More stories

  • in

    Returning farming to city centers

    A new class is giving MIT students the opportunity to examine the historical and practical considerations of urban farming while developing a real-world understanding of its value by working alongside a local farm’s community.Course 4.182 (Resilient Urbanism: Green Commons in the City) is taught in two sections by instructors in the Program in Science, Technology, and Society and the School of Architecture and Planning, in collaboration with The Common Good Co-op in Dorchester.The first section was completed in spring 2025 and the second section is scheduled for spring 2026. The course is taught by STS professor Kate Brown, visiting lecturer Justin Brazier MArch ’24, and Kafi Dixon, lead farmer and executive director of The Common Good.“This project is a way for students to investigate the real political, financial, and socio-ecological phenomena that can help or hinder an urban farm’s success,” says Brown, the Thomas M. Siebel Distinguished Professor in History of Science. Brown teaches environmental history, the history of food production, and the history of plants and people. She describes a history of urban farming that centered sustainable practices, financial investment and stability, and lasting connections among participants. Brown says urban farms have sustained cities for decades.“Cities are great places to grow produce,” Brown asserts. “City dwellers produce lots of compostable materials.”Brazier’s research ranges from affordable housing to urban agricultural gardens, exploring topics like sustainable architecture, housing, and food security.“My work designing vacant lots as community gardens offered a link between Kafi’s work with Common Good and my interests in urban design,” Brazier says. “Urban farms offer opportunities to eliminate food deserts in underserved areas while also empowering historically marginalized communities.”Before they agreed to collaborate on the course, Dixon reached out to Brown asking for help with several challenges related to her urban farm including zoning, location, and infrastructure.“As the lead farmer and executive director of Common Good Co-op, I happened upon Kate Brown’s research and work and saw that it aligned with our cooperative model’s intentions,” Dixon says. “I reached out to Kate, and she replied, which humbled and excited me.” “Design itself is a form of communication,” Dixon adds, describing the collaborative nature of farming sustenance and development. “For many under-resourced communities, innovating requires a research-based approach.”The project is among the inaugural cohort of initiatives to receive support from the SHASS Education Innovation Fund, which is administered by the MIT Human Insight Collaborative (MITHIC).Community development, investment, and collaborationThe class’s first section paired students with community members and the City of Boston to change the farm’s zoning status and create a green space for long-term farming and community use. Students spent time at Common Good during the course, including one weekend during which they helped with weeding the garden beds for spring planting.One objective of the class is to help Common Good avoid potential pitfalls associated with gentrification. “A study in Philadelphia showed that gentrification occurs within 1,000 feet of a community garden,” Brown says. “Farms and gardens are a key part of community and public health,” Dixon continues. Students in the second section will design and build infrastructure — including a mobile chicken coop and a pavilion to protect farmers from the elements — for Common Good. The course also aims to secure a green space designation for the farm and ensure it remains an accessible community space. “We want to prevent developers from acquiring the land and displacing the community,” Brown says, avoiding past scenarios in which governments seized inhabitants’ property while offering little or no compensation.Students in the 2025 course also produced a guide on how to navigate the complex rules surrounding zoning and related development. Students in the next STS section will research the history of food sovereignty and Black feminist movements in Dorchester and Roxbury. Using that research, they will construct an exhibit focused on community activism for incorporation into the coop’s facade.Imani Bailey, a second-year master’s student in the Department of Architecture’s MArch program, was among the students in the course’s first section.“By taking this course, I felt empowered to directly engage with the community in a way no other class I have taken so far has afforded me the ability to,” she says.Bailey argues for urban farms’ value as both a financial investment and space for communal interaction, offering opportunities for engagement and the implementation of sustainable practices. “Urban farms are important in the same way a neighbor is,” she adds. “You may not necessarily need them to own your home, but a good one makes your property more valuable, sometimes financially, but most importantly in ways that cannot be assigned a monetary value.”The intersection of agriculture, community, and technologyTechnology, the course’s participants believe, can offer solutions to some of the challenges related to ensuring urban farms’ viability. “Cities like Amsterdam are redesigning themselves to improve walkability, increase the appearance of small gardens in the city, and increase green space,” Brown says. By creating spaces that center community and a collective approach to farming, it’s possible to reduce both greenhouse emissions and impacts related to climate change.Additionally, engineers, scientists, and others can partner with communities to develop solutions to transportation and public health challenges. By redesigning sewer systems, empowering microbiologists to design microbial inoculants that can break down urban food waste at the neighborhood level, and centering agriculture-related transportation in the places being served, it’s possible to sustain community support and related infrastructure.“Community is cultivated, nurtured, and grown from prolonged interaction, sharing ideas, and the creation of place through a shared sense of ownership,” Bailey argues. “Urban farms present the conditions for communities to develop.” Bailey values the course because it leaves the theoretical behind, instead focusing on practical solutions. “We seldom see our design ideas become tangible,” she says. “This class offered an opportunity to design and build for a real client in the real world.”Brazier says the course and its projects prove everyone has something to contribute and can have a voice in what happens with their neighborhoods. “Despite these communities’ distrust of some politicians, we partnered to work on solutions related to zoning,” he says, “and supported community members’ advocacy efforts.” More

  • in

    Where climate meets community

    The MIT Living Climate Futures Lab (LCFL) centers the human dimensions of climate change, bringing together expertise from across MIT to address one of the world’s biggest challenges.The LCFL has three main goals: “addressing how climate change plays out in everyday life, focusing on community-oriented partnerships, and encouraging cross-disciplinary conversations around climate change on campus,” says Chris Walley, the SHASS Dean’s Distinguished Professor of Anthropology and head of MIT’s Anthropology Section. “We think this is a crucial direction for MIT and will make a strong statement about the kind of human-centered, interdisciplinary work needed to tackle this issue.”Walley is faculty lead of LCFL, working in collaboration with a group of 19 faculty colleagues and researchers. The LCFL began to coalesce in 2022 when MIT faculty and affiliates already working with communities dealing with climate change issues organized a symposium, inviting urban farmers, place-based environmental groups, and others to MIT. Since then, the lab has consolidated the efforts of faculty and affiliates representing disciplines from across the MIT School of Humanities, Arts, and Social Sciences (SHASS) and the Institute.Amah Edoh, a cultural anthropologist and managing director of LCFL, says the lab’s collaboration with community organizations and development of experiential learning classes aims to bridge the gap that can exist between the classroom and the real world.“Sometimes we can find ourselves in a bubble where we’re only in conversation with other people from within academia or our own field of practice. There can be a disconnect between what students are learning somewhat abstractly and the ‘real world’ experience of the issues” Edoh says. “By taking up topics from the multidimensional approach that experiential learning makes possible, students learn to take complexity as a given, which can help to foster more critical thinking in them, and inform their future practice in profound ways.”Edoh points out that the effects of climate change play out in a huge array of areas: health, food security, livelihoods, housing, and governance structures, to name a few.“The Living Climate Futures Lab supports MIT researchers in developing the long-term collaborations with community partners that are essential to adequately identifying and responding to the challenges that climate change creates in everyday life,” she says.Manduhai Buyandelger, professor of anthropology and one of the participants in LCFL, developed the class 21A.S01 (Anthro-Engineering: Decarbonization at the Million-Person Scale), which has in turn sparked related classes. The goal is “to merge technological innovation with people-centered environments.” Working closely with residents of Ulaanbaatar, Mongolia, Buyandelger and collaborator Mike Short, the Class of 1941 Professor of Nuclear Science and Engineering, helped develop a molten salt heat bank as a reusable energy source.“My work with Mike Short on energy and alternative heating in Mongolia helps to cultivate a new generation of creative and socially minded engineers who prioritize people in thinking about technical solutions,” Buyandelger says, adding, “In our course, we collaborate on creating interdisciplinary methods where we fuse anthropological methods with engineering innovations so that we can expand and deepen our approach to mitigate climate change.”

    Play video

    MIT Living Climate Futures Lab LaunchVideo: MIT Anthropology

    Iselle Barrios ’25, says 21A.S01 was her first anthropology course. She traveled to Mongolia and was able to experience firsthand all the ways in which the air pollution and heating problem was much larger and more complicated than it seemed from MIT’s Cambridge, Massachusetts, campus.“It was my first exposure to anthropological and STS critiques of science and engineering, as well as international development,” says Barrios, a chemical engineering major. “It fundamentally reshaped the way I see the role of technology and engineers in the broader social context in which they operate. It really helped me learn to think about problems in a more holistic and people-centered way.”LCFL participant Alvin Harvey, a postdoc in the MIT Media Lab’s Space Enabled Research Group and a citizen of the Navajo Nation, works to incorporate traditional knowledge in engineering and science to “support global stewardship of earth and space ecologies.””I envision the Living Climate Futures Lab as a collaborative space that can be an igniter and sustainer of relationships, especially between MIT and those whose have generational and cultural ties to land and space that is being impacted by climate change,” Harvey says. “I think everyone in our lab understands that protecting our climate future is a collective journey.”Kate Brown, the Thomas M. Siebel Distinguished Professor in History of Science, is also a participant in LCFL. Her current interest is urban food sovereignty movements, in which working-class city dwellers used waste to create “the most productive agriculture in recorded human history,” Brown says. While pursuing that work, Brown has developed relationships and worked with urban farmers in Mansfield, Ohio, as well as in Washington and Amsterdam.Brown and Susan Solomon, the Lee and Geraldine Martin Professor of Environmental Studies and Chemistry, teach a class called STS.055 (Living Dangerously: Environmental Programs from 1900 to Today) that presents the environmental problems and solutions of the 20th century, and how some “solutions” created more problems over time. Brown also plans to teach a class on the history of global food production once she gets access to a small plot of land on campus for a lab site.“The Living Climate Futures Lab gives us the structure and flexibility to work with communities that are struggling to find solutions to the problems being created by the climate crisis,” says Brown.Earlier this year, the MIT Human Insight Collaborative (MITHIC) selected the Living Climate Futures Lab as its inaugural Faculty-Driven Initiative (FDI), which comes with a $500,000 seed grant.MIT Provost Anantha Chandrakasan, co-chair of MITHIC, says the LCFL exemplifies how we can confront the climate crisis by working in true partnership with the communities most affected.“By combining scientific insight with cultural understanding and lived experience, this initiative brings a deeper dimension to MIT’s climate efforts — one grounded in collaboration, empathy, and real-world impact,” says Chandrakasan.Agustín Rayo, the Kenan Sahin Dean of SHASS and co-chair of MITHIC, says the LCFL is precisely the type of interdisciplinary collaboration the FDI program was designed to support.”By bringing together expertise from across MIT, I am confident the Living Climate Futures Lab will make significant contributions in the Institute’s effort to address the climate crisis,” says Rayo.Walley said the seed grant will support a second symposium in 2026 to be co-designed with community groups, a suite of experiential learning classes, workshops, a speaker series, and other programming. Throughout this development phase, the lab will solicit donor support to build it into an ongoing MIT initiative and a leader in the response to climate change. More

  • in

    MIT OpenCourseWare is “a living testament to the nobility of open, unbounded learning”

    Mostafa Fawzy became interested in physics in high school. It was the “elegance and paradox” of quantum theory that got his attention and led to his studies at the undergraduate and graduate level. But even with a solid foundation of coursework and supportive mentors, Fawzy wanted more. MIT Open Learning’s OpenCourseWare was just the thing he was looking for.  Now a doctoral candidate in atomic physics at Alexandria University and an assistant lecturer of physics at Alamein International University in Egypt, Fawzy reflects on how MIT OpenCourseWare bolstered his learning early in his graduate studies in 2019.  Part of MIT Open Learning, OpenCourseWare offers free, online, open educational resources from more than 2,500 courses that span the MIT undergraduate and graduate curriculum. Fawzy was looking for advanced resources to supplement his research in quantum mechanics and theoretical physics, and he was immediately struck by the quality, accessibility, and breadth of MIT’s resources. “OpenCourseWare was transformative in deepening my understanding of advanced physics,” Fawzy says. “I found the structured lectures and assignments in quantum physics particularly valuable. They enhanced both my theoretical insight and practical problem-solving skills — skills I later applied in research on atomic systems influenced by magnetic fields and plasma environments.”  He completed educational resources including Quantum Physics I and Quantum Physics II, calling them “dense and mathematically sophisticated.” He met the challenge by engaging with the content in different ways: first, by simply listening to lectures, then by taking detailed notes, and finally by working though problem sets. Although initially he struggled to keep up, this methodical approach paid off, he says. He is grateful to his undergraduate mentors, professors M. Sakr and T. Bahy of Alexandria University, as well as to MIT OpenCourseWare, calling it a “steadfast companion through countless solitary nights of study, a beacon in times when formal resources were scarce, and a living testament to the nobility of open, unbounded learning.”  Recognizing the power of mentorship and teaching, Fawzy serves as an academic mentor with the African Academy of Sciences, supporting early-career researchers across the continent in theoretical and atomic physics.  “Many of these mentees lack access to advanced academic resources,” he explains. “I regularly incorporate OpenCourseWare into our mentorship sessions, using it as a foundational teaching and reference tool. It’s an equalizer, providing the same high-caliber content to students regardless of geographical or institutional limitations.” As he looks toward the future, Fawzy has big plans, influenced by MIT. “I aspire to establish a regional center for excellence in atomic and plasma physics, blending cutting-edge research with open-access education in the Global South,” he says. As he continues his research and teaching, he also hopes to influence science policy and contribute to international partnerships that shine the spotlight on research and science in emerging nations.  Along the way, he says, “OpenCourseWare remains a cornerstone resource that I will return to again and again.”  Fawzy says he’s also interested in MIT Open Learning resources in computational physics and energy and sustainability. He’s following MIT’s Energy Initiative, calling it increasingly relevant to his current work and future plans.  Fawzy is a proponent of open learning and a testament to its power. “The intellectual seeds sown by Open Learning resources such as MIT OpenCourseWare have flourished within me, shaping my identity as a physicist and affirming my deep belief in the transformative power of knowledge shared freely, without barriers,” he says.  More

  • in

    Designing across cultural and geographic divides

    In addition to the typical rigors of MIT classes, Terrascope Subject 2.00C/1.016/EC.746 (Design for Complex Environmental Issues) poses some unusual hurdles for students to navigate: collaborating across time zones, bridging different cultural and institutional experiences, and trying to do hands-on work over Zoom. That’s because the class includes students from not only MIT, but also Diné College in Tsaile, Arizona, within the Navajo Nation, and the University of Puerto Rico-Ponce (UPRP).Despite being thousands of miles apart, students work in teams to tackle a real-world problem for a client, based on the Terrascope theme for the year. “Understanding how to collaborate over long distances with people who are not like themselves will be an important item in many of these students’ toolbelts going forward, in some cases just as much as — or more than — any particular design technique,” says Ari Epstein, Terrascope associate director and senior lecturer. Over the past several years, Epstein has taught the class along with Joel Grimm of MIT Beaver Works and Libby Hsu of MIT D-Lab, as well instructors from the two collaborating institutions. Undergraduate teaching fellows from all three schools are also key members of the instructional staff.Since the partnership began three years ago (initially with Diné College, with the addition of UPRP two years ago), the class themes have included food security and sustainable agriculture in Navajo Nation; access to reliable electrical power in Puerto Rico; and this year, increasing museum visitors’ engagement with artworks depicting mining and landscape alteration in Nevada.Each team — which includes students from all three colleges — meets with clients online early in the term to understand their needs; then, through an iterative process, teams work on designing prototypes. During MIT’s spring break, teams travel to meet with the clients onsite to get feedback and continue to refine their prototypes. At the end of the term, students present their final products to the clients, an expert panel, and their communities at a hybrid showcase event held simultaneously on all three campuses.Free-range design engineering“I really loved the class,” says Graciela Leon, a second-year mechanical engineering major who took the subject in 2024. “It was not at all what I was expecting,” she adds. While the learning objectives on the syllabus are fairly traditional — using an iterative engineering design process, developing teamwork skills, and deepening communication skills, to name a few — the approach is not. “Terrascope is just kind of like throwing you into a real-world problem … it feels a lot more like you are being trusted with this actual challenge,” Leon says.The 2024 challenge was to find a way to help the clients, Puerto Rican senior citizens, turn on gasoline-powered generators when the electrical power grid fails; some of them struggle with the pull cords necessary to start the generators. The students were tasked with designing solutions to make starting the generators easier.Terrascope instructors teach fundamental skills such as iterative design spirals and scrum workflow frameworks, but they also give students ample freedom to follow their ideas. Leon admits she was a bit frustrated at first, because she wasn’t sure what she was supposed to be doing. “I wanted to be building things and thought, ‘Wow, I have to do all these other things, I have to write some kind of client profile and understand my client’s needs.’ I was just like, ‘Hand me a drill! I want to design something!’”When he took the class last year, Uziel Rodriguez-Andujar was also thrown off initially by the independence teams had. Now a second-year UPRP student in mechanical engineering, he’s accustomed to lecture-based classes. “What I found so interesting is the way [they] teach the class, which is, ‘You make your own project, and we need you to find a solution to this. How it will look, and when you have it — that’s up to you,’” he says.Clearing hurdlesTeaching the course on three different campuses introduces a number of challenges for students and instructors to overcome — among them, operating in three different time zones, overcoming language barriers, navigating different cultural and institutional norms, communicating effectively, and designing and building prototypes over Zoom.“The culture span is huge,” explains Epstein. “There are different ways of speaking, different ways of listening, and each organization has different resources.”First-year MIT student EJ Rodriguez found that one of the biggest obstacles was trying to convey ideas to teammates clearly. He took the class this year, when the theme revolved around the environmental impacts of lithium mining. The client, the Nevada Museum of Art, wanted to find ways to engage visitors with its artwork collection related to mining-related landscape changes.Rodriguez and his team designed a pendulum with a light affixed to it that illuminates a painting by a Native American artist. When the pendulum swings, it changes how the visitor experiences the artwork. The team built parts for the pendulum on different campuses, and they reached a point where they realized their pieces were incompatible. “We had different visions of what we wanted for the project, and different vocabulary we were using to describe our ideas. Sometimes there would be a misunderstanding … It required a lot of honesty from each campus to be like, ‘OK, I thought we were doing exactly this,’ and obviously in a really respectful way.”It’s not uncommon for students at Diné College and UPRP to experience an initial hurdle that their MIT peers do not. Epstein notes, “There’s a tendency for some folks outside MIT to see MIT students as these brilliant people that they don’t belong in the same room with.” But the other students soon realize not only that they can hold their own intellectually, but also that their backgrounds and experiences are incredibly valuable. “Their life experiences actually put them way ahead of many MIT students in some ways, when you think about design and fabrication, like repairing farm equipment or rebuilding transmissions,” he adds.That’s how Cauy Bia felt when he took the class in 2024. Currently a first-year graduate student in biology at Diné College, Bia questioned whether he’d be on par with the MIT students. “I’ve grown up on a farm, and we do a lot of building, a lot of calculations, a lot of hands-on stuff. But going into this, I was sweating it so hard [wondering], ‘Am I smart enough to work with these students?’ And then, at the end of the day, that was never an issue,” he says.The value of reflectionEvery two weeks, Terrascope students write personal reflections about their experiences in the class, which helps them appreciate their academic and personal development. “I really felt that I had undergone a process that made me grow as an engineer,” says Leon. “I understood the importance of people and engineering more, including teamwork, working with clients, and de-centering the project away from what I wanted to build and design.”When Bia began the semester, he says, he was more of a “make-or-break-type person” and tended to see things in black and white. “But working with all three campuses, it kind of opened up my thought process so I can assess more ideas, more voices and opinions. And I can get broader perspectives and get bigger ideas from that point,” he says. It was also a powerful experience culturally for him, particularly “drawing parallels between Navajo history, Navajo culture, and seeing the similarities between that and Puerto Rican culture, seeing how close we are as two nations.”Rodriguez-Andujar gained an appreciation for the “constant struggle between simplicity and complexity” in engineering. “You have all these engineers trying to over-engineer everything,” he says. “And after you get your client feedback [halfway through the semester], it turns out, ‘Oh, that doesn’t work for me. I’m sorry — you have to scale it down like a hundred times and make it a lot simpler.’”For instructors, the students’ reflections are invaluable as they strive to make improvements every year. In many ways, you might say the class is an iterative design spiral, too. “The past three years have themselves been prototypes,” Epstein says, “and all of the instructional staff are looking forward to continuing these exciting partnerships.” More

  • in

    MIT D-Lab students design global energy solutions through collaboration

    This semester, MIT D-Lab students built prototype solutions to help farmers in Afghanistan, people living in informal settlements in Argentina, and rural poultry farmers in Cameroon. The projects span continents and collectively stand to improve thousands of lives — and they all trace back to two longstanding MIT D-Lab classes.For nearly two decades, 2.651 / EC.711 (Introduction to Energy in Global Development) and 2.652 / EC.712 (Applications of Energy in Global Development) have paired students with international organizations and communities to learn D-Lab’s participatory approach to design and study energy technologies in low-resource environments. Hundreds of students from across MIT have taken the courses, which feature visits from partners and trips to the communities after the semester. They often discover a passion for helping people in low-resource settings that lasts a lifetime.“Through the trips, students often gain an appreciation for what they have at home, and they can’t forget about what they see,” says D-Lab instructor Josh Maldonado ’23, who took both courses as a student. “For me, it changed my entire career. Students maintain relationships with the people they work with. They stay on the group chats with community members and meet up with them when they travel. They come back and want to mentor for the class. You can just see it has a lasting effect.”The introductory course takes place each spring and is followed by summer trips for students. The applications class, which is more focused on specific projects, is held in the fall and followed by student travel over winter break.“MIT has always advocated for going out and impacting the world,” Maldonado says. “The fact that we can use what we learn here in such a meaningful way while still a student is awesome. It gets back to MIT’s motto, ‘mens et manus’ (‘mind and hand’).”Curriculum for impactIntroduction to Energy in Global Development has been taught since around 2008, with past projects focusing on mitigating the effects of aquatic weeds for fisherman in Ghana, making charcoal for cookstoves in Uganda, and creating brick evaporative coolers to extend the shelf life of fruits and vegetables in Mali.The class follows MIT D-Lab’s participatory design philosophy in which students design solutions in close collaboration with local communities. Along the way, students learn about different energy technologies and how they might be implemented cheaply in rural communities that lack basic infrastructure.“In product design, the idea is to get out and meet your customer where they are,” Maldonado explains. “The problem is our partners are often in remote, low-resource regions of the world. We put a big emphasis on designing with the local communities and increasing their creative capacity building to show them they can build solutions themselves.”Students from across MIT, including graduates and undergraduates, along with students from Harvard University and Wellesley College, can enroll in both courses. MIT senior Kanokwan Tungkitkancharoen took the introductory class this spring.“There are students from chemistry, computer science, civil engineering, policy, and more,” says Tungkitkancharoen. “I think that convergence models how things get done in real life. The class also taught me how to communicate the same information in different ways to cater to different people. It helped me distill my approach to what is this person trying to learn and how can I convey that information.”Tungkitkancharoen’s team worked with a nonprofit called Weatherizers Without Borders to implement weatherization strategies that enhance housing conditions and environmental resilience for people in the southern Argentinian community of Bariloche.The team built model homes and used heat sensing cameras to show the impact of weatherization strategies to locals and policymakers in the region.“Our partners live in self-built homes, but the region is notorious for being very cold in the winter and very hot in the summer,” Tungkitkancharoen says. “We’re helping our partners retrofit homes so they can withstand the weather better. Before the semester, I was interested in working directly with people impacted by these technologies and the current climate situation. D-Lab helped me work with people on the ground, and I’ve been super grateful to our community partners.”The project to design micro-irrigation systems to support agricultural productivity and water conservation in Afghanistan is in partnership with the Ecology and Conservation Organization of Afghanistan and a team from a local university in Afghanistan.“I love the process of coming into class with a practical question you need to solve and working closely with community partners,” says MIT master’s student Khadija Ghanizada, who has served as a teacher’s assistant for both the introductory and applications courses. “All of these projects will have a huge impact, but being from Afghanistan, I know this will make a difference because it’s a land-locked country, it’s dealing with droughts, and 80 percent of our economy depends on agriculture. We also make sure students are thinking about scalability of their solutions, whether scaling worldwide or just nationally. Every project has its own impact story.”Meeting community partnersNow that the spring semester is over, many students from the introductory class will travel to the regions they studied with instructors and local guides over the summer.“The traveling and implementation are things students always look forward to,” Maldonado says. “Students do a lot of prep work, thinking about the tools they need, the local resources they need, and working with partners to acquire those resources.”Following travel, students write a report on how the trip went, which helps D-Lab refine the course for next semester.“Oftentimes instructors are also doing research in these regions while they teach the class,” Maldonado says. “To be taught by people who were just in the field two weeks before the class started, and to see pictures of what they’re doing, is really powerful.”Students who have taken the class have gone on to careers in international development, nonprofits, and to start companies that grow the impact of their class projects. But the most immediate impact can be seen in the communities that students work with.“These solutions should be able to be built locally, sourced locally, and potentially also lead to the creation of localized markets based around the technology,” Maldonado says. “Almost everything the D-Lab does is open-sourced, so when we go to these communities, we don’t just teach people how to use these solutions, we teach them how to make them. Technology, if implemented correctly by mindful engineers and scientists, can be highly adopted and can grow a community of makers and fabricators and local businesses.” More

  • in

    MIT Climate and Energy Ventures class spins out entrepreneurs — and successful companies

    In 2014, a team of MIT students in course 15.366 (Climate and Energy Ventures) developed a plan to commercialize MIT research on how to move information between chips with light instead of electricity, reducing energy usage.After completing the class, which challenges students to identify early customers and pitch their business plan to investors, the team went on to win both grand prizes at the MIT Clean Energy Prize. Today the company, Ayar Labs, has raised a total of $370 million from a group including chip leaders AMD, Intel, and NVIDIA, to scale the manufacturing of its optical chip interconnects.Ayar Labs is one of many companies whose roots can be traced back to 15.366. In fact, more than 150 companies have been founded by alumni of the class since its founding in 2007.In the class, student teams select a technology or idea and determine the best path for its commercialization. The semester-long project, which is accompanied by lectures and mentoring, equips students with real-world experience in launching a business.“The goal is to educate entrepreneurs on how to start companies in the climate and energy space,” says Senior Lecturer Tod Hynes, who co-founded the course and has been teaching since 2008. “We do that through hands-on experience. We require students to engage with customers, talk to potential suppliers, partners, investors, and to practice their pitches to learn from that feedback.”The class attracts hundreds of student applications each year. As one of the catalysts for MIT spinoffs, it is also one reason a 2015 report found that MIT alumni-founded companies had generated roughly $1.9 trillion in annual revenues. If MIT were a country, that figure that would make it the 10th largest economy in the world, according to the report.“’Mens et manus’ (‘mind and hand’) is MIT’s motto, and the hands-on experience we try to provide in this class is hard to beat,” Hynes says. “When you actually go through the process of commercialization in the real world, you learn more and you’re in a better spot. That experiential learning approach really aligns with MIT’s approach.”Simulating a startupThe course was started by Bill Aulet, a professor of the practice at the MIT Sloan School of Management and the managing director of the Martin Trust Center for MIT Entrepreneurship. After serving as an advisor the first year and helping Aulet launch the class, Hynes began teaching the class with Aulet in the fall of 2008. The pair also launched the Climate and Energy Prize around the same time, which continues today and recently received over 150 applications from teams from around the world.A core feature of the class is connecting students in different academic fields. Each year, organizers aim to enroll students with backgrounds in science, engineering, business, and policy.“The class is meant to be accessible to anybody at MIT,” Hynes says, noting the course has also since opened to students from Harvard University. “We’re trying to pull across disciplines.”The class quickly grew in popularity around campus. Over the last few years, the course has had about 150 students apply for 50 spots.“I mentioned Climate and Energy Ventures in my application to MIT,” says Chris Johnson, a second-year graduate student in the Leaders for Global Operations (LGO) Program. “Coming into MIT, I was very interested in sustainability, and energy in particular, and also in startups. I had heard great things about the class, and I waited until my last semester to apply.”The course’s organizers select mostly graduate students, whom they prefer to be in the final year of their program so they can more easily continue working on the venture after the class is finished.“Whether or not students stick with the project from the class, it’s a great experience that will serve them in their careers,” says Jennifer Turliuk, the practice leader for climate and energy artificial intelligence at the Martin Trust Center for Entrepreneurship, who helped teach the class this fall.Hynes describes the course as a venture-building simulation. Before it begins, organizers select up to 30 technologies and ideas that are in the right stage for commercialization. Students can also come into the class with ideas or technologies they want to work on.After a few weeks of introductions and lectures, students form into multidisciplinary teams of about five and begin going through each of the 24 steps of building a startup described in Aulet’s book “Disciplined Entrepreneurship,” which includes things like engaging with potential early customers, quantifying a value proposition, and establishing a business model. Everything builds toward a one-hour final presentation that’s designed to simulate a pitch to investors or government officials.“It’s a lot of work, and because it’s a team-based project, your grade is highly dependent on your team,” Hynes says. “You also get graded by your team; that’s about 10 percent of your grade. We try to encourage people to be proactive and supportive teammates.”Students say the process is fast-paced but rewarding.“It’s definitely demanding,” says Sofie Netteberg, a graduate student who is also in the LGO program at MIT. “Depending on where you’re at with your technology, you can be moving very quickly. That’s the stage that I was in, which I found really engaging. We basically just had a lab technology, and it was like, ‘What do we do next?’ You also get a ton of support from the professors.”From the classroom to the worldThis fall’s final presentations took place at the headquarters of the MIT-affiliated venture firm The Engine in front of an audience of professors, investors, members of foundations supporting entrepreneurship, and more.“We got to hear feedback from people who would be the real next step for the technology if the startup gets up and running,” said Johnson, whose team was commercializing a method for storing energy in concrete. “That was really valuable. We know that these are not only people we might see in the next month or the next funding rounds, but they’re also exactly the type of people that are going to give us the questions we should be thinking about. It was clarifying.”Throughout the semester, students treated the project like a real venture they’d be working on well beyond the length of the class.“No one’s really thinking about this class for the grade; it’s about the learning,” says Netteberg, whose team was encouraged to keep working on their electrolyzer technology designed to more efficiently produce green hydrogen. “We’re not stressed about getting an A. If we want to keep working on this, we want real feedback: What do you think we did well? What do we need to keep working on?”Hynes says several investors expressed interest in supporting the businesses coming out of the class. Moving forward, he hopes students embrace the test-bed environment his team has created for them and try bold new things.“People have been very pragmatic over the years, which is good, but also potentially limiting,” Hynes says. “This is also an opportunity to do something that’s a little further out there — something that has really big potential impact if it comes together. This is the time where students get to experiment, so why not try something big?” More

  • in

    Coffee fix: MIT students decode the science behind the perfect cup

    Elaine Jutamulia ’24 took a sip of coffee with a few drops of anise extract. It was her second try.“What do you think?” asked Omar Orozco, standing at a lab table in MIT’s Breakerspace, surrounded by filters, brewing pots, and other coffee paraphernalia.“I think when I first tried it, it was still pretty bitter,” Jutamulia said thoughtfully. “But I think now that it’s steeped for a little bit — it took out some of the bitterness.”Jutamulia and current MIT senior Orozco were part of class 3.000 (Coffee Matters: Using the Breakerspace to Make the Perfect Cup), a new MIT course that debuted in spring 2024. The class combines lectures on chemistry and the science of coffee with hands-on experimentation and group projects. Their project explored how additives such as anise, salt, and chili oil influence coffee extraction — the process of dissolving flavor compounds from ground coffee into water — to improve taste and correct common brewing errors.Alongside tasting, they used an infrared spectrometer to identify the chemical compounds in their coffee samples that contribute to flavor. Does anise make bitter coffee smoother? Could chili oil balance the taste?“Generally speaking, if we could make a recommendation, that’s what we’re trying to find,” Orozco said.A three-unit “discovery class” designed to help first-year students explore majors, 3.000 was widely popular, enrolling more than 50 students. Its success was driven by the beverage at its core and the class’s hands-on approach, which pushes students to ask and answer questions they might not have otherwise.For aeronautics and astronautics majors Gabi McDonald and McKenzie Dinesen, coffee was the draw, but the class encouraged them to experiment and think in new ways. “It’s easy to drop people like us in, who love coffee, and, ‘Oh my gosh, there’s this class where we can go make coffee half the time and try all different kinds of things?’” McDonald says.Percolating knowledgeThe class pairs weekly lectures on topics such as coffee chemistry, the anatomy and composition of a coffee bean, the effects of roasting, and the brewing process with tasting sessions — students sample coffee brewed from different beans, roasts, and grinds. In the MIT Breakerspace, a new space on campus conceived and managed by the Department of Materials Science and Engineering (DMSE), students use equipment such as a digital optical microscope to examine ground coffee particles and a scanning electron microscope, which shoots beams of electrons at samples to reveal cross-sections of beans in stunning detail.Once students learn to operate instruments for guided tasks, they form groups and design their own projects.“The driver for those projects is some question they have about coffee raised by one of the lectures or the tasting sessions, or just something they’ve always wanted to know,” says DMSE Professor Jeffrey Grossman, who designed and teaches the class. “Then they’ll use one or more of these pieces of equipment to shed some light on it.”Grossman traces the origins of the class to his initial vision for the Breakerspace, a laboratory for materials analysis and lounge for MIT undergraduates. Opened in November 2023, the space gives students hands-on experience with materials science and engineering, an interdisciplinary field combining chemistry, physics, and engineering to probe the composition and structure of materials.“The world is made of stuff, and these are the tools to understand that stuff and bring it to life,” says Grossman. So he envisioned a class that would give students an “exploratory, inspiring nudge.”“Then the question wasn’t the pedagogy, it was, ‘What’s the hook?’ In materials science, there are a lot of directions you could go, but if you have one that inspires people because they know it and maybe like it already, then that’s exciting.”Cup of ambitionThat hook, of course, was coffee, the second-most-consumed beverage after water. It captured students’ imagination and motivated them to push boundaries.Orozco brought a fair amount of coffee knowledge to the class. In 2023, he taught in Mexico through the MISTI Global Teaching Labs program, where he toured several coffee farms and acquired a deeper knowledge of the beverage. He learned, for example, that black coffee, contrary to general American opinion, isn’t naturally bitter; bitterness arises from certain compounds that develop during the roasting process.“If you properly brew it with the right beans, it actually tastes good,” says Orozco, a humanities and engineering major. A year later, in 3.000, he expanded his understanding of making a good brew, particularly through the group project with Jutamulia and other students to fix bad coffee.The group prepared a control sample of “perfectly brewed” coffee — based on taste, coffee-to-water ratio, and other standards covered in class — alongside coffee that was under-extracted and over-extracted. Under-extracted coffee, made with water that isn’t hot enough or brewed for too short a time, tastes sharp or sour. Over-extracted coffee, brewed with too much coffee or for too long, tastes bitter.Those coffee samples got additives and were analyzed using Fourier Transform Infrared (FTIR) spectroscopy, measuring how coffee absorbed infrared light to identify flavor-related compounds. Jutamulia examined FTIR readings taken from a sample with lime juice to see how the citric acid influenced its chemical profile.“Can we find any correlation between what we saw and the existing known measurements of citric acid?” asks Jutamulia, who studied computation and cognition at MIT, graduating last May.Another group dove into coffee storage, questioning why conventional wisdom advises against freezing.“We just wondered why that’s the case,” says electrical engineering and computer science major Noah Wiley, a coffee enthusiast with his own espresso machine.The team compared methods like freezing brewed coffee, frozen coffee grounds, and whole beans ground after freezing, evaluating their impact on flavor and chemical composition.“Then we’re going to see which ones taste good,” says Wiley. The team used a class coffee review sheet to record attributes like acidity, bitterness, sweetness, and overall flavor, pairing the results with FTIR analysis to determine how storage affected taste.Wiley acknowledged that “good” is subjective. “Sometimes there’s a group consensus. I think people like fuller coffee, not watery,” he says.Other student projects compared caffeine levels in different coffee types, analyzed the effect of microwaving coffee on its chemical composition and flavor, and investigated the differences between authentic and counterfeit coffee beans.“We gave the students some papers to look at in case they were interested,” says Justin Lavallee, Breakerspace manager and co-teacher of the class. “But mostly we told them to focus on something they wanted to learn more about.”Drip, drip, dripBeyond answering specific questions about coffee, both students and teachers gained deeper insights into the beverage.“Coffee is a complicated material. There are thousands of molecules in the beans, which change as you roast and extract them,” says Grossman. “The number of ways you can engineer this collection of molecules — it’s profound, ranging from where and how the coffee’s grown to how the cherries are then treated to get the beans to how the beans are roasted and ground to the brewing method you use.”Dinesen learned firsthand, discovering, for example, that darker roasts have less caffeine than lighter roasts, puncturing a common misconception. “You can vary coffee so much — just with the roast of the bean, the size of the ground,” she says. “It’s so easily manipulatable, if that’s a word.”In addition to learning about the science and chemistry behind coffee, Dinesen and McDonald gained new brewing techniques, like using a pour-over cone. The pair even incorporated coffee making and testing into their study routine, brewing coffee while tackling problem sets for another class.“I would put my pour-over cone in my backpack with a Ziploc bag full of grounds, and we would go to the Student Center and pull out the cone, a filter, and the coffee grounds,” McDonald says. “And then we would make pour-overs while doing a P-set. We tested different amounts of water, too. It was fun.”Tony Chen, a materials science and engineering major, reflected on the 3.000’s title — “Using the Breakerspace to Make the Perfect Cup” — and whether making a perfect cup is possible. “I don’t think there’s one perfect cup because each person has their own preferences. I don’t think I’ve gotten to mine yet,” he says.Enthusiasm for coffee’s complexity and the discovery process was exactly what Grossman hoped to inspire in his students. “The best part for me was also just seeing them developing their own sense of curiosity,” he says.He recalled a moment early in the class when students, after being given a demo of the optical microscope, saw the surface texture of a magnified coffee bean, the mottled shades of color, and the honeycomb-like pattern of tiny irregular cells.“They’re like, ‘Wait a second. What if we add hot water to the grounds while it’s under the microscope? Would we see the extraction?’ So, they got hot water and some ground coffee beans, and lo and behold, it looked different. They could see the extraction right there,” Grossman says. “It’s like they have an idea that’s inspired by the learning, and they go and try it. I saw that happen many, many times throughout the semester.” More

  • in

    Helping students bring about decarbonization, from benchtop to global energy marketplace

    MIT students are adept at producing research and innovations at the cutting edge of their fields. But addressing a problem as large as climate change requires understanding the world’s energy landscape, as well as the ways energy technologies evolve over time.Since 2010, the course IDS.521/IDS.065 (Energy Systems for Climate Change Mitigation) has equipped students with the skills they need to evaluate the various energy decarbonization pathways available to the world. The work is designed to help them maximize their impact on the world’s emissions by making better decisions along their respective career paths.“The question guiding my teaching and research is how do we solve big societal challenges with technology, and how can we be more deliberate in developing and supporting technologies to get us there?” says Professor Jessika Trancik, who started the course to help fill a gap in knowledge about the ways technologies evolve and scale over time.Since its inception in 2010, the course has attracted graduate students from across MIT’s five schools. The course has also recently opened to undergraduate students and been adapted to an online course for professionals.Class sessions alternate between lectures and student discussions that lead up to semester-long projects in which groups of students explore specific strategies and technologies for reducing global emissions. This year’s projects span several topics, including how quickly transmission infrastructure is expanding, the relationship between carbon emissions and human development, and how to decarbonize the production of key chemicals.The curriculum is designed to help students identify the most promising ways to mitigate climate change whether they plan to be scientists, engineers, policymakers, investors, urban planners, or just more informed citizens.“We’re coming at this issue from both sides,” explains Trancik, who is part of MIT’s Institute for Data, Systems, and Society. “Engineers are used to designing a technology to work as well as possible here and now, but not always thinking over a longer time horizon about a technology evolving and succeeding in the global marketplace. On the flip side, for students at the macro level, often studies in policy and economics of technological change don’t fully account for the physical and engineering constraints of rates of improvement. But all of that information allows you to make better decisions.”Bridging the gapAs a young researcher working on low-carbon polymers and electrode materials for solar cells, Trancik always wondered how the materials she worked on would scale in the real world. They might achieve promising performance benchmarks in the lab, but would they actually make a difference in mitigating climate change? Later, she began focusing increasingly on developing methods for predicting how technologies might evolve.“I’ve always been interested in both the macro and the micro, or even nano, scales,” Trancik says. “I wanted to know how to bridge these new technologies we’re working on with the big picture of where we want to go.”Trancik’ described her technology-grounded approach to decarbonization in a paper that formed the basis for IDS.065. In the paper, she presented a way to evaluate energy technologies against climate-change mitigation goals while focusing on the technology’s evolution.“That was a departure from previous approaches, which said, given these technologies with fixed characteristics and assumptions about their rates of change, how do I choose the best combination?” Trancik explains. “Instead we asked: Given a goal, how do we develop the best technologies to meet that goal? That inverts the problem in a way that’s useful to engineers developing these technologies, but also to policymakers and investors that want to use the evolution of technologies as a tool for achieving their objectives.”This past semester, the class took place every Tuesday and Thursday in a classroom on the first floor of the Stata Center. Students regularly led discussions where they reflected on the week’s readings and offered their own insights.“Students always share their takeaways and get to ask open questions of the class,” says Megan Herrington, a PhD candidate in the Department of Chemical Engineering. “It helps you understand the readings on a deeper level because people with different backgrounds get to share their perspectives on the same questions and problems. Everybody comes to class with their own lens, and the class is set up to highlight those differences.”The semester begins with an overview of climate science, the origins of emissions reductions goals, and technology’s role in achieving those goals. Students then learn how to evaluate technologies against decarbonization goals.But technologies aren’t static, and neither is the world. Later lessons help students account for the change of technologies over time, identifying the mechanisms for that change and even forecasting rates of change.Students also learn about the role of government policy. This year, Trancik shared her experience traveling to the COP29 United Nations Climate Change Conference.“It’s not just about technology,” Trancik says. “It’s also about the behaviors that we engage in and the choices we make. But technology plays a major role in determining what set of choices we can make.”From the classroom to the worldStudents in the class say it has given them a new perspective on climate change mitigation.“I have really enjoyed getting to see beyond the research people are doing at the benchtop,” says Herrington. “It’s interesting to see how certain materials or technologies that aren’t scalable yet may fit into a larger transformation in energy delivery and consumption. It’s also been interesting to pull back the curtain on energy systems analysis to understand where the metrics we cite in energy-related research originate from, and to anticipate trajectories of emerging technologies.”Onur Talu, a first-year master’s student in the Technology and Policy Program, says the class has made him more hopeful.“I came into this fairly pessimistic about the climate,” says Talu, who has worked for clean technology startups in the past. “This class has taught me different ways to look at the problem of climate change mitigation and developing renewable technologies. It’s also helped put into perspective how much we’ve accomplished so far.”Several student projects from the class over the years have been developed into papers published in peer-reviewed journals. They have also been turned into tools, like carboncounter.com, which plots the emissions and costs of cars and has been featured in The New York Times.Former class students have also launched startups; Joel Jean SM ’13, PhD ’17, for example, started Swift Solar. Others have drawn on the course material to develop impactful careers in government and academia, such as Patrick Brown PhD ’16 at the National Renewable Energy Laboratory and Leah Stokes SM ’15, PhD ’15 at the University of California at Santa Barbara.Overall, students say the course helps them take a more informed approach to applying their skills toward addressing climate change.“It’s not enough to just know how bad climate change could be,” says Yu Tong, a first-year master’s student in civil and environmental engineering. “It’s also important to understand how technology can work to mitigate climate change from both a technological and market perspective. It’s about employing technology to solve these issues rather than just working in a vacuum.” More