questions about the fellowship can be directed to Laur Hesse Fisher at climate@mit.edu. More

  • in

    3 Questions: How are cities managing record-setting temperatures?

    July 2023 was the hottest month globally since humans began keeping records. People all over the U.S. experienced punishingly high temperatures this summer. In Phoenix, there were a record-setting 31 consecutive days with a high temperature of 110 degrees Fahrenheit or more. July was the hottest month on record in Miami. A scan of high temperatures around the country often yielded some startlingly high numbers: Dallas, 110 F; Reno, 108 F; Salt Lake City, 106 F; Portland, 105 F.

    Climate change is a global and national crisis that cannot be solved by city governments alone, but cities suffering from it can try to enact new policies reducing emissions and adapting its effects. MIT’s David Hsu, an associate professor of urban and environmental planning, is an expert on metropolitan and regional climate policy. In one 2017 paper, Hsu and some colleagues estimated how 11 major U.S. cities could best reduce their carbon dioxide emissions, through energy-efficient home construction and retrofitting, improvements in vehicle gas mileage, more housing density, robust transit systems, and more. As we near the end of this historically hot summer, MIT News talked to Hsu about what cities are now doing in response to record heat, and the possibilities for new policy measures.

    Q: We’ve had record-setting temperatures in many cities across the U.S. this summer. Dealing with climate change certainly isn’t just the responsibility of those cities, but what have they been doing to make a difference, to the extent they can?

    A: I think this is a very top-of-mind question because even 10 or 15 years ago, we talked about adapting to a changed climate future, which seemed further off. But literally every week this summer we can refer to [dramatic] things that are already happening, clearly linked to climate change, and are going to get worse. We had wildfire smoke in the Northeast and throughout the Eastern Seaboard in June, this tragic wildfire in Hawaii that led to more deaths than any other wildfire in the U.S., [plus record high temperatures]. A lot of city leaders face climate challenges they thought were maybe 20 or 30 years in the future, and didn’t expect to see happen with this severity and intensity.

    One thing you’re seeing is changes in governance. A lot of cities have recently appointed a chief heat officer. Miami and Phoenix have them now, and this is someone responsible for coordinating response to heat waves, which turn out to be one of the biggest killers among climatological effects. There is an increasing realization not only among local governments, but insurance companies and the building industry, that flooding is going to affect many places. We have already seen flooding in the seaport area in Boston, the most recently built part of our city. In some sense just the realization among local governments, insurers, building owners, and residents, that some risks are here and now, already is changing how people think about those risks.

    Q: To what extent does a city being active about climate change at least signal to everyone, at the state or national level, that we have to do more? At the same time, some states are reacting against cities that are trying to institute climate initiatives and trying to prevent clean energy advances. What is possible at this point?

    A: We have this very large, heterogeneous and polarized country, and we have differences between states and within states in how they’re approaching climate change. You’ve got some cities trying to enact things like natural gas bans, or trying to limit greenhouse gas emissions, with some state governments trying to preempt them entirely. I think cities have a role in showing leadership. But one thing I harp on, having worked in city government myself, is that sometimes in cities we can be complacent. While we pride ourselves on being centers of innovation and less per-capita emissions — we’re using less than rural areas, and you’ll see people celebrating New York City as the greenest in the world — cities are responsible for consumption that produces a majority of emissions in most countries. If we’re going to decarbonize society, we have to get to zero altogether, and that requires cities to act much more aggressively.

    There is not only a pessimistic narrative. With the Inflation Reduction Act, which is rapidly accelerating the production of renewable energy, you see many of those subsidies going to build new manufacturing in red states. There’s a possibility people will see there are plenty of better paying, less dangerous jobs in [clean energy]. People don’t like monopolies wherever they live, so even places people consider fairly conservative would like local control [of energy], and that might mean greener jobs and lower prices. Yes, there is a doomscrolling loop of thinking polarization is insurmountable, but I feel surprisingly optimistic sometimes.

    Large parts of the Midwest, even in places people think of as being more conservative, have chosen to build a lot of wind energy, partly because it’s profitable. Historically, some farmers were self-reliant and had wind power before the electrical grid came. Even now in some places where people don’t want to address climate change, they’re more than happy to have wind power.

    Q: You’ve published work on which cities can pursue which policies to reduce emissions the most: better housing construction, more transit, more fuel-efficient vehicles, possibly higher housing density, and more. The exact recipe varies from place to place. But what are the common threads people can think about?

    A: It’s important to think about what the status quo is, and what we should be preparing for. The status quo simply doesn’t serve large parts of the population right now. Heat risk, flooding, and wildfires all disproportionately affect populations that are already vulnerable. If you’re elderly, or lack access to mobility, information, or warnings, you probably have a lower risk of surviving a wildfire. Many people do not have high-quality housing, and may be more exposed to heat or smoke. We know the climate has already changed, and is going to change more, but we have failed to prepare for foreseeable changes that already here. Lots of things that are climate-related but not only about climate change, like affordable housing, transportation, energy access for everyone so they can have services like cooking and the internet — those are things that we can change going forward. The hopeful message is: Cities are always changing and being built, so we should make them better. The urgent message is: We shouldn’t accept the status quo. More

  • in

    Helping the transportation sector adapt to a changing world

    After graduating from college, Nick Caros took a job as an engineer with a construction company, helping to manage the building of a new highway bridge right near where he grew up outside of Vancouver, British Columbia.  

    “I had a lot of friends that would use that new bridge to get to work,” Caros recalls. “They’d say, ‘You saved me like 20 minutes!’ That’s when I first realized that transportation could be a huge benefit to people’s lives.”

    Now a PhD candidate in the Urban Mobility Lab and the lead researcher for the MIT Transit Research Consortium, Caros works with seven transit agencies across the country to understand how workers’ transportation needs have changed as companies have adopted remote work policies.

    “Another cool thing about working on transportation is that everybody, even if they don’t engage with it on an academic level, has an opinion or wants to talk about it,” says Caros. “As soon as I mention I’ve worked with the T, they have something they want to talk about.”

    Caros is drawn to projects with social impact beyond saving his friends a few minutes during their commutes. He sees public transportation as a crucial component in combating climate change and is passionate about identifying and lowering the psychological barriers that prevent people around the world from taking advantage of their local transit systems.

    “The more I’ve learned about public transportation, the more I’ve come to realize it will play an essential part in decarbonizing urban transportation,” says Caros. “I want to continue working on these kinds of issues, like how we can make transportation more sustainable or promoting public transportation in places where it doesn’t exist or can be improved.”

    Caros says he doesn’t have a “transportation origin story,” like some of his peers who grew up in urban centers with robust public transit systems. As a child growing up in the Vancouver suburbs, he always enjoyed the outdoors, which were as close as his backyard. He chose to study engineering as an undergraduate at the University of British Columbia, fascinated by the hydroelectric dams that supply Vancouver with most of its power. But after two projects with the construction company, the second of which took him to Maryland to work on a fossil fuel project, he decided he needed a change.

    Not quite sure what he wanted to do next, Caros sought out the shortest master’s program he could find that interested him. That ended up being an 18-month master’s program in transportation planning and engineering at New York University. Initially intending to pursue the course-based program, Caros was soon offered the chance to be a research assistant in NYU’s Behavioral Urban Informatics, Logistics, and Transport Laboratory with Professor Joseph Chow. There, he worked to model an experimental transportation system of modular self-driving cars that could link and unlink with each other while in motion.

    “It was this really futuristic stuff,” says Caros. “It turned out to be a really cool project to work on because it’s kind of rare to have a blank-slate problem to try and solve. A lot of transportation engineering problems have largely been solved. We know how to make efficient and sustainable transportation systems; it’s just finding the political support and encouraging behavioral change that remains a challenge.”

    At NYU, Caros fell in love with research and the field of transportation. Later, he was drawn to MIT by its interdisciplinary PhD program that spans both urban studies and planning and civil engineering and the opportunity to work with Professor Jinhua Zhao.

    His research focuses on identifying “third places,” locations where some people go if their job gives them the flexibility to work remotely. Previously, transportation needs revolved around office spaces, typically located in city centers. With more people working from home, the first assumption is that transportation needs would decrease. But that’s not what Caros has found.

    “One major finding from our research is that people have changed where they’re going when they go to work,” says Caros. “A lot of people are working from home, but some are also working in other places, like coffee shops or co-working spaces. And these third places are not evenly distributed in Boston.”

    Identifying the concentration of these third places and what locations would benefit from them is the core of Caros’ dissertation. He’s building an algorithm that identifies ideal locations to build more shared workplaces based on both economic and social factors. Caros seeks to answer how you can minimize travel time across the board while leaving room for the spontaneous social interactions that drive a city’s productivity. His research is sponsored by seven of the largest transit agencies in the United States, who are members of the MIT Transit Research Consortium. Rather than a single agency sponsoring a single specific project, funding is pooled to tackle projects that address general topics that can apply to multiple cities.

    These kinds of problems require a multidisciplinary approach that appeals to Caros. Even when diving into the technical details of a solution, he always keeps the bigger picture in mind. He is certain that changing people’s views of public transportation will be crucial in the fight against climate change.

    “A lot of it is not necessarily engineering, but understanding what the motivations of people are,” says Caros. “Transportation is a leading sector for carbon emissions in the U.S., and so figuring out what makes people tick and how you can get them to ride public transit more, for example, would help to reduce the overall carbon cost.”

    Following the completion of his degree, Caros will join the Organization for Economic Cooperation and Development. He already spent six months at its Paris headquarters as an intern during a leave from MIT, something his lab encourages all of its students to do. Last fall, he worked on drafting policy guidelines for new mobility services such as vehicle-share scooters, and addressing transportation equity issues in Ghana. Plus, living in Paris gave him the opportunity to practice his French. Growing up in Canada, he attended a French immersion school, and his internship offered his first opportunity to use the language outside of an academic context.

    Looking forward, Caros hopes to keep tackling projects that promote sustainable public transportation. There is an urgency in getting ahead of the curve, especially in cities experiencing rapid growth.

    “You kind of get locked in,” says Caros. “It becomes much harder to build sustainable transportation systems after the fact. But it’s really just a geometry problem. Trains and buses are a way more efficient way to move people using the same amount of space as private cars.” More

  • in

    Cutting urban carbon emissions by retrofitting buildings

    To support the worldwide struggle to reduce carbon emissions, many cities have made public pledges to cut their carbon emissions in half by 2030, and some have promised to be carbon neutral by 2050. Buildings can be responsible for more than half a municipality’s carbon emissions. Today, new buildings are typically designed in ways that minimize energy use and carbon emissions. So attention focuses on cleaning up existing buildings.

    A decade ago, leaders in some cities took the first step in that process: They quantified their problem. Based on data from their utilities on natural gas and electricity consumption and standard pollutant-emission rates, they calculated how much carbon came from their buildings. They then adopted policies to encourage retrofits, such as adding insulation, switching to double-glazed windows, or installing rooftop solar panels. But will those steps be enough to meet their pledges?

    “In nearly all cases, cities have no clear plan for how they’re going to reach their goal,” says Christoph Reinhart, a professor in the Department of Architecture and director of the Building Technology Program. “That’s where our work comes in. We aim to help them perform analyses so they can say, ‘If we, as a community, do A, B, and C to buildings of a certain type within our jurisdiction, then we are going to get there.’”

    To support those analyses, Reinhart and a team in the MIT Sustainable Design Lab (SDL) — PhD candidate Zachary M. Berzolla SM ’21; former doctoral student Yu Qian Ang PhD ’22, now a research collaborator at the SDL; and former postdoc Samuel Letellier-Duchesne, now a senior building performance analyst at the international building engineering and consulting firm Introba — launched a publicly accessible website providing a series of simulation tools and a process for using them to determine the impacts of planned steps on a specific building stock. Says Reinhart: “The takeaway can be a clear technology pathway — a combination of building upgrades, renewable energy deployments, and other measures that will enable a community to reach its carbon-reduction goals for their built environment.”

    Analyses performed in collaboration with policymakers from selected cities around the world yielded insights demonstrating that reaching current goals will require more effort than city representatives and — in a few cases — even the research team had anticipated.

    Exploring carbon-reduction pathways

    The researchers’ approach builds on a physics-based “building energy model,” or BEM, akin to those that architects use to design high-performance green buildings. In 2013, Reinhart and his team developed a method of extending that concept to analyze a cluster of buildings. Based on publicly available geographic information system (GIS) data, including each building’s type, footprint, and year of construction, the method defines the neighborhood — including trees, parks, and so on — and then, using meteorological data, how the buildings will interact, the airflows among them, and their energy use. The result is an “urban building energy model,” or UBEM, for a neighborhood or a whole city.

    The website developed by the MIT team enables neighborhoods and cities to develop their own UBEM and to use it to calculate their current building energy use and resulting carbon emissions, and then how those outcomes would change assuming different retrofit programs or other measures being implemented or considered. “The website — UBEM.io — provides step-by-step instructions and all the simulation tools that a team will need to perform an analysis,” says Reinhart.

    The website starts by describing three roles required to perform an analysis: a local sustainability champion who is familiar with the municipality’s carbon-reduction efforts; a GIS manager who has access to the municipality’s urban datasets and maintains a digital model of the built environment; and an energy modeler — typically a hired consultant — who has a background in green building consulting and individual building energy modeling.

    The team begins by defining “shallow” and “deep” building retrofit scenarios. To explain, Reinhart offers some examples: “‘Shallow’ refers to things that just happen, like when you replace your old, failing appliances with new, energy-efficient ones, or you install LED light bulbs and weatherstripping everywhere,” he says. “‘Deep’ adds to that list things you might do only every 20 years, such as ripping out walls and putting in insulation or replacing your gas furnace with an electric heat pump.”

    Once those scenarios are defined, the GIS manager uploads to UBEM.io a dataset of information about the city’s buildings, including their locations and attributes such as geometry, height, age, and use (e.g., commercial, retail, residential). The energy modeler then builds a UBEM to calculate the energy use and carbon emissions of the existing building stock. Once that baseline is established, the energy modeler can calculate how specific retrofit measures will change the outcomes.

    Workshop to test-drive the method

    Two years ago, the MIT team set up a three-day workshop to test the website with sample users. Participants included policymakers from eight cities and municipalities around the world: namely, Braga (Portugal), Cairo (Egypt), Dublin (Ireland), Florianopolis (Brazil), Kiel (Germany), Middlebury (Vermont, United States), Montreal (Canada), and Singapore. Taken together, the cities represent a wide range of climates, socioeconomic demographics, cultures, governing structures, and sizes.

    Working with the MIT team, the participants presented their goals, defined shallow- and deep-retrofit scenarios for their city, and selected a limited but representative area for analysis — an approach that would speed up analyses of different options while also generating results valid for the city as a whole.

    They then performed analyses to quantify the impacts of their retrofit scenarios. Finally, they learned how best to present their findings — a critical part of the exercise. “When you do this analysis and bring it back to the people, you can say, ‘This is our homework over the next 30 years. If we do this, we’re going to get there,’” says Reinhart. “That makes you part of the community, so it’s a joint goal.”

    Sample results

    After the close of the workshop, Reinhart and his team confirmed their findings for each city and then added one more factor to the analyses: the state of the city’s electric grid. Several cities in the study had pledged to make their grid carbon-neutral by 2050. Including the grid in the analysis was therefore critical: If a building becomes all-electric and purchases its electricity from a carbon-free grid, then that building will be carbon neutral — even with no on-site energy-saving retrofits.

    The final analysis for each city therefore calculated the total kilograms of carbon dioxide equivalent emitted per square meter of floor space assuming the following scenarios: the baseline; shallow retrofit only; shallow retrofit plus a clean electricity grid; deep retrofit only; deep retrofit plus rooftop photovoltaic solar panels; and deep retrofit plus a clean electricity grid. (Note that “clean electricity grid” is based on the area’s most ambitious decarbonization target for their power grid.)

    The following paragraphs provide highlights of the analyses for three of the eight cities. Included are the city’s setting, emission-reduction goals, current and proposed measures, and calculations of how implementation of those measures would affect their energy use and carbon emissions.

    Singapore

    Singapore is generally hot and humid, and its building energy use is largely in the form of electricity for cooling. The city is dominated by high-rise buildings, so there’s not much space for rooftop solar installations to generate the needed electricity. Therefore, plans for decarbonizing the current building stock must involve retrofits. The shallow-retrofit scenario focuses on installing energy-efficient lighting and appliances. To those steps, the deep-retrofit scenario adds adopting a district cooling system. Singapore’s stated goals are to cut the baseline carbon emissions by about a third by 2030 and to cut it in half by 2050.

    The analysis shows that, with just the shallow retrofits, Singapore won’t achieve its 2030 goal. But with the deep retrofits, it should come close. Notably, decarbonizing the electric grid would enable Singapore to meet and substantially exceed its 2050 target assuming either retrofit scenario.

    Dublin

    Dublin has a mild climate with relatively comfortable summers but cold, humid winters. As a result, the city’s energy use is dominated by fossil fuels, in particular, natural gas for space heating and domestic hot water. The city presented just one target — a 40 percent reduction by 2030.

    Dublin has many neighborhoods made up of Georgian row houses, and, at the time of the workshop, the city already had a program in place encouraging groups of owners to insulate their walls. The shallow-retrofit scenario therefore focuses on weatherization upgrades (adding weatherstripping to windows and doors, insulating crawlspaces, and so on). To that list, the deep-retrofit scenario adds insulating walls and installing upgraded windows. The participants didn’t include electric heat pumps, as the city was then assessing the feasibility of expanding the existing district heating system.

    Results of the analyses show that implementing the shallow-retrofit scenario won’t enable Dublin to meet its 2030 target. But the deep-retrofit scenario will. However, like Singapore, Dublin could make major gains by decarbonizing its electric grid. The analysis shows that a decarbonized grid — with or without the addition of rooftop solar panels where possible — could more than halve the carbon emissions that remain in the deep-retrofit scenario. Indeed, a decarbonized grid plus electrification of the heating system by incorporating heat pumps could enable Dublin to meet a future net-zero target.

    Middlebury

    Middlebury, Vermont, has warm, wet summers and frigid winters. Like Dublin, its energy demand is dominated by natural gas for heating. But unlike Dublin, it already has a largely decarbonized electric grid with a high penetration of renewables.

    For the analysis, the Middlebury team chose to focus on an aging residential neighborhood similar to many that surround the city core. The shallow-retrofit scenario calls for installing heat pumps for space heating, and the deep-retrofit scenario adds improvements in building envelopes (the façade, roof, and windows). The town’s targets are a 40 percent reduction from the baseline by 2030 and net-zero carbon by 2050.

    Results of the analyses showed that implementing the shallow-retrofit scenario won’t achieve the 2030 target. The deep-retrofit scenario would get the city to the 2030 target but not to the 2050 target. Indeed, even with the deep retrofits, fossil fuel use remains high. The explanation? While both retrofit scenarios call for installing heat pumps for space heating, the city would continue to use natural gas to heat its hot water.

    Lessons learned

    For several policymakers, seeing the results of their analyses was a wake-up call. They learned that the strategies they had planned might not be sufficient to meet their stated goals — an outcome that could prove publicly embarrassing for them in the future.

    Like the policymakers, the researchers learned from the experience. Reinhart notes three main takeaways.

    First, he and his team were surprised to find how much of a building’s energy use and carbon emissions can be traced to domestic hot water. With Middlebury, for example, even switching from natural gas to heat pumps for space heating didn’t yield the expected effect: On the bar graphs generated by their analyses, the gray bars indicating carbon from fossil fuel use remained. As Reinhart recalls, “I kept saying, ‘What’s all this gray?’” While the policymakers talked about using heat pumps, they were still going to use natural gas to heat their hot water. “It’s just stunning that hot water is such a big-ticket item. It’s huge,” says Reinhart.

    Second, the results demonstrate the importance of including the state of the local electric grid in this type of analysis. “Looking at the results, it’s clear that if we want to have a successful energy transition, the building sector and the electric grid sector both have to do their homework,” notes Reinhart. Moreover, in many cases, reaching carbon neutrality by 2050 would require not only a carbon-free grid but also all-electric buildings.

    Third, Reinhart was struck by how different the bar graphs presenting results for the eight cities look. “This really celebrates the uniqueness of different parts of the world,” he says. “The physics used in the analysis is the same everywhere, but differences in the climate, the building stock, construction practices, electric grids, and other factors make the consequences of making the same change vary widely.”

    In addition, says Reinhart, “there are sometimes deeply ingrained conflicts of interest and cultural norms, which is why you cannot just say everybody should do this and do this.” For instance, in one case, the city owned both the utility and the natural gas it burned. As a result, the policymakers didn’t consider putting in heat pumps because “the natural gas was a significant source of municipal income, and they didn’t want to give that up,” explains Reinhart.

    Finally, the analyses quantified two other important measures: energy use and “peak load,” which is the maximum electricity demanded from the grid over a specific time period. Reinhart says that energy use “is probably mostly a plausibility check. Does this make sense?” And peak load is important because the utilities need to keep a stable grid.

    Middlebury’s analysis provides an interesting look at how certain measures could influence peak electricity demand. There, the introduction of electric heat pumps for space heating more than doubles the peak demand from buildings, suggesting that substantial additional capacity would have to be added to the grid in that region. But when heat pumps are combined with other retrofitting measures, the peak demand drops to levels lower than the starting baseline.

    The aftermath: An update

    Reinhart stresses that the specific results from the workshop provide just a snapshot in time; that is, where the cities were at the time of the workshop. “This is not the fate of the city,” he says. “If we were to do the same exercise today, we’d no doubt see a change in thinking, and the outcomes would be different.”

    For example, heat pumps are now familiar technology and have demonstrated their ability to handle even bitterly cold climates. And in some regions, they’ve become economically attractive, as the war in Ukraine has made natural gas both scarce and expensive. Also, there’s now awareness of the need to deal with hot water production.

    Reinhart notes that performing the analyses at the workshop did have the intended impact: It brought about change. Two years after the project had ended, most of the cities reported that they had implemented new policy measures or had expanded their analysis across their entire building stock. “That’s exactly what we want,” comments Reinhart. “This is not an academic exercise. It’s meant to change what people focus on and what they do.”

    Designing policies with socioeconomics in mind

    Reinhart notes a key limitation of the UBEM.io approach: It looks only at technical feasibility. But will the building owners be willing and able to make the energy-saving retrofits? Data show that — even with today’s incentive programs and subsidies — current adoption rates are only about 1 percent. “That’s way too low to enable a city to achieve its emission-reduction goals in 30 years,” says Reinhart. “We need to take into account the socioeconomic realities of the residents to design policies that are both effective and equitable.”

    To that end, the MIT team extended their UBEM.io approach to create a socio-techno-economic analysis framework that can predict the rate of retrofit adoption throughout a city. Based on census data, the framework creates a UBEM that includes demographics for the specific types of buildings in a city. Accounting for the cost of making a specific retrofit plus financial benefits from policy incentives and future energy savings, the model determines the economic viability of the retrofit package for representative households.

    Sample analyses for two Boston neighborhoods suggest that high-income households are largely ineligible for need-based incentives or the incentives are insufficient to prompt action. Lower-income households are eligible and could benefit financially over time, but they don’t act, perhaps due to limited access to information, a lack of time or capital, or a variety of other reasons.

    Reinhart notes that their work thus far “is mainly looking at technical feasibility. Next steps are to better understand occupants’ willingness to pay, and then to determine what set of federal and local incentive programs will trigger households across the demographic spectrum to retrofit their apartments and houses, helping the worldwide effort to reduce carbon emissions.”

    This work was supported by Shell through the MIT Energy Initiative. Zachary Berzolla was supported by the U.S. National Science Foundation Graduate Research Fellowship. Samuel Letellier-Duchesne was supported by the postdoctoral fellowship of the Natural Sciences and Engineering Research Council of Canada.

    This article appears in the Spring 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    MIT engineering students take on the heat of Miami

    Think back to the last time you had to wait for a bus. How miserable were you? If you were in Boston, your experience might have included punishing wind and icy sleet — or, more recently, a punch of pollen straight to the sinuses. But in Florida’s Miami-Dade County, where the effects of climate change are both drastic and intensifying, commuters have to contend with an entirely different set of challenges: blistering temperatures and scorching humidity, making long stints waiting in the sun nearly unbearable.

    One of Miami’s most urgent transportation needs is shared by car-clogged Boston: coaxing citizens to use the municipal bus network, rather than the emissions-heavy individual vehicles currently contributing to climate change. But buses can be a tough sell in a sunny city where humidity hovers between 60 and 80 percent year-round. 

    Enter MIT’s Department of Electrical Engineering and Computer Science (EECS) and the MIT Priscilla King Gray (PKG) Public Service Center. The result of close collaboration between the two organizations, class 6.900 (Engineering For Impact) challenges EECS students to apply their engineering savvy to real-world problems beyond the MIT campus.

    This spring semester, the real-world problem was heat. 

    Miami-Dade County Department of Transportation and Public Works Chief Innovation Officer Carlos Cruz-Casas explains: “We often talk about the city we want to live in, about how the proper mix of public transportation, on-demand transit, and other mobility solutions, such as e-bikes and e-scooters, could help our community live a car-light life. However, none of this will be achievable if the riders are not comfortable when doing so.” 

    “When people think of South Florida and climate change, they often think of sea level rise,” says Juan Felipe Visser, deputy director of equity and engagement within the Office of the Mayor in Miami-Dade. “But heat really is the silent killer. So the focus of this class, on heat at bus stops, is very apt.” With little tree cover to give relief at some of the hottest stops, Miami-Dade commuters cluster in tiny patches of shade behind bus stops, sometimes giving up when the heat becomes unbearable. 

    A more conventional electrical engineering course might use temperature monitoring as an abstract example, building sample monitors in isolation and grading them as a merely academic exercise. But Professor Joel Volman, EECS faculty head of electrical engineering, and Joe Steinmeyer, senior lecturer in EECS, had something more impactful in mind.

    “Miami-Dade has a large population of people who are living in poverty, undocumented, or who are otherwise marginalized,” says Voldman. “Waiting, sometimes for a very long time, in scorching heat for the bus is just one aspect of how a city population can be underserved, but by measuring patterns in how many people are waiting for a bus, how long they wait, and in what conditions, we can begin to see where services are not keeping up with demand.”

    Only after that gap is quantified can the work of city and transportation planners begin, Cruz-Casas explains: “We needed to quantify the time riders are exposed to extreme heat and prioritize improvements, including on-time performance improvements, increasing service frequency, or looking to enhance the tree canopy near the bus stop.” 

    Quantifying that time — and the subjective experience of the wait — proved tricky, however. With over 7,500 bus stops along 101 bus routes, Miami-Dade’s transportation network presents a considerable data-collection challenge. A network of physical temperature monitors could be useful, but only if it were carefully calibrated to meet the budgetary, environmental, privacy, and implementation requirements of the city. But how do you work with city officials — not to mention all of bus-riding Miami — from over 2,000 miles away? 

    This is where the PKG Center comes in. “We are a hub and a connector and facilitator of best practices,” explains Jill Bassett, associate dean and director of the center, who worked with Voldman and Steinmeyer to find a municipal partner organization for the course. “We bring knowledge of current pedagogy around community-engaged learning, which includes: help with framing a partnership that centers community-identified concerns and is mutually beneficial; identifying and learning from a community partner; talking through ways to build in opportunities for student learners to reflect on power dynamics, reciprocity, systems thinking, long-term planning, continuity, ethics, all the types of things that come up with this kind of shared project.”

    Through a series of brainstorming conversations, Bassett helped Voldman and Steinmeyer structure a well-defined project plan, as Cruz-Casas weighed in on the county’s needed technical specifications (including affordability, privacy protection, and implementability).

    “This course brings together a lot of subject area experts,” says Voldman. “We brought in guest lecturers, including Abby Berenson from the Sloan Leadership Center, to talk about working in teams; engineers from BOSE to talk about product design, certification, and environmental resistance; the co-founder and head of engineering from MIT spinout Butlr to talk about their low-power occupancy sensor; Tony Hu from MIT IDM [Integrated Design and Management] to talk about industrial design; and Katrina LaCurts from EECS to talk about communications and networking.”

    With the support of two generous donations and a gift of software from Altium, 6.900 developed into a hands-on exercise in hardware/software product development with a tangible goal in sight: build a better bus monitor.

    The challenges involved in this undertaking became apparent as soon as the 6.900 students began designing their monitors. “The most challenging requirement to meet was that the monitor be able to count how many people were waiting — and for how long they’d been standing there — while still maintaining privacy,” says Fabian Velazquez ’23 a recent EECS graduate. The task was complicated by commuters’ natural tendency to stand where the shade goes — whether beneath a tree or awning or snaking against a nearby wall in a line — rather than directly next to the bus sign or inside the bus shelter. “Accurately measuring people count with a camera — the most straightforward choice — is already quite difficult since you have to incorporate machine learning to identify which objects in frame are people. Maintaining privacy added an extra layer of constraint … since there is no guarantee the collected data wouldn’t be vulnerable.”

    As the groups weighed various privacy-preserving options, including lidar, radar, and thermal imaging, the class realized that Wi-Fi “sniffers,” which count the number of Wi-Fi enabled signals in the immediate area, were their best option to count waiting passengers. “We were all excited and ready for this amazing, answer-to-all-our-problems radar sensor to count people,” says Velasquez. “That component was extremely complex, however, and the complexity would have ultimately made my team use a lot of time and resources to integrate with our system. We also had a short time-to-market for this system we developed. We made the trade-off of complexity for robustness.” 

    The weather also posed its own set of challenges. “Environmental conditions were big factors on the structure and design of our devices,” says Yong Yan (Crystal) Liang, a rising junior majoring in EECS. “We incorporated humidity and temperature sensors into our data to show the weather at individual stops. Additionally, we also considered how our enclosure may be affected by extreme heat or potential hurricanes.”

    The heat variable proved problematic in multiple ways. “People detection was especially difficult, for in the Miami heat, thermal cameras may not be able to distinguish human body temperature from the surrounding air temperature, and the glare of the sun off of other surfaces in the area makes most forms of imaging very buggy,” says Katherine Mohr ’23. “My team had considered using mmWave sensors to get around these constraints, but we found the processing to be too difficult, and (like the rest of the class), we decided to only move forward with Wi-Fi/BLE [Bluetooth Low Energy] sniffers.”

    The most valuable component of the new class may well have been the students’ exposure to real-world hardware/software engineering product development, where limitations on time and budget always exist, and where client requests must be carefully considered.  “Having an actual client to work with forced us to learn how to turn their wants into more specific technical specifications,” says Mohr. “We chose deliverables each week to complete by Friday, prioritizing tasks which would get us to a minimum viable product, as well as tasks that would require extra manufacturing time, like designing the printed-circuit board and enclosure.”

    Play video

    Joel Voldman, who co-designed 6.900 (Engineering For Impact) with Joe Steinmeyer and MIT’s Priscilla King Gray (PKG) Public Service Center, describes how the course allowed students help develop systems for the public good. Voldman is the winner of the 2023 Teaching with Digital Technology Award, which is co-sponsored by MIT Open Learning and the Office of the Vice Chancellor. Video: MIT Open Learning

    Crystal Liang counted her conversations with city representatives as among her most valuable 6.900 experiences. “We generated a lot of questions and were able to communicate with the community leaders of this project from Miami-Dade, who made time to answer all of them and gave us ideas from the goals they were trying to achieve,” she reports. “This project gave me a new perspective on problem-solving because it taught me to see things from the community members’ point of view.” Some of those community leaders, including Marta Viciedo, co-founder of Transit Alliance Miami, joined the class’s final session on May 16 to review the students’ proposed solutions. 

    The students’ thoughtful approach paid off when it was time to present the heat monitors to the class’s client. In a group conference call with Miami-Dade officials toward the end of the semester, the student teams shared their findings and the prototypes they’d created, along with videos of the devices at work. Juan Felipe Visser was among those in attendance. “This is a lot of work,” he told the students following their presentation. “So first of all, thank you for doing that, and for presenting to us. I love the concept. I took the bus this morning, as I do every morning, and was battered by the sun and the heat. So I personally appreciated the focus.” 

    Cruz-Casas agreed: “I am pleasantly surprised by the diverse approach the students are taking. We presented a challenge, and they have responded to it and managed to think beyond the problem at hand. I’m very optimistic about how the outcomes of this project will have a long-lasting impact for our community. At a minimum, I’m thinking that the more awareness we raise about this topic, the more opportunities we have to have the brightest minds seeking for a solution.”

    The creators of 6.900 agree, and hope that their class helps more MIT engineers to broaden their perspective on the meaning and application of their work. 

    “We are really excited about students applying their skills within a real-world, complex environment that will impact real people,” says Bassett. “We are excited that they are learning that it’s not just the design of technology that matters, but that climate; environment and built environment; and issues around socioeconomics, race, and equity, all come into play. There are layers and layers to the creation and deployment of technology in a demographically diverse multilingual community that is at the epicenter of climate change.” More

  • in

    Preparing Colombia’s cities for life amid changing forests

    It was an uncharacteristically sunny morning as Marcela Angel MCP ’18, flanked by a drone pilot from the Boston engineering firm AirWorks and a data collection team from the Colombian regional environmental agency Corpoamazonia, climbed a hill in the Andes Mountains of southwest Colombia. The area’s usual mountain cloud cover — one of the major challenges to working with satellite imagery or flying UAVs (unpiloted aerial vehicles, or drones) in the Pacific highlands of the Amazon — would roll through in the hours to come. But for now, her team had chosen a good day to hike out for their first flight. Angel is used to long travel for her research. Raised in Bogotá, she maintained strong ties to Colombia throughout her master’s program in the MIT Department of Urban Studies and Planning (DUSP). Her graduate thesis, examining Bogotá’s management of its public green space, took her regularly back to her hometown, exploring how the city could offer residents more equal access to the clean air, flood protection and day-to-day health and social benefits provided by parks and trees. But the hill she was hiking this morning, outside the remote city of Mocoa, had taken an especially long time to climb: five years building relationships with the community of Mocoa and the Colombian government, recruiting project partners, and navigating the bureaucracy of bringing UAVs into the country. Now, her team finally unwrapped their first, knee-high drone from its tarp and set it carefully in the grass. Under the gathering gray clouds, the buzz of its rotors joined the hum of insects in the trees, and the machine at last took to the skies.

    From Colombia to Cambridge

    “I actually grew up on the last street before the eastern mountains reserve,” Angel says of her childhood in Bogotá. “I’ve always been at that border between city and nature.” This idea, that urban areas are married to the ecosystems around them, would inform Angel’s whole education and career. Before coming to MIT, she studied architecture at Bogotá’s Los Andes University; for her graduation project she proposed a plan to resettle an informal neighborhood on Bogotá’s outskirts to minimize environmental risks to its residents. Among her projects at MIT was an initiative to spatially analyze Bogotá’s tree canopy, providing data for the city to plan a tree-planting program as a strategy to give vulnerable populations in the city more access to nature. And she was naturally intrigued when Colombia’s former minister of environment and sustainable development came to MIT in 2017 to give a guest presentation to the DUSP master’s program. The minister, Luis Gilberto Murillo (now the Colombian ambassador to the United States), introduced the students to the challenges triggered by a recent disaster in the city of Mocoa, on the border between the lowland Amazon and the Andes Mountains. Unprecedented rainstorms had destabilized the surrounding forests, and that April a devastating flood and landslide had killed hundreds of people and destroyed entire neighborhoods. And as climate change contributed to growing rainfall in the region, the risks of more landslide events were rising. Murillo provided useful insights into how city planning decisions had contributed to the crisis. But he also asked for MIT’s support addressing future landslide risks in the area. Angel and Juan Camilo Osorio, a PhD candidate at DUSP, decided to take up the challenge, and in January 2018 and 2019, a research delegation from MIT traveled to Colombia for a newly-created graduate course. Returning once again to Bogotá, Angel interviewed government agencies and nonprofits to understand the state of landslide monitoring and public policy. In Mocoa, further interviews and a series of workshops helped clarify what locals needed most and what MIT could provide: better information on where and when landslides might strike, and a process to increase risk awareness and involve traditionally marginalized groups in decision-making processes around that risk. Over the coming year, a core team formed to put the insights from this trip into action, including Angel, Osorio, postdoc Norhan Bayomi of the MIT Environmental Solutions Initiative (ESI) and MIT Professor John Fernández, director of the ESI and one of Angel’s mentors at DUSP. After a second visit to Mocoa that brought into the fold Indigenous groups, environmental agencies, and the national army, a plan was formed: MIT would partner with Corpoamazonia and build a network of community researchers to deploy and test drone technology and machine learning models to monitor the mountain forests for both landslide risks and signs of forest health, while implementing a participatory planning process with residents. “What our projects aim to do is give the communities new tools to continue protecting and restoring the forest,” says Angel, “and support new and inclusive development models, even in the face of new challenges.”

    Lifelines for the climate

    The goal of tropical forest conservation is an urgent one. As forests are cut down, their trees and soils release carbon they have stored over millennia, adding huge amounts of heat-trapping carbon dioxide to the atmosphere. Deforestation, mainly in the tropics, is now estimated to contribute more to climate change than any country besides the United States and China — and once lost, tropical forests are exceptionally hard to restore. “Tropical forests should be a natural way to slow and reverse climate change,” says Angel. “And they can be. But today, we are reaching critical tipping points where it is just the opposite.” This became the motivating force for Angel’s career after her graduation. In 2019, Fernández invited her to join the ESI and lead a new Natural Climate Solutions Program, with the Mocoa project as its first centerpiece. She quickly mobilized the partners to raise funding for the project from the Global Environmental Facility and the CAF Development Bank of Latin America and the Caribbean, and recruited additional partners including MIT Lincoln Laboratories, AirWorks, and the Pratt Institute, where Osorio had become an assistant professor. She hired machine learning specialists from MIT to begin design on UAVs’ data processing, and helped assemble a local research network in Mocoa to increase risk awareness, promote community participation, and better understand what information city officials and community groups needed for city planning and conservation. “This is the amazing thing about MIT,” she says. “When you study a problem here, you’re not just playing in a sandbox. Everyone I’ve worked with is motivated by the complexity of the technical challenge and the opportunity for meaningful engagement in Mocoa, and hopefully in many more places besides.” At the same time, Angel created opportunities for the next generation of MIT graduate students to follow in her footsteps. With Fernández and Bayomi, she created a new course, 4.S23 (Biodiversity and Cities), in which students traveled to Colombia to develop urban planning strategies for the cities of Quidbó and Leticia, located in carbon-rich and biodiverse areas. The course has been taught twice, with Professor Gabriella Carolini joining the teaching team for spring 2023, and has already led to a student report to city officials in Quidbó recommending ways to enhance biodiversity and adapt to climate change as the city grows, a multi-stakeholder partnership to train local youth and implement a citizen-led biodiversity survey, and a seed grant from the MIT Climate and Sustainability Consortium to begin providing both cities detailed data on their tree cover derived from satellite images. “These regions face serious threats, especially on a warming planet, but many of the solutions for climate change, biodiversity conservation, and environmental equity in the region go hand-in-hand,” Angel says. “When you design a city to use fewer resources, to contribute less to climate change, it also causes less pressure on the environment around it. When you design a city for equity and quality of life, you’re giving attention to its green spaces and what they can provide for people and as habitat for other species. When you protect and restore forests, you’re protecting local bioeconomies.”

    Bringing the data home

    Meanwhile, in Mocoa, Angel’s original vision is taking flight. With the team’s test flights behind them, they can now begin creating digital models of the surrounding area. Regular drone flights and soil samples will fill in changing information about trees, water, and local geology, allowing the project’s machine learning specialists to identify warning signs for future landslides and extreme weather events. More importantly, there is now an established network of local community researchers and leaders ready to make use of this information. With feedback from their Mocoan partners, Angel’s team has built a prototype of the online platform they will use to share their UAV data; they’re now letting Mocoa residents take it for a test drive and suggest how it can be made more user-friendly. Her visit this January also paved the way for new projects that will tie the Environmental Solutions Initiative more tightly to Mocoa. With her project partners, Angel is exploring developing a course to teach local students how to use UAVs like the ones her team is flying. She is also considering expanded efforts to collect the kind of informal knowledge of Mocoa, on the local ecology and culture, that people everywhere use in making their city planning and emergency response decisions, but that is rarely codified and included in scientific risk analyses. It’s a great deal of work to offer this one community the tools to adapt successfully to climate change. But even with all the robotics and machine learning models in the world, this close, slow-unfolding engagement, grounded in trust and community inclusion, is what it takes to truly prepare people to confront profound changes in their city and environment. “Protecting natural carbon sinks is a global socio-environmental challenge, and one where it is not enough for MIT to just contribute to the knowledge base or develop a new technology,” says Angel. “But we can help mobilize decision-makers and nontraditional actors, and design more inclusive and technology-enhanced processes, to make this easier for the people who have lifelong stakes in these ecosystems. That is the vision.” More