More stories

  • in

    3 Questions: What should scientists and the public know about nuclear waste?

    Many researchers see an expansion of nuclear power, which produces no greenhouse gas emissions from its power generation, as an essential component of strategies to combat global climate change. Yet there is still strong resistance to such expansion, and much of that is based on the issue of how to safely dispose of the resulting radioactive waste material. MIT recently convened a workshop to help nuclear engineers, policymakers, and academics learn about approaches to communicating accurate information about the management of nuclear waste to students and the public, in hopes of allaying fears and encouraging support for the development of new, safer nuclear power plants around the world.

    Organized by Haruko Wainwright, an MIT assistant professor of nuclear science and engineering and of civil and environmental engineering, the workshop included professors, researchers, industry representatives, and government officials, and was designed to emphasize the multidisciplinary nature of the issue. MIT News asked Wainwright to describe the workshop and its conclusions, which she reported on in a paper just published in the Journal of Environmental Radioactivity.

    Q: What was the main objective of the this workshop?

    A: There is a growing concern that, in spite of much excitement about new nuclear reactor deployment and nuclear energy for tackling climate change, relatively less attention is being paid to the thorny question of long-term management of the spent fuel (waste) from these reactors. The government and industry have embraced consent-based siting approaches — that is, finding sites to store and dispose nuclear waste through broad community participation with equity and environmental justice considered. However, many of us in academia feel that those in the industry are missing key facts to communicate to the public.

    Understanding and managing nuclear waste requires a multidisciplinary expertise in nuclear, civil, and chemical engineering as well as environmental and earth sciences. For example, the amount of waste per se, which is always very small for nuclear systems, is not the only factor determining the environmental impacts because some radionuclides in the waste are vastly more mobile than others, and thus can spread farther and more quickly. Nuclear engineers, environmental scientists, and others need to work together to predict the environmental impacts of radionuclides in the waste generated by the new reactors, and to develop waste isolation strategies for an extended time.

    We organized this workshop to ensure this collaborative approach is mastered from the start. A second objective was to develop a blueprint for educating next-generation engineers and scientists about nuclear waste and shaping a more broadly educated group of nuclear and general engineers.

    Q: What kinds of innovative teaching practices were discussed and recommended, and are there examples of these practices in action?

     A: Some participants teach project-based or simulation-based courses of real-world situations. For example, students are divided into several groups representing various stakeholders — such as the public, policymakers, scientists, and governments — and discuss the potential siting of a nuclear waste repository in a community. Such a course helps the students to consider the perspectives of different groups, understand a plurality of points of view, and learn how to communicate their ideas and concerns effectively. Other courses may ask students to synthesize key technical facts and numbers, and to develop a Congressional testimony statement or an opinion article for newspapers. 

    Q: What are some of the biggest misconceptions people have about nuclear waste, and how do you think these misconceptions can be addressed?

    A: The workshop participants agreed that the broader and life-cycle perspectives are important. Within the nuclear energy life cycle, for example, people focus disproportionally on high-level radioactive waste or spent fuel, which has been highly regulated and well managed. Nuclear systems also produce secondary waste, including low-level waste and uranium mining waste, which gets less attention.

    The participants also believe that the nuclear industry has been exemplary in leading the environmental and waste isolation science and technologies. Nuclear waste disposal strategies were developed in the 1950s, much earlier than other hazardous waste which began to receive serious regulation only in the 1970s. In addition, current nuclear waste disposal practices consider the compliance periods of isolation for thousands of years, while other hazardous waste disposal is not required to consider beyond 30 years, although some waste has an essentially infinite longevity, for example, mercury or lead. Finally, there is relatively unregulated waste — such as CO2 from fossil energy, agricultural effluents and other sources — that is released freely into the biosphere and is already impacting our environment. Yet, many people remain more concerned about the relatively well-regulated nuclear waste than about all these unregulated sources.

    Interestingly, many engineers — even nuclear engineers — do not know these facts. We believe that we need to teach students not just cutting-edge technologies, but also broader perspectives, including the history of industries and regulations, as well as environmental science.

    At the same time, we need to move the nuclear community to think more holistically about waste and its environmental impacts from the early stages of design of nuclear systems. We should design new reactors from the “waste up.”  We believe that the nuclear industry should continue to lead waste-management technologies and strategies, and also encourage other industries to adopt lifecycle approaches about their own waste to improve the overall sustainability. More

  • in

    Desirée Plata appointed co-director of the MIT Climate and Sustainability Consortium

    Desirée Plata, associate professor of civil and environmental engineering at MIT, has been named co-director of the MIT Climate and Sustainability Consortium (MCSC), effective Sept. 1. Plata will serve on the MCSC’s leadership team alongside Anantha P. Chandrakasan, dean of the MIT School of Engineering, the Vannevar Bush Professor of Electrical Engineering and Computer Science, and MCSC chair; Elsa Olivetti, the Jerry McAfee Professor in Engineering, a professor of materials science and engineering, and associate dean of engineering, and MCSC co-director; and Jeremy Gregory, MCSC executive director.Plata succeeds Jeffrey Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, who has served as co-director since the MCSC’s launch in January 2021. Grossman, who played a central role in the ideation and launch of the MCSC, will continue his work with the MCSC as strategic advisor.“Professor Plata is a valued member of the MIT community. She brings a deep understanding of and commitment to climate and sustainability initiatives at MIT, as well as extensive experience working with industry, to her new role within the MCSC,” says Chandrakasan. The MIT Climate and Sustainability Consortium is an academia-industry collaboration working to accelerate implementation of large-scale solutions across sectors of the global economy. It aims to lay the groundwork for one critical aspect of MIT’s continued and intensified commitment to climate: helping large companies usher in, adapt to, and prosper in a decarbonized world.“We are thrilled to bring Professor Plata’s knowledge, vision, and passion to our leadership team,” says Olivetti. “Her experience developing sustainable technologies that have the potential to improve the environment and reduce the impacts of climate change will help move our work forward in meaningful ways. We have valued Professor Plata’s contributions to the consortium and look forward to continuing our work with her.”Plata played a pivotal role in the creation and launch of the MCSC’s Climate and Sustainability Scholars Program and its yearlong course for MIT rising juniors and seniors — an effort that she and Olivetti were recently recognized for with the Class of 1960 Innovation in Education Fellowship. She has also been a member of the MCSC’s Faculty Steering Committee since the consortium’s launch, helping to shape and guide its vision and work.Plata is a dedicated researcher, educator, and mentor. A member of MIT’s faculty since 2018, Plata and her team at the Plata Lab are helping to guide industry to more environmentally sustainable practices and develop new ways to protect the health of the planet — using chemistry to understand the impact that industrial materials and processes have on the environment. By coupling devices that simulate industrial systems with computation, she helps industry develop more environmentally friendly practices.To celebrate her work in the lab, classroom, and community, Plata has received many awards and honors. In 2020, she won MIT’s prestigious Harold E. Edgerton Faculty Achievement Award, recognizing her innovative approach to environmentally sustainable industrial practices, her inspirational teaching and mentoring, and her service to MIT and the community. She is a two-time National Academy of Sciences Kavli Frontiers of Science Fellow, a two-time National Academy of Engineers Frontiers of Engineering Fellow, and a Caltech Young Investigator Sustainability Fellow. She has also won the ACS C. Ellen Gonter Environmental Chemistry Award, an NSF CAREER award, and the 2016 Odebrecht Award for Sustainable Development.Beyond her work in the academic space, Plata is co-founder of two climate- and energy-related startups: Nth Cycle and Moxair, illustrating her commitment to translating academic innovations for real-world implementation — a core value of the MCSC.Plata received her bachelor’s degree from Union College and her PhD from the MIT and Woods Hole Oceanographic Institution (MIT-WHOI) joint program in oceanography/applied ocean science and engineering. After receiving her doctorate, Plata held positions at Mount Holyoke College, Duke University, and Yale University.  More

  • in

    Jackson Jewett wants to design buildings that use less concrete

    After three years leading biking tours through U.S. National Parks, Jackson Jewett decided it was time for a change.

    “It was a lot of fun, but I realized I missed buildings,” says Jewett. “I really wanted to be a part of that industry, learn more about it, and reconnect with my roots in the built environment.”

    Jewett grew up in California in what he describes as a “very creative household.”

    “I remember making very elaborate Halloween costumes with my parents, making fun dioramas for school projects, and building forts in the backyard, that kind of thing,” Jewett explains.

    Both of his parents have backgrounds in design; his mother studied art in college and his father is a practicing architect. From a young age, Jewett was interested in following in his father’s footsteps. But when he arrived at the University of California at Berkeley in the midst of the 2009 housing crash, it didn’t seem like the right time. Jewett graduated with a degree in cognitive science and a minor in history of architecture. And even as he led tours through Yellowstone, the Grand Canyon, and other parks, buildings were in the back of his mind.

    It wasn’t just the built environment that Jewett was missing. He also longed for the rigor and structure of an academic environment.

    Jewett arrived at MIT in 2017, initially only planning on completing the master’s program in civil and environmental engineering. It was then that he first met Josephine Carstensen, a newly hired lecturer in the department. Jewett was interested in Carstensen’s work on “topology optimization,” which uses algorithms to design structures that can achieve their performance requirements while using only a limited amount of material. He was particularly interested in applying this approach to concrete design, and he collaborated with Carstensen to help demonstrate its viability.

    After earning his master’s, Jewett spent a year and a half as a structural engineer in New York City. But when Carstensen was hired as a professor, she reached out to Jewett about joining her lab as a PhD student. He was ready for another change.

    Now in the third year of his PhD program, Jewett’s dissertation work builds upon his master’s thesis to further refine algorithms that can design building-scale concrete structures that use less material, which would help lower carbon emissions from the construction industry. It is estimated that the concrete industry alone is responsible for 8 percent of global carbon emissions, so any efforts to reduce that number could help in the fight against climate change.

    Implementing new ideas

    Topology optimization is a small field, with the bulk of the prior work being computational without any experimental verification. The work Jewett completed for his master’s thesis was just the start of a long learning process.

    “I do feel like I’m just getting to the part where I can start implementing my own ideas without as much support as I’ve needed in the past,” says Jewett. “In the last couple of months, I’ve been working on a reinforced concrete optimization algorithm that I hope will be the cornerstone of my thesis.”

    The process of fine-tuning a generative algorithm is slow going, particularly when tackling a multifaceted problem.

    “It can take days or usually weeks to take a step toward making it work as an entire integrated system,” says Jewett. “The days when that breakthrough happens and I can see the algorithm converging on a solution that makes sense — those are really exciting moments.”

    By harnessing computational power, Jewett is searching for materially efficient components that can be used to make up structures such as bridges or buildings. These are other constraints to consider as well, particularly ensuring that the cost of manufacturing isn’t too high. Having worked in the industry before starting the PhD program, Jewett has an eye toward doing work that can be feasibly implemented.

    Inspiring others

    When Jewett first visited MIT campus, he was drawn in by the collaborative environment of the institute and the students’ drive to learn. Now, he’s a part of that process as a teaching assistant and a supervisor in the Undergraduate Research Opportunities Program.  

    Working as a teaching assistant isn’t a requirement for Jewett’s program, but it’s been one of his favorite parts of his time at MIT.

    “The MIT undergrads are so gifted and just constantly impress me,” says Jewett. “Being able to teach, especially in the context of what MIT values is a lot of fun. And I learn, too. My coding practices have gotten so much better since working with undergrads here.”

    Jewett’s experiences have inspired him to pursue a career in academia after the completion of his program, which he expects to complete in the spring of 2025. But he’s making sure to take care of himself along the way. He still finds time to plan cycling trips with his friends and has gotten into running ever since moving to Boston. So far, he’s completed two marathons.

    “It’s so inspiring to be in a place where so many good ideas are just bouncing back and forth all over campus,” says Jewett. “And on most days, I remember that and it inspires me. But it’s also the case that academics is hard, PhD programs are hard, and MIT — there’s pressure being here, and sometimes that pressure can feel like it’s working against you.”

    Jewett is grateful for the mental health resources that MIT provides students. While he says it can be imperfect, it’s been a crucial part of his journey.

    “My PhD thesis will be done in 2025, but the work won’t be done. The time horizon of when these things need to be implemented is relatively short if we want to make an impact before global temperatures have already risen too high. My PhD research will be developing a framework for how that could be done with concrete construction, but I’d like to keep thinking about other materials and construction methods even after this project is finished.” More

  • in

    Technologies for water conservation and treatment move closer to commercialization

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) provides Solutions Grants to help MIT researchers launch startup companies or products to commercialize breakthrough technologies in water and food systems. The Solutions Grant Program began in 2015 and is supported by Community Jameel. In addition to one-year, renewable grants of up to $150,000, the program also matches grantees with industry mentors and facilitates introductions to potential investors. Since its inception, the J-WAFS Solutions Program has awarded over $3 million in funding to the MIT community. Numerous startups and products, including a portable desalination device and a company commercializing a novel food safety sensor, have spun out of this support.

    The 2023 J-WAFS Solutions Grantees are Professor C. Cem Tasan of the Department of Materials Science and Engineering and Professor Andrew Whittle of the Department of Civil and Environmental Engineering. Tasan’s project involves reducing water use in steel manufacturing and Whittle’s project tackles harmful algal blooms in water. Project work commences this September.

    “This year’s Solutions Grants are being award to professors Tasan and Whittle to help commercialize technologies they have been developing at MIT,” says J-WAFS executive director Renee J. Robins. “With J-WAFS’ support, we hope to see the teams move their technologies from the lab to the market, so they can have a beneficial impact on water use and water quality challenges,” Robins adds.

    Reducing water consumption by solid-state steelmaking

    Water is a major requirement for steel production. The steel industry ranks fourth in industrial freshwater consumption worldwide, since large amounts of water are needed mainly for cooling purposes in the process. Unfortunately, a strong correlation has also been shown to exist between freshwater use in steelmaking and water contamination. As the global demand for steel increases and freshwater availability decreases due to climate change, improved methods for more sustainable steel production are needed.

    A strategy to reduce the water footprint of steelmaking is to explore steel recycling processes that avoid liquid metal processing. With this motivation, Cem Tasan, the Thomas B. King Associate Professor of Metallurgy in the Department of Materials Science and Engineering, and postdoc Onur Guvenc PhD created a new process called Scrap Metal Consolidation (SMC). SMC is based on a well-established metal forming process known as roll bonding. Conventionally, roll bonding requires intensive prior surface treatment of the raw material, specific atmospheric conditions, and high deformation levels. Tasan and Guvenc’s research revealed that SMC can overcome these restrictions by enabling the solid-state bonding of scrap into a sheet metal form, even when the surface quality, atmospheric conditions, and deformation levels are suboptimal. Through lab-scale proof-of-principle investigations, they have already identified SMC process conditions and validated the mechanical formability of resulting steel sheets, focusing on mild steel, the most common sheet metal scrap.

    The J-WAFS Solutions Grant will help the team to build customer product prototypes, design the processing unit, and develop a scale-up strategy and business model. By simultaneously decreasing water usage, energy demand, contamination risk, and carbon dioxide burden, SMC has the potential to decrease the energy need for steel recycling by up to 86 percent, as well as reduce the linked carbon dioxide emissions and safeguard the freshwater resources that would otherwise be directed to industrial consumption. 

    Detecting harmful algal blooms in water before it’s too late

    Harmful algal blooms (HABs) are a growing problem in both freshwater and saltwater environments worldwide, causing an estimated $13 billion in annual damage to drinking water, water for recreational use, commercial fishing areas, and desalination activities. HABs pose a threat to both human health and aquaculture, thereby threatening the food supply. Toxins in HABs are produced by some cyanobacteria, or blue-green algae, whose communities change in composition in response to eutrophication from agricultural runoff, sewer overflows, or other events. Mitigation of risks from HABs are most effective when there is advance warning of these changes in algal communities. 

    Most in situ measurements of algae are based on fluorescence spectroscopy that is conducted with LED-induced fluorescence (LEDIF) devices, or probes that induce fluorescence of specific algal pigments using LED light sources. While LEDIFs provide reasonable estimates of concentrations of individual pigments, they lack resolution to discriminate algal classes within complex mixtures found in natural water bodies. In prior research, Andrew Whittle, the Edmund K. Turner Professor of Civil and Environmental Engineering, worked with colleagues to design REMORA, a low-cost, field-deployable prototype spectrofluorometer for measuring induced fluorescence. This research was part of a collaboration between MIT and the AMS Institute. Whittle and the team successfully trained a machine learning model to discriminate and quantify cell concentrations for mixtures of different algal groups in water samples through an extensive laboratory calibration program using various algae cultures. The group demonstrated these capabilities in a series of field measurements at locations in Boston and Amsterdam. 

    Whittle will work with Fábio Duarte of the Department of Urban Studies and Planning, the Senseable City Lab, and MIT’s Center for Real Estate to refine the design of REMORA. They will develop software for autonomous operation of the sensor that can be deployed remotely on mobile vessels or platforms to enable high-resolution spatiotemporal monitoring for harmful algae. Sensor commercialization will hopefully be able to exploit the unique capabilities of REMORA for long-term monitoring applications by water utilities, environmental regulatory agencies, and water-intensive industries.  More

  • in

    Uncovering how biomes respond to climate change

    Before Leila Mirzagholi arrived at MIT’s Department of Civil and Environmental Engineering (CEE) to begin her postdoc appointment, she had spent most of her time in academia building cosmological models to detect properties of gravitational waves in the cosmos.

    But as a member of Assistant Professor César Terrer’s lab in CEE, Mirzagholi uses her physics and mathematical background to improve our understanding of the different factors that influence how much carbon land ecosystems can store under climate change.

    “What was always important to me was thinking about how to solve a problem and putting all the pieces together and building something from scratch,” Mirzagholi says, adding this was one of the reasons that it was possible for her to switch fields — and what drives her today as a climate scientist.

    Growing up in Iran, Mirzagholi knew she wanted to be a scientist from an early age. As a kid, she became captivated by physics, spending most of her free time in a local cultural center that hosted science events. “I remember in that center there was an observatory that held observational tours and it drew me into science,” says Mirzgholi. She also remembers a time when she was a kid watching the science fiction film “Contact” that introduces a female scientist character who finds evidence of extraterrestrial life and builds a spaceship to make first contact: “After that movie my mind was set on pursuing astrophysics.”

    With the encouragement of her parents to develop a strong mathematical background before pursuing physics, she earned a bachelor’s degree in mathematics from Tehran University. Then she completed a one-year master class in mathematics at Utrecht University before completing her PhD in theoretical physics at Max Planck Institute for Astrophysics in Munich. There, Mirzgholi’s thesis focused on developing cosmological models with a focus on phenomenological aspects like propagation of gravitational waves on the cosmic microwave background.

    Midway through her PhD, Mirzgholi became discouraged with building models to explain the dynamics of the early universe because there is little new data. “It starts to get personal and becomes a game of: ‘Is it my model or your model?’” she explains. She grew frustrated not knowing when the models she’d built would ever be tested.

    It was at this time that Mirzgholi started reading more about the topics of climate change and climate science. “I was really motivated by the problems and the nature of the problems, especially to make global terrestrial ecology more quantitative,” she says. She also liked the idea of contributing to a global problem that we are all facing. She started to think, “maybe I can do my part, I can work on research beneficial for society and the planet.”

    She made the switch following her PhD and started as a postdoc in the Crowther Lab at ETH Zurich, working on understanding the effects of environmental changes on global vegetation activity. After a stint at ETH, where her colleagues collaborated on projects with the Terrer Lab, she relocated to Cambridge, Massachusetts, to join the lab and CEE.

    Her latest article in Science, which was published in July and co-authored by researchers from ETH, shows how global warming affects the timing of autumn leaf senescence. “It’s important to understand the length of the growing season, and how much the forest or other biomes will have the capacity to take in carbon from the atmosphere.” Using remote sensing data, she was able to understand when the growing season will end under a warming climate. “We distinguish two dates — when autumn is onsetting and the leaves are starting to turn yellow, versus when the leaves are 50 percent yellow — to represent the progression of leaf senescence,” she says.

    In the context of rising temperature, when the warming is happening plays a crucial role. If warming temperatures happen before the summer solstice, it triggers trees to begin their seasonal cycles faster, leading to reduced photosynthesis, ending in an earlier autumn. On the other hand, if the warming happens after the summer solstice, it delays the discoloration process, making autumn last longer. “For every degree Celsius of pre-solstice warming, the onset of leaf senescence advances by 1.9 days, while each degree Celsius of post-solstice warming delays the senescence process by 2.6 days,” she explains. Understanding the timing of autumn leaf senescence is essential in efforts to predict carbon storage capacity when modeling global carbon cycles.

    Another problem she’s working on in the Terrer Lab is discovering how deforestation is changing our local climate. How much is it cooling or warming the temperature, and how is the hydrological cycle changing because of deforestation? Investigating these questions will give insight into how much we can depend on natural solutions for carbon uptake to help mitigate climate change. “Quantitatively, we want to put a number to the amount of carbon uptake from various natural solutions, as opposed to other solutions,” she says.

    With year-and-a-half left in her postdoc appointment, Mirzagholi has begun considering her next career steps. She likes the idea of applying to climate scientist jobs in industry or national labs, as well as tenure track faculty positions. Whether she pursues a career in academia or industry, Mirzagholi aims to continue conducting fundamental climate science research. Her multidisciplinary background in physics, mathematics, and climate science has given her a multifaceted perspective, which she applies to every research problem.

    “Looking back, I’m grateful for all my educational experiences from spending time in the cultural center as a kid, my background in physics, the support from colleagues at the Crowther lab at ETH who facilitated my transition from physics to ecology, and now working at MIT alongside Professor Terrer, because it’s shaped my career path and the researcher I am today.” More

  • in

    Explained: The 1.5 C climate benchmark

    The summer of 2023 has been a season of weather extremes.

    In June, uncontrolled wildfires ripped through parts of Canada, sending smoke into the U.S. and setting off air quality alerts in dozens of downwind states. In July, the world set the hottest global temperature on record, which it held for three days in a row, then broke again on day four.

    From July into August, unrelenting heat blanketed large parts of Europe, Asia, and the U.S., while India faced a torrential monsoon season, and heavy rains flooded regions in the northeastern U.S. And most recently, whipped up by high winds and dry vegetation, a historic wildfire tore through Maui, devastating an entire town.

    These extreme weather events are mainly a consequence of climate change driven by humans’ continued burning of coal, oil, and natural gas. Climate scientists agree that extreme weather such as what people experienced this summer will likely grow more frequent and intense in the coming years unless something is done, on a persistent and planet-wide scale, to rein in global temperatures.

    Just how much reining-in are they talking about? The number that is internationally agreed upon is 1.5 degrees Celsius. To prevent worsening and potentially irreversible effects of climate change, the world’s average temperature should not exceed that of preindustrial times by more than 1.5 degrees Celsius (2.7 degrees Fahrenheit).

    As more regions around the world face extreme weather, it’s worth taking stock of the 1.5-degree bar, where the planet stands in relation to this threshold, and what can be done at the global, regional, and personal level, to “keep 1.5 alive.”

    Why 1.5 C?

    In 2015, in response to the growing urgency of climate impacts, nearly every country in the world signed onto the Paris Agreement, a landmark international treaty under which 195 nations pledged to hold the Earth’s temperature to “well below 2 degrees Celsius above pre-industrial levels,” and going further, aim to “limit the temperature increase to 1.5 degrees Celsius above pre-industrial levels.”

    The treaty did not define a particular preindustrial period, though scientists generally consider the years from 1850 to 1900 to be a reliable reference; this time predates humans’ use of fossil fuels and is also the earliest period when global observations of land and sea temperatures are available. During this period, the average global temperature, while swinging up and down in certain years, generally hovered around 13.5 degrees Celsius, or 56.3 degrees Fahrenheit.

    The treaty was informed by a fact-finding report which concluded that, even global warming of 1.5 degrees Celsius above the preindustrial average, over an extended, decades-long period, would lead to high risks for “some regions and vulnerable ecosystems.” The recommendation then, was to set the 1.5 degrees Celsius limit as a “defense line” — if the world can keep below this line, it potentially could avoid the more extreme and irreversible climate effects that would occur with a 2 degrees Celsius increase, and for some places, an even smaller increase than that.

    But, as many regions are experiencing today, keeping below the 1.5 line is no guarantee of avoiding extreme, global warming effects.

    “There is nothing magical about the 1.5 number, other than that is an agreed aspirational target. Keeping at 1.4 is better than 1.5, and 1.3 is better than 1.4, and so on,” says Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change. “The science does not tell us that if, for example, the temperature increase is 1.51 degrees Celsius, then it would definitely be the end of the world. Similarly, if the temperature would stay at 1.49 degrees increase, it does not mean that we will eliminate all impacts of climate change. What is known: The lower the target for an increase in temperature, the lower the risks of climate impacts.”

    How close are we to 1.5 C?

    In 2022, the average global temperature was about 1.15 degrees Celsius above preindustrial levels. According to the World Meteorological Organization (WMO), the cyclical weather phenomenon La Niña recently contributed to temporarily cooling and dampening the effects of human-induced climate change. La Niña lasted for three years and ended around March of 2023.

    In May, the WMO issued a report that projected a significant likelihood (66 percent) that the world would exceed the 1.5 degrees Celsius threshold in the next four years. This breach would likely be driven by human-induced climate change, combined with a warming El Niño — a cyclical weather phenomenon that temporarily heats up ocean regions and pushes global temperatures higher.

    This summer, an El Niño is currently underway, and the event typically raises global temperatures in the year after it sets in, which in this case would be in 2024. The WMO predicts that, for each of the next four years, the global average temperature is likely to swing between 1.1 and 1.8 degrees Celsius above preindustrial levels.

    Though there is a good chance the world will get hotter than the 1.5-degree limit as the result of El Niño, the breach would be temporary, and for now, would not have failed the Paris Agreement, which aims to keep global temperatures below the 1.5-degree limit over the long term (averaged over several decades rather than a single year).

    “But we should not forget that this is a global average, and there are variations regionally and seasonally,” says Elfatih Eltahir, the H.M. King Bhumibol Professor and Professor of Civil and Environmental Engineering at MIT. “This year, we had extreme conditions around the world, even though we haven’t reached the 1.5 C threshold. So, even if we control the average at a global magnitude, we are going to see events that are extreme, because of climate change.”

    More than a number

    To hold the planet’s long-term average temperature to below the 1.5-degree threshold, the world will have to reach net zero emissions by the year 2050, according to the Intergovernmental Panel on Climate Change (IPCC). This means that, in terms of the emissions released by the burning of coal, oil, and natural gas, the entire world will have to remove as much as it puts into the atmosphere.

    “In terms of innovations, we need all of them — even those that may seem quite exotic at this point: fusion, direct air capture, and others,” Paltsev says.

    The task of curbing emissions in time is particularly daunting for the United States, which generates the most carbon dioxide emissions of any other country in the world.

    “The U.S.’s burning of fossil fuels and consumption of energy is just way above the rest of the world. That’s a persistent problem,” Eltahir says. “And the national statistics are an aggregate of what a lot of individuals are doing.”

    At an individual level, there are things that can be done to help bring down one’s personal emissions, and potentially chip away at rising global temperatures.

    “We are consumers of products that either embody greenhouse gases, such as meat, clothes, computers, and homes, or we are directly responsible for emitting greenhouse gases, such as when we use cars, airplanes, electricity, and air conditioners,” Paltsev says. “Our everyday choices affect the amount of emissions that are added to the atmosphere.”

    But to compel people to change their emissions, it may be less about a number, and more about a feeling.

    “To get people to act, my hypothesis is, you need to reach them not just by convincing them to be good citizens and saying it’s good for the world to keep below 1.5 degrees, but showing how they individually will be impacted,” says Eltahir, who specializes on the study of regional climates, focusing on how climate change impacts the water cycle and frequency of extreme weather such as heat waves.

    “True climate progress requires a dramatic change in how the human system gets its energy,” Paltsev says. “It is a huge undertaking. Are you ready personally to make sacrifices and to change the way of your life? If one gets an honest answer to that question, it would help to understand why true climate progress is so difficult to achieve.” More

  • in

    3 Questions: Boosting concrete’s ability to serve as a natural “carbon sink”

    Damian Stefaniuk is a postdoc at the MIT Concrete Sustainability Hub (CSHub). He works with MIT professors Franz-Josef Ulm and Admir Masic of the MIT Department of Civil and Environmental Engineering (CEE) to investigate multifunctional concrete. Here, he provides an overview of carbonation in cement-based products, a brief explanation of why understanding carbonation in the life cycle of cement products is key for assessing their environmental impact, and an update on current research to bolster the process.

    Q: What is carbonation and why is it important for thinking about concrete from a life-cycle perspective?

    A: Carbonation is the reaction between carbon dioxide (CO2) and certain compounds in cement-based products, occurring during their use phase and end of life. It forms calcium carbonate (CaCO3) and has important implications for neutralizing the GHG [greenhouse gas] emissions and achieving carbon neutrality in the life cycle of concrete.

    Firstly, carbonation causes cement-based products to act as natural carbon sinks, sequestering CO2 from the air and storing it permanently. This helps mitigate the carbon emissions associated with the production of cement, reducing their overall carbon footprint.

    Secondly, carbonation affects concrete properties. Early-stage carbonation may increase the compressive strength of cement-based products, enhancing their durability and structural performance. However, late-stage carbonation can impact corrosion resistance in steel-reinforced concrete due to reduced alkalinity.

    Considering carbonation in the life cycle of cement-based products is crucial for accurately assessing their environmental impact. Understanding and leveraging carbonation can help industry reduce carbon emissions and maximize carbon sequestration potential. Paying close attention to it in the design process aids in creating durable and corrosion-resistant structures, contributing to longevity and overall sustainability.

    Q: What are some ongoing global efforts to force carbonation?

    A: Some ongoing efforts to force carbonation in concrete involve artificially increasing the amount of CO2 gas present during the early-stage hydration of concrete. This process, known as forced carbonation, aims to accelerate the carbonation reaction and its associated benefits.

    Forced carbonation is typically applied to precast concrete elements that are produced in artificially CO2-rich environments. By exposing fresh concrete to higher concentrations of CO2 during curing, the carbonation process can be expedited, resulting in potential improvements in strength, reduced water absorption, improved resistance to chloride permeability, and improved performance during freeze-thaw. At the same time, it can be difficult to quantify how much CO2 is absorbed and released because of the process.

    These efforts to induce early-stage carbonation through forced carbonation represent the industry’s focus on optimizing concrete performance and environmental impacts. By exploring methods to enhance the carbonation process, researchers and practitioners seek to more efficiently harness its benefits, such as increasing strength and sequestering CO2.

    It is important to note that forced carbonation requires careful implementation and monitoring to ensure desired outcomes. The specific procedures and conditions vary based on the application and intended goals, highlighting the need for expertise and controlled environments.

    Overall, ongoing efforts in forced carbonation contribute to the continuous development of concrete technology, aiming to improve its properties and reduce its carbon footprint throughout the life cycle of the material.

    Q: What is chemically-induced pre-cure carbonation, and what implications does it have?

    A: Chemically-induced pre-cure carbonation (CIPCC) is a method developed by the MIT CSHub to mineralize and permanently store CO2 in cement. Unlike traditional forced carbonation methods, CIPCC introduces CO2 into the concrete mix as a solid powder, specifically sodium bicarbonate. This approach addresses some of the limitations of current carbon capture and utilization technologies.

    The implications of CIPCC are significant. Firstly, it offers convenience for cast-in-place applications, making it easier to incorporate CO2 use in concrete projects. Unlike some other approaches, CIPCC allows for precise control over the quantity of CO2 sequestered in the concrete. This ensures accurate carbonation and facilitates better management of the storage process. CIPCC also builds on previous research regarding amorphous hydration phases, providing an additional mechanism for CO2 sequestration in cement-based products. These phases carbonate through CIPCC, contributing to the overall carbon sequestration capacity of the material.

    Furthermore, early-stage pre-cure carbonation shows promise as a pathway for concrete to permanently sequester a controlled and precise quantity of CO2. Our recent paper in PNAS Nexus suggests that it could theoretically offset at least 40 percent of the calcination emissions associated with cement production, when anticipating advances in the lower-emissions production of sodium bicarbonate. We also found that up to 15 percent of cement (by weight) could be substituted with sodium bicarbonate without compromising the mechanical performance of a given mix. Further research is needed to evaluate long-term effects of this process to explore the potential life-cycle savings and impacts of carbonation.

    CIPCC offers not only environmental benefits by reducing carbon emissions, but also practical advantages. The early-stage strength increase observed in real-world applications could expedite construction timelines by allowing concrete to reach its full strength faster.

    Overall, CIPCC demonstrates the potential for more efficient and controlled CO2 sequestration in concrete. It represents an important development in concrete sustainability, emphasizing the need for further research and considering the material’s life-cycle impacts.

    This research was carried out by MIT CSHub, which is sponsored by the Concrete Advancement Foundation and the Portland Cement Association. More

  • in

    The curse of variety in transportation systems

    Cathy Wu has always delighted in systems that run smoothly. In high school, she designed a project to optimize the best route for getting to class on time. Her research interests and career track are evidence of a propensity for organizing and optimizing, coupled with a strong sense of responsibility to contribute to society instilled by her parents at a young age.

    As an undergraduate at MIT, Wu explored domains like agriculture, energy, and education, eventually homing in on transportation. “Transportation touches each of our lives,” she says. “Every day, we experience the inefficiencies and safety issues as well as the environmental harms associated with our transportation systems. I believe we can and should do better.”

    But doing so is complicated. Consider the long-standing issue of traffic systems control. Wu explains that it is not one problem, but more accurately a family of control problems impacted by variables like time of day, weather, and vehicle type — not to mention the types of sensing and communication technologies used to measure roadway information. Every differentiating factor introduces an exponentially larger set of control problems. There are thousands of control-problem variations and hundreds, if not thousands, of studies and papers dedicated to each problem. Wu refers to the sheer number of variations as the curse of variety — and it is hindering innovation.

    Play video

    “To prove that a new control strategy can be safely deployed on our streets can take years. As time lags, we lose opportunities to improve safety and equity while mitigating environmental impacts. Accelerating this process has huge potential,” says Wu.  

    Which is why she and her group in the MIT Laboratory for Information and Decision Systems are devising machine learning-based methods to solve not just a single control problem or a single optimization problem, but families of control and optimization problems at scale. “In our case, we’re examining emerging transportation problems that people have spent decades trying to solve with classical approaches. It seems to me that we need a different approach.”

    Optimizing intersections

    Currently, Wu’s largest research endeavor is called Project Greenwave. There are many sectors that directly contribute to climate change, but transportation is responsible for the largest share of greenhouse gas emissions — 29 percent, of which 81 percent is due to land transportation. And while much of the conversation around mitigating environmental impacts related to mobility is focused on electric vehicles (EVs), electrification has its drawbacks. EV fleet turnover is time-consuming (“on the order of decades,” says Wu), and limited global access to the technology presents a significant barrier to widespread adoption.

    Wu’s research, on the other hand, addresses traffic control problems by leveraging deep reinforcement learning. Specifically, she is looking at traffic intersections — and for good reason. In the United States alone, there are more than 300,000 signalized intersections where vehicles must stop or slow down before re-accelerating. And every re-acceleration burns fossil fuels and contributes to greenhouse gas emissions.

    Highlighting the magnitude of the issue, Wu says, “We have done preliminary analysis indicating that up to 15 percent of land transportation CO2 is wasted through energy spent idling and re-accelerating at intersections.”

    To date, she and her group have modeled 30,000 different intersections across 10 major metropolitan areas in the United States. That is 30,000 different configurations, roadway topologies (e.g., grade of road or elevation), different weather conditions, and variations in travel demand and fuel mix. Each intersection and its corresponding scenarios represents a unique multi-agent control problem.

    Wu and her team are devising techniques that can solve not just one, but a whole family of problems comprised of tens of thousands of scenarios. Put simply, the idea is to coordinate the timing of vehicles so they arrive at intersections when traffic lights are green, thereby eliminating the start, stop, re-accelerate conundrum. Along the way, they are building an ecosystem of tools, datasets, and methods to enable roadway interventions and impact assessments of strategies to significantly reduce carbon-intense urban driving.

    Play video

    Their collaborator on the project is the Utah Department of Transportation, which Wu says has played an essential role, in part by sharing data and practical knowledge that she and her group otherwise would not have been able to access publicly.

    “I appreciate industry and public sector collaborations,” says Wu. “When it comes to important societal problems, one really needs grounding with practitioners. One needs to be able to hear the perspectives in the field. My interactions with practitioners expand my horizons and help ground my research. You never know when you’ll hear the perspective that is the key to the solution, or perhaps the key to understanding the problem.”

    Finding the best routes

    In a similar vein, she and her research group are tackling large coordination problems. For example, vehicle routing. “Every day, delivery trucks route more than a hundred thousand packages for the city of Boston alone,” says Wu. Accomplishing the task requires, among other things, figuring out which trucks to use, which packages to deliver, and the order in which to deliver them as efficiently as possible. If and when the trucks are electrified, they will need to be charged, adding another wrinkle to the process and further complicating route optimization.

    The vehicle routing problem, and therefore the scope of Wu’s work, extends beyond truck routing for package delivery. Ride-hailing cars may need to pick up objects as well as drop them off; and what if delivery is done by bicycle or drone? In partnership with Amazon, for example, Wu and her team addressed routing and path planning for hundreds of robots (up to 800) in their warehouses.

    Every variation requires custom heuristics that are expensive and time-consuming to develop. Again, this is really a family of problems — each one complicated, time-consuming, and currently unsolved by classical techniques — and they are all variations of a central routing problem. The curse of variety meets operations and logistics.

    By combining classical approaches with modern deep-learning methods, Wu is looking for a way to automatically identify heuristics that can effectively solve all of these vehicle routing problems. So far, her approach has proved successful.

    “We’ve contributed hybrid learning approaches that take existing solution methods for small problems and incorporate them into our learning framework to scale and accelerate that existing solver for large problems. And we’re able to do this in a way that can automatically identify heuristics for specialized variations of the vehicle routing problem.” The next step, says Wu, is applying a similar approach to multi-agent robotics problems in automated warehouses.

    Wu and her group are making big strides, in part due to their dedication to use-inspired basic research. Rather than applying known methods or science to a problem, they develop new methods, new science, to address problems. The methods she and her team employ are necessitated by societal problems with practical implications. The inspiration for the approach? None other than Louis Pasteur, who described his research style in a now-famous article titled “Pasteur’s Quadrant.” Anthrax was decimating the sheep population, and Pasteur wanted to better understand why and what could be done about it. The tools of the time could not solve the problem, so he invented a new field, microbiology, not out of curiosity but out of necessity. More