More stories

  • in

    Civil discourse project to launch at MIT

    A new project on civil discourse aims to promote open and civil discussion of difficult topics on the MIT campus.

    The project, which will launch this fall, includes a speaker series and curricular activities in MIT’s Concourse program for first-year students. MIT philosophers Alex Byrne and Brad Skow from the Department of Linguistics and Philosophy lead the project, in close coordination with Anne McCants, professor of history and director of Concourse, and Linda Rabieh, a Concourse lecturer. 

    The Arthur Vining Davis Foundations provided a substantial grant to help fund the project. Promoting civil discourse on college campuses is an area of focus for AVDF — they sponsor related projects at many schools, including Duke University and Davidson College.

    The first event in the speaker series is planned for the evening of Oct. 24, on the question of how we should respond to climate change. The two speakers are Professor Steven Koonin (New York University, ex-provost of Caltech, and an MIT alum) and MIT Professor Kerry Emanuel from the Department of Earth, Atmospheric, and Planetary Sciences. Eight such events are planned over two years. Each will feature speakers discussing difficult or controversial topics, and will aim to model civil debate and dialogue involving experts from inside and outside the MIT community. 

    Byrne and Skow said that the project is meant to counterbalance a growing unwillingness to listen to others or to tolerate the expression of certain ideas. But the goal, says Byrne, “is not to platform heterodox views for their own sake, or to needlessly provoke. Rather, we want to platform collegial, informed conversations on important matters about which there is reasonable disagreement.” 

    Faculty at MIT voted last fall to adopt a statement on free expression, following a report written by an MIT working group. The project organizers want to build on that vote and the report. “The free expression statement says that discussion of controversial topics should not be prohibited or punished,” Skow says, “but the longer working-group report goes farther, urging MIT to promote free expression. This project is an attempt to do that — to show that open discussion and open inquiry are valuable.” 

    “It has the potential to generate lively, constructive, respectful discussion on campus and to show by example both that controversial views are not suppressed at MIT and that we learn by engaging with them openly,” says Kieran Setiya, the head of MIT Philosophy. Agustín Rayo, dean of the School of Humanities and Social Sciences, thinks that the project can “play a critical role in demonstrating — to faculty, students, staff, alumni, and friends — the Institute’s commitment to free speech and civil discourse.”

    Apart from climate change, topics for the first series of events include feminism and progress (Nov. 9, with Mary Harrington, author of “Feminism against Progress”), and Covid public health policy (Feb. 26, with Vinay Prasad, professor of epidemiology and biostatistics at the University of California at San Francisco). Organizers say they hope the speaker series becomes a permanent part of MIT’s intellectual life after the grant period. To amplify the work to an audience beyond MIT, the project organizers have partnered with the Johns Hopkins University political scientist Yascha Mounk and his team at Persuasion to produce podcast episodes around the speaker events. They will air as special episodes of Mounk’s podcast “The Good Fight.” 

    The Concourse component of the project will take advantage of the small learning community setting to develop the tools and experience for productive disagreement. 

    “The core mission of Concourse depends on both the principle of free expression and the practice of civil discourse,” says McCants, “making it a natural springboard for promoting both across the intellectual culture of MIT.”  

    Concourse will experiment with, among other things, seminars discussing the history and practice of freedom of expression, roundtable discussions, and student-led debates. Braver Angels, an organization with the mission of reducing political polarization, is another partner, along with Persuasion. 

    “Our goal,” says Rabieh, “is to facilitate, in collaboration with Braver Angels, the probing, intense, and often difficult conversations that lie at the heart of the Concourse program and that are the hallmark of education.” More

  • in

    Envisioning education in a climate-changed world

    What must colleges and universities do differently to help students develop the skills, capacities, and perspectives they’ll need to live, lead, and thrive in a world being remade by the accelerating climate crisis?

    That question was at the heart of a recent convening on MIT’s campus that brought together faculty and staff from more than 30 institutions of higher education. Over two days, attendees delved into the need for higher education to align structurally and philosophically with the changing demands of the coming decades.

    “We all know that there is more to do to educate and to empower today’s students, the young people who rightly feel the threat of climate change most acutely,” said MIT Chancellor Melissa Nobles. “They are our future leaders, the generation that will inherit the full weight of the problem and the responsibility for trying to solve it.”

    The MIT Symposium for Advancing Climate Education, held on April 6 and 7, was hosted by MIT’s Climate Education Working Group, one of three working groups established under the Institute’s ambitious Fast Forward climate action plan. The Climate Education Working Group is tasked with finding ways to strengthen climate- and sustainability-related education at the Institute, from curricular offerings to experiential learning opportunities and beyond.

    “We began working as a group about a year ago, and we quickly realized it would be important to expand the conversation across MIT and to colleagues at other institutions who … are thinking broadly,” says Professor David McGee, co-chair of the Climate Education Working Group.

    Co-chair Professor David Hsu encouraged attendees to build lasting relationships, adding, “There is a true wealth of knowledge spread throughout the room. Every university has pieces of the puzzle, but I don’t think we can point to a single one that right now exemplifies all of what we want to achieve.”

    The symposium featured keynotes by Nobles; Kim Cobb, director of the Institute at Brown for Environment and Society; and Reverend Mariama White-Hammond, founder of the New Roots AME Church in Dorchester, who is also chief of environment, energy, and open space for the City of Boston.

    On the first morning of the event, participants engaged in roundtable discussions, exchanging ideas, successes, and pain points. They also identified and read out close to a dozen unsolved challenges, among them: “How do we meet the fear and anger that students are feeling, and the desire to ‘do’ that students are expressing?” “How do we support people who challenge the status quo?” “As we create these new educational experiences, how do we ensure that a diversity of students can participate in them?” “How do we align tenure and power structures to center communities in the development of this work?” and “How radical a change is MIT willing to make?”

    Kate Trimble, senior associate dean and director of the Office of Experiential Learning, remarked on the thorniness of those questions in closing, wryly adding, “We’ll answer every last one of them before we leave here tomorrow.”

    But in sharing best practices and lessons learned, the tone was overwhelmingly hopeful. Trimble, for example, led a series of discussions highlighting 10 climate education programs already developed at MIT, the University of California at Davis, the University of Michigan, Swarthmore College, Worcester Polytechnic Institute, and McGill University, among others. Each offered new models by which to weave climate justice, community partnerships, and cross-disciplinary teaching into classroom-based and experiential learning.

    Maria Zuber, MIT’s vice president for research, opened the symposium on the second day. Invoking the words of U.N. Secretary-General António Guterres upon publication of the IPCC’s sixth synthesis report last month, she said, “the global response needs to be ‘everything, everywhere, all at once.’”

    She pointed to a number of MIT research initiatives that are structured to address complex problems, among them the Climate Grand Challenges projects — the proposals for which came from researchers across 90 percent of MIT departments — as well as the MIT Climate and Sustainability Consortium and the MIT Energy Initiative’s Future Energy Systems Center.

    “These initiatives recognize that no sector, let alone any single institution, can be effective on its own — and so they seek to engage from the outset with other research institutions and with government, industry, and civil society,” Zuber said.

    Cobb, of Brown University, also spoke about the value of sustained action partnerships built on transdisciplinary research and collaborations with community leaders. She highlighted Brown’s participation in the Breathe Providence project and Georgia Tech’s involvement in the Smart Sea Level Sensors project in Savannah.

    Several speakers noted the importance of hands-on learning opportunities for students as a training ground for tackling complex challenges at scale. Students should learn how to build a respectfully collaborative team and how to connect with communities to understand the true nature and constraints of the problem, they said.

    Engineering professor Anne White, who is co-chair of the MIT Climate Nucleus, the faculty committee charged with implementing the Fast Forward plan, and MIT’s associate provost and associate vice president for research administration, moderated a career panel spanning nonprofit and corporate roles.

    The panelists’ experiences emphasized that in a world where no sector will be untouched by the impacts of climate change, every graduate in every field must be informed and ready to engage.

    “Education is training; it’s skills. We want the students to be smart. But what I’m hearing is that it’s not just that,” White reflected. “It’s these other qualities, right? It’s can they be brave … and can they be kind?”

    “Every job is a climate job in this era,” declared MIT graduate student Dyanna Jaye, co-founder of the Sunrise Movement.

    John Fernández, director of the Environmental Solutions Initiative at MIT, moderated a panel on structural change in higher education, speaking with Jim Stock, vice provost for climate and sustainability at Harvard University; Toddi Steelman, dean of the Nicholas School of the Environment at Duke University; and Stephen Porder, assistant provost for sustainability at Brown.

    Steelman (who is also a qualified wildland firefighter — a useful skill for a dean, she noted) described a popular course at Duke called “Let’s Talk About Climate Change” that is jointly taught by a biogeochemist and a theologian. The course enrolled around 150 students in the fall who met for contemplative breakout discussions. “Unless we talk about our hearts and our minds,” she said, “we’re not going to make progress.”

    White-Hammond highlighted one trait she believes today’s students already have in abundance.

    “They’re willing to say that the status quo is unacceptable, and that is an important part of being courageous in the face of this climate crisis,” she said. She urged institutions to take that cue.

    “If we have to remake the world, rebuild it on something radically different. Why would we bake in racial injustice again? Why would we say, let’s have an equally unequal economic system that just doesn’t burn as many fossil fuels? I think we have an opportunity to go big.”

    “That,” she added, “is the work I believe higher education should be taking on, and not from an ivory tower, but rooted in real communities.”

    The MIT Symposium for Advancing Climate Education was part of Earth Month at MIT, a series of climate and sustainability events on campus in April. More

  • in

    Exploring new sides of climate and sustainability research

    When the MIT Climate and Sustainability Consortium (MCSC) launched its Climate and Sustainability Scholars Program in fall 2022, the goal was to offer undergraduate students a unique way to develop and implement research projects with the strong support of each other and MIT faculty. Now into its second semester, the program is underscoring the value of fostering this kind of network — a community with MIT students at its core, exploring their diverse interests and passions in the climate and sustainability realms.Inspired by MIT’s successful SuperUROP [Undergraduate Research Opportunities Program], the yearlong MCSC Climate and Sustainability Scholars Program includes a classroom component combined with experiential learning opportunities and mentorship, all centered on climate and sustainability topics.“Harnessing the innovation, passion, and expertise of our talented students is critical to MIT’s mission of tackling the climate crisis,” says Anantha P. Chandrakasan, dean of the School of Engineering, Vannevar Bush Professor of Electrical Engineering and Computer Science, and chair of the MCSC. “The program is helping train students from a variety of disciplines and backgrounds to be effective leaders in climate and sustainability-focused roles in the future.”

    “What we found inspiring about MIT’s existing SuperUROP program was how it provides students with the guidance, training, and resources they need to investigate the world’s toughest problems,” says Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director. “This incredible level of support and mentorship encourages students to think and explore in creative ways, make new connections, and develop strategies and solutions that propel their work forward.”The first and current cohort of Climate and Sustainability Scholars consists of 19 students, representing MIT’s School of Engineering, MIT Schwarzman College of Computing, School of Science, School of Architecture and Planning, and MIT Sloan School of Management. These students are learning new perspectives, approaches, and angles in climate and sustainability — from each other, MIT faculty, and industry professionals.Projects with real-world applicationsStudents in the program work directly with faculty and principal investigators across MIT to develop their research projects focused on a large scope of sustainability topics.

    “This broad scope is important,” says Desirée Plata, MIT’s Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, “because climate and sustainability solutions are needed in every facet of society. For a long time, people were searching for a ‘silver bullet’ solution to the climate change problems, but we didn’t get to this point with a single technological decision. This problem was created across a spectrum of sociotechnological activities, and fundamentally different thinking across a spectrum of solutions is what’s needed to move us forward. MCSC students are working to provide those solutions.”

    Undergraduate student and physics major M. (MG) Geogdzhayeva is working with Raffaele Ferrari, Cecil and Ida Green Professor of Oceanography in the Department of Earth, Atmospheric and Planetary Sciences, and director of the Program in Atmospheres, Oceans, and Climate, on their project “Using Continuous Time Markov Chains to Project Extreme Events under Climate.” Geogdzhayeva’s research supports the Flagship Climate Grand Challenges project that Ferrari is leading along with Professor Noelle Eckley Selin.

    “The project I am working on has a similar approach to the Climate Grand Challenges project entitled “Bringing computation to the climate challenge,” says Geogdzhayeva. “I am designing an emulator for climate extremes. Our goal is to boil down climate information to what is necessary and to create a framework that can deliver specific information — in order to develop valuable forecasts. As someone who comes from a physics background, the Climate and Sustainability Scholars Program has helped me think about how my research fits into the real world, and how it could be implemented.”

    Investigating technology and stakeholders

    Within technology development, Jade Chongsathapornpong, also a physics major, is diving into photo-modulated catalytic reactions for clean energy applications. Chongsathapornpong, who has worked with the MCSC on carbon capture and sequestration through the Undergraduate Research Opportunities Program (UROP), is now working with Harry Tuller, MIT’s R.P. Simmons Professor of Ceramics and Electronic Materials. Louise Anderfaas, majoring in materials science and engineering, is also working with Tuller on her project “Robust and High Sensitivity Detectors for Exploration of Deep Geothermal Wells.”Two other students who have worked with the MCSC through UROP include Paul Irvine, electrical engineering and computer science major, who is now researching American conservatism’s current relation to and views about sustainability and climate change, and Pamela Duke, management major, now investigating the use of simulation tools to empower industrial decision-makers around climate change action.Other projects focusing on technology development include the experimental characterization of poly(arylene ethers) for energy-efficient propane/propylene separations by Duha Syar, who is a chemical engineering major and working with Zachary Smith, the Robert N. Noyce Career Development Professor of Chemical Engineering; developing methods to improve sheet steel recycling by Rebecca Lizarde, who is majoring in materials science and engineering; and ion conduction in polymer-ceramic composite electrolytes by Melissa Stok, also majoring in materials science and engineering.

    Melissa Stok, materials science and engineering major, during a classroom discussion.

    Photo: Andrew Okyere

    Previous item
    Next item

    “My project is very closely connected to developing better Li-Ion batteries, which are extremely important in our transition towards clean energy,” explains Stok, who is working with Bilge Yildiz, MIT’s Breene M. Kerr (1951) Professor of Nuclear Science and Engineering. “Currently, electric cars are limited in their range by their battery capacity, so working to create more effective batteries with higher energy densities and better power capacities will help make these cars go farther and faster. In addition, using safer materials that do not have as high of an environmental toll for extraction is also important.” Claire Kim, a chemical engineering major, is focusing on batteries as well, but is honing in on large form factor batteries more relevant for grid-scale energy storage with Fikile Brushett, associate professor of chemical engineering.Some students in the program chose to focus on stakeholders, which, when it comes to climate and sustainability, can range from entities in business and industry to farmers to Indigenous people and their communities. Shivani Konduru, an electrical engineering and computer science major, is exploring the “backfire effects” in climate change communication, focusing on perceptions of climate change and how the messenger may change outcomes, and Einat Gavish, mathematics major, on how different stakeholders perceive information on driving behavior.Two students are researching the impact of technology on local populations. Anushree Chaudhuri, who is majoring in urban studies and planning, is working with Lawrence Susskind, Ford Professor of Urban and Environmental Planning, on community acceptance of renewable energy siting, and Amelia Dogan, also an urban studies and planning major, is working with Danielle Wood, assistant professor of aeronautics and astronautics and media arts and sciences, on Indigenous data sovereignty in environmental contexts.

    “I am interviewing Indigenous environmental activists for my project,” says Dogan. “This course is the first one directly related to sustainability that I have taken, and I am really enjoying it. It has opened me up to other aspects of climate beyond just the humanity side, which is my focus. I did MIT’s SuperUROP program and loved it, so was excited to do this similar opportunity with the climate and sustainability focus.”

    Other projects include in-field monitoring of water quality by Dahlia Dry, a physics major; understanding carbon release and accrual in coastal wetlands by Trinity Stallins, an urban studies and planning major; and investigating enzyme synthesis for bioremediation by Delight Nweneka, an electrical engineering and computer science major, each linked to the MCSC’s impact pathway work in nature-based solutions.

    The wide range of research topics underscores the Climate and Sustainability Program’s goal of bringing together diverse interests, backgrounds, and areas of study even within the same major. For example, Helena McDonald is studying pollution impacts of rocket launches, while Aviva Intveld is analyzing the paleoclimate and paleoenvironment background of the first peopling of the Americas. Both students are Earth, atmospheric and planetary sciences majors but are researching climate impacts from very different perspectives. Intveld was recently named a 2023 Gates Cambridge Scholar.

    “There are students represented from several majors in the program, and some people are working on more technical projects, while others are interpersonal. Both approaches are really necessary in the pursuit of climate resilience,” says Grace Harrington, who is majoring in civil and environmental engineering and whose project investigates ways to optimize the power of the wind farm. “I think it’s one of the few classes I’ve taken with such an interdisciplinary nature.”

    Shivani Konduru, electrical engineering and computer science major, during a classroom lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Perspectives and guidance from MIT and industry expertsAs students are developing these projects, they are also taking the program’s course (Climate.UAR), which covers key topics in climate change science, decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts. The course is cross-listed in departments across all five schools and is taught by an experienced and interdisciplinary team. Desirée Plata was central to developing the Climate and Sustainability Scholars Programs and course with Associate Professor Elsa Olivetti, who taught the first semester. Olivetti is now co-teaching the second semester with Jeffrey C. Grossman, the Morton and Claire Goulder and Family Professor in Environmental Systems, head of the Department of Materials Science and Engineering, and MCSC co-director. The course’s writing instructors are Caroline Beimford and David Larson.  

    “I have been introduced to a lot of new angles in the climate space through the weekly guest lecturers, who each shared a different sustainability-related perspective,” says Claire Kim. “As a chemical engineering major, I have mostly looked into the technologies for decarbonization, and how to scale them, so learning about policy, for example, was helpful for me. Professor Black from the Department of History spoke about how we can analyze the effectiveness of past policy to guide future policy, while Professor Selin talked about framing different climate policies as having co-benefits. These perspectives are really useful because no matter how good a technology is, you need to convince other people to adopt it, or have strong policy in place to encourage its use, in order for it to be effective.”

    Bringing the industry perspective, guests have presented from MCSC member companies such as PepsiCo, Holcim, Apple, Cargill, and Boeing. As an example, in one class, climate leaders from three companies presented together on their approaches to setting climate goals, barriers to reaching them, and ways to work together. “When I presented to the class, alongside my counterparts at Apple and Boeing, the student questions pushed us to explain how can collaborate on ways to achieve our climate goals, reflecting the broader opportunity we find within the MCSC,” says Dana Boyer, sustainability manager at Cargill.

    Witnessing the cross-industry dynamics unfold in class was particularly engaging for the students. “The most beneficial part of the program for me is the number of guest lectures who have come in to the class, not only from MIT but also from the industry side,” Grace Harrington adds. “The diverse range of people talking about their own fields has allowed me to make connections between all my classes.”Bringing in perspectives from both academia and industry is a reflection of the MCSC’s larger mission of linking its corporate members with each other and with the MIT community to develop scalable climate solutions.“In addition to focusing on an independent research project and engaging with a peer community, we’ve had the opportunity to hear from speakers across the sustainability space who are also part of or closely connected to the MIT ecosystem,” says Anushree Chaudhuri. “These opportunities have helped me make connections and learn about initiatives at the Institute that are closely related to existing or planned student sustainability projects. These connections — across topics like waste management, survey best practices, and climate communications — have strengthened student projects and opened pathways for future collaborations.

    Basuhi Ravi, MIT PhD candidate, giving a guest lecture

    Photo: Andrew Okyere

    Previous item
    Next item

    Having a positive impact as students and after graduation

    At the start of the program, students identified several goals, including developing focused independent research questions, drawing connections and links with real-world challenges, strengthening their critical thinking skills, and reflecting on their future career ambitions. A common thread throughout them all: the commitment to having a meaningful impact on climate and sustainability challenges both as students now, and as working professionals after graduation.“I’ve absolutely loved connecting with like-minded peers through the program. I happened to know most of the students coming in from various other communities on campus, so it’s been a really special experience for all of these people who I couldn’t connect with as a cohesive cohort before to come together. Whenever we have small group discussions in class, I’m always grateful for the time to learn about the interdisciplinary research projects everyone is involved with,” concludes Chaudhuri. “I’m looking forward to staying in touch with this group going forward, since I think most of us are planning on grad school and/or careers related to climate and sustainability.”

    The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research. Learn about how you can get involved. More

  • in

    3 Questions: New MIT major and its role in fighting climate change

    Launched this month, MIT’s new Bachelor of Science in climate system science and engineering is jointly offered by the departments of Civil and Environmental Engineering (CEE) and Earth, Atmospheric and Planetary Sciences (EAPS). As part of MIT’s commitment to aid the global response to climate change, the new degree program is designed to train the next generation of leaders, providing a foundational understanding of both the Earth system and engineering principles — as well as an understanding of human and institutional behavior as it relates to the climate challenge. Jadbabaie and Van der Hilst discuss the new Course 1-12 multidisciplinary major and why it’s needed now at MIT. 

    Q: What was the idea behind launching this new major at MIT?

    Jadbabaie: Climate change is an incredibly important issue that we must address, and time is of the essence. MIT is in a unique position to play a leadership role in this effort. We not only have the ability to advance the science of climate change and deepen our understanding of the climate system, but also to develop innovative engineering solutions for sustainability that can help us meet the climate goals set forth in the Paris Agreement. It is important that our educational approach also incorporates other aspects of this cross-cutting issue, ranging from climate justice, policy, to economics, and MIT is the perfect place to make this happen. With Course 1’s focus on sustainability across scales, from the nano to the global scale, and with Course 12 studying Earth system science in general, it was a natural fit for CEE and EAPS to tackle this challenge together. It is my belief that we can leverage our collective expertise and resources to make meaningful progress. There has never been a more crucial time for us to advance students’ understanding of both climate science and engineering, as well as their understanding of the societal implications of climate risk.

    Van der Hilst: Climate change is a global issue, and the solutions we urgently need for building a net-zero future must consider how everything is connected. The Earth’s climate is a complex web of cause and effect between the oceans, atmosphere, ecosystems, and processes that shape the surface and environmental systems of the planet. To truly understand climate risks, we need to understand the fundamental science that governs these interconnected systems — and we need to consider the ways that human activity influences their behavior. The types of large-scale engineering projects that we need to secure a sustainable future must take into consideration the Earth system itself. A systems approach to modeling is crucial if we are to succeed at inventing, designing, and implementing solutions that can reduce greenhouse gas emissions, build climate resilience, and mitigate the inevitable climate-related natural disasters that we’ll face. That’s why our two departments are collaborating on a degree program that equips students with foundational climate science knowledge alongside fundamental engineering principles in order to catalyze the innovation we’ll need to meet the world’s 2050 goals.

    Q: How is MIT uniquely positioned to lead undergraduate education in climate system science and engineering? 

    Jadbabaie: It’s a great example of how MIT is taking a leadership role and multidisciplinary approach to tackling climate change by combining engineering and climate system science in one undergraduate major. The program leverages MIT’s academic strengths, focusing on teaching hard analytical and computational skills while also providing a curriculum that includes courses in a wide range of topics, from climate economics and policy to ethics, climate justice, and even climate literature, to help students develop an understanding of the political and social issues that are tied to climate change. Given the strong ties between courses 1 and 12, we want the students in the program to be full members of both departments, as well as both the School of Engineering and the School of Science. And, being MIT, there is no shortage of opportunities for undergraduate research and entrepreneurship — in fact, we specifically encourage students to participate in the active research of the departments. The knowledge and skills our students gain will enable them to serve the nation and the world in a meaningful way as they tackle complex global-scale environmental problems. The students at MIT are among the most passionate and driven people out there. I’m really excited to see what kind of innovations and solutions will come out of this program in the years to come. I think this undergraduate major is a fantastic step in the right direction.

    Q: What opportunities will the major provide to students for addressing climate change?

    Van der Hilst: Both industry and government are actively seeking new talent to respond to the challenges — and opportunities — posed by climate change and our need to build a sustainable future. What’s exciting is that many of the best jobs in this field call for leaders who can combine the analytical skill of a scientist with the problem-solving mindset of an engineer. That’s exactly what this new degree program at MIT aims to prepare students for — in an expanding set of careers in areas like renewable energy, civil infrastructure, risk analysis, corporate sustainability, environmental advocacy, and policymaking. But it’s not just about career opportunities. It’s also about making a real difference and safeguarding our future. It’s not too late to prevent much more damaging changes to Earth’s climate. Indeed, whether in government, industry, or academia, MIT students are future leaders — as such it is critically important that all MIT students understand the basics of climate system science and engineering along with math, physics, chemistry, and biology. The new Course 1-12 degree was designed to forge students who are passionate about protecting our planet into the next generation of leaders who can fast-track high-impact, science-based solutions to aid the global response, with an eye toward addressing some of the uneven social impacts inherent in the climate crisis. More

  • in

    Recycling plastics from research labs

    In 2019, MIT’s Environment, Health, and Safety (EHS) Office collaborated with several research labs in the Department of Biology to determine the feasibility of recycling clean lab plastics. Based on early successes with waste isolation and plastics collection, EHS collaborated with GreenLabs Recycling, a local startup, to remove and recycle lab plastics from campus. It was a huge success.

    Today, EHS spearheads the campus Lab Plastics Recycling Program, and its EHS technicians regularly gather clean lab plastics from 212 MIT labs, transferring them to GreenLabs for recycling. Since its pilot stage, the number of labs participating in the program has grown, increasing the total amount of plastic gathered and recycled. In 2020, EHS collected 170 pounds of plastic waste per week from participating labs. That increased to 250 pounds per week in 2021. In 2022, EHS collected a total of 19,000 pounds, or 280 pounds of plastic per week.

    Joanna Buchthal, a research assistant with the MIT Media Lab, indicates that, prior to joining the EHS Lab Plastics Recycling Program, “our laboratory was continuously troubled by the substantial volume of plastic waste we produced and disheartened by our inability to recycle it. We frequently addressed this issue during our group meetings and explored various ways to repurpose our waste, yet we never arrived at a viable solution.”

    The EHS program now provides a solution to labs facing similar challenges with plastics use. After pickup and removal, the plastics are shredded and sold as free stock for injection mold product manufacturing. Buchthal says, “My entire lab is delighted to recycle our used tip boxes and transform them into useful items for other labs!”

    Recently, GreenLabs presented EHS with a three-gallon bucket that local manufacturers produced from 100 percent recycled plastic gathered from MIT labs. No fillers or additives were used in its production.

    Keeping it clean

    The now-growing EHS service and operation started as a pilot. In June 2019, MIT restricted which lab-generated items could be placed in single-stream recycling. MIT’s waste vendors were no longer accepting possibly contaminated waste, such as gloves, pipette tip boxes, bottles, and other plastic waste typically generated in biological research labs. The waste vendors would audit MIT’s single-stream recycling and reject items if they observed any contamination.

    Facing these challenges, the EHS coordinator for biology, John Fucillo, and several EHS representatives from the department met with EHS staff to brainstorm potential recycling solutions. Ensuring the decontamination of the plastic and coordinating its removal in an efficient way were the primary challenges for the labs, says Fucillo, who shared his and lab members’ concerns about the amount of plastic being thrown away with Mitch Galanek, EHS associate director for the Radiation Protection Program. Galanek says, “I immediately recognized the frustration expressed by John and other lab contacts as an opportunity to collaborate.”

    In July 2019, Galanek and a team of EHS technicians began segregating and collecting clean plastic waste from several labs within the biology department. EHS provided the labs with collection containers, and its technicians managed the waste removal over a four-month period, which produced a snapshot of the volume and type of waste generated. An audit of the waste determined that approximately 80 percent of the clean plastic waste generated was empty pipette tip boxes and conical tube racks.

    Based on these data, EHS launched a lab plastics recycling pilot program in November 2019. Labs from the Department of Biology and the Koch Institute for Integrative Cancer Research were invited to participate by recycling their clean, uncontaminated pipette tip boxes and conical tube racks. In addition to providing these labs with collection boxes and plastic liners, EHS also developed an online waste collection request tool to submit plastic pickup requests. EHS also collected the waste containers once they were full.

    Assistant professor of biology Seychelle Vos joined the pilot program as soon as she started her lab in fall 2019. Vos shares that “we already use pipette tips boxes that produce minimal waste, and this program allows us to basically recycle any part of the box except for tips. Pipette boxes are a significant source of plastic waste. This program helps us to be more environmentally and climate friendly.” 

    Given the increased participation in the program, EHS technician Dave Pavone says that plastic pickup is now a “regular component of our work schedules.”

    Together, the EHS technicians, commonly known as “techs,” manage the pickup of nearly 300 plastic collection containers across campus. Normand Desrochers, one of the EHS techs, shares that each morning he plans his pickup route “to get the job done efficiently.” While weekly pickups are a growing part of their schedules, Desrochers notes that everyone has been “super appreciative in what we do for their labs. And what we do makes their job that much easier, being able to focus on their research.”

    Barbara Karampalas, a lab operations manager within the Department of Biological Engineering, is one of many to express appreciation for the program: “We have a fairly large lab with 35 researchers, so we generate a lot of plastic waste … [and] knowing how many tip boxes we were using concerned me. I really appreciate the effort EHS has made to implement this program to help us reduce our impact on the environment.” The program also “makes people in the lab more aware of the issue of plastic waste and MIT’s commitment to reduce its impact on the environment,” says Karampalas.

    Looking ahead

    MIT labs continue to enthusiastically embrace the EHS Lab Plastics Recycling Program: 112 faculty across 212 labs are currently participating in the program. While only empty pipette tip boxes and conical tube racks are currently collected, EHS is exploring which lab plastics could be manufactured into products for use in the labs and repeatedly recycled. Specifically, the EHS Office is considering whether recycled plastic could be used to produce secondary containers for collecting hazardous waste and benchtop transfer containers used for collecting medical waste. As Seychelle notes, “Most plastics cannot be recycled in the current schemes due to their use in laboratory science.”

    Says Fucillo, “Our hope is that this program can be expanded to include other products which could be recycled from the wet labs.” John MacFarlane, research engineer and EHS coordinator for civil and environmental engineering, echoes this sentiment: “With plastic recycling facing economic constraints, this effort by the Institute deserves to be promoted and, hopefully, expanded.”

    “Having more opportunities to recycle ’biologically clean’ plastics would help us have a smaller carbon footprint,” agrees Vos. “We love this program and hope it expands further!”

    MIT labs interested in participating in the EHS Lab Plastics Recycling Program can contact pipetip@mit.edu to learn more. More

  • in

    Engineering for social impact

    A desire to make meaningful contributions to society has influenced Runako Gentles’ path in life. Gentles grew up in Jamaica with a supportive extended family that instilled in him his connection to his faith and his aspiration to aim for greatness.

    “While growing up, I was encouraged to live a life that could potentially bring about major positive changes in my family and many other people’s lives,” says the MIT junior.

    One of those pathways his parents encouraged is pursuing excellence in academics.

    Gentles attended Campion College, a Jesuit high school in Jamaica for academically high-achieving students. Gentles was valedictorian and even won an award “for the member of the valedictory class who most closely resembles the ideal of intellectual competence, openness to growth, and commitment to social justice.”

    Although he did well in all subjects, he naturally gravitated toward biology and chemistry. “There are certain subjects people just make sense of material much faster, and high school biology and chemistry were those subjects for me,” he says. His love of learning often surprised friends and classmates when he could recall science concepts and definitions years later.  

    For several years Gentles wanted to pursue the field of medicine. He remembers becoming more excited about the career of a surgeon after reading a book on the story of retired neurosurgeon Ben Carson. During his advanced studies at Campion, he attended a career event and met with a neurosurgeon who invited him and other classmates to watch a surgical procedure. Gentles had the unique learning experience to observe a spinal operation. Around that same time another learning opportunity presented itself. His biology teacher recommended he apply to a Caribbean Science Foundation initiative called Student Program for Innovation, Science, and Engineering (SPISE) to explore careers in science, technology, engineering, and math. The intensive residential summer program for Caribbean students is modeled after the Minority Introduction to Engineering and Science (MITES) program at MIT. Cardinal Warde, a professor of electrical engineering at MIT who is also from the Caribbean, serves as the faculty director for both MITES and SPISE. The program was Gentles’ first major exposure to engineering.

    “I felt like I was in my first year of college at SPISE. It was an amazing experience and it helped me realize the opportunities that an engineering career path offers,” Gentles says. He excelled in the SPISE program, even winning one of the program’s highest honors for demonstrating overall excellence and leadership.

    SPISE was profoundly impactful to Gentles and he decided to pursue engineering at MIT. While further exploring his engineering interests before his first year at MIT, he remembers reading an article that piqued his interest in industry sectors that met basic human and societal needs.

    “I started thinking more about engineering and ethics,” says Gentles. He wanted to spend his time learning how to use science and engineering to make meaningful change in society.  “I think back to wanting to be a doctor for many years to help sick people, but I took it a step further. I wanted to get closer to addressing some of the root causes of deaths, illnesses, and the poor quality of life for billions of people,” he says of his decision to pursue a degree in civil and environmental engineering.

    Gentles spent his first semester at MIT working as a remote student when the Covid pandemic shut down in-person learning. He participated in 1.097 (Introduction to Civil and Environmental Engineering Research) during the January Independent Activities Period, in which undergraduates work one-on-one with graduate students or postdoc mentors on research projects that align with their interests. Gentles worked in the lab of Ruben Juanes exploring the use of machine learning to analyze earthquake data to determine whether different geologic faults in Puerto Rico resulted in distinguishable earthquake clusters. He joined the lab of Desiree Plata in the summer of his sophomore year on another undergraduate research opportunity (UROP) project, analyzing diesel range organic compounds in water samples collected from shallow groundwater sources near hydraulic fracking sites in West Virginia. The experience even led Gentles to be a co-author in his graduate student mentor’s abstract proposal for the American Geophysical Union Fall Meeting 2022 conference.  

    Gentles says he found the Department of Civil and Environmental Engineering a place for him to have the big-picture mindset of thinking about how technology is going to affect the environment, which ultimately affects society. “Choosing this department was not just about gaining the technical knowledge that most interested me. I wanted to be in a space where I would significantly develop my mindset of using innovation to bring more harmony between society and the environment,” says Gentles.

    Outside of the classroom, learning acoustic guitar is a passion for Gentles. He plays at social events for Cru, a Christian community at MIT, where he serves as a team leader. He credits Cru with helping him feel connected to a lot of different people, even outside of MIT.

    He’s also a member of the Bernard M. Gordon-MIT Engineering Leadership Program, which helps undergraduates gain and hone leadership skills to prepare them for careers in engineering. After learning and exploring more UROPs and classes in civil and environmental engineering, he aspires to hold a position of leadership where he can use his environmental knowledge to impact human lives.

    “Mitigating environmental issues can sometimes be a very complicated endeavor involving many stakeholders,” Gentles says. “We need more bright minds to be thinking of creative ways to address these pressing problems. We need more leaders helping to make society more harmonious with our planet.” More

  • in

    Fieldwork class examines signs of climate change in Hawaii

    When Joy Domingo-Kameenui spent two weeks in her native Hawaii as part of MIT class 1.091 (Traveling Research Environmental eXperiences), she was surprised to learn about the number of invasive and endangered species. “I knew about Hawaiian ecology from middle and high school but wasn’t fully aware to the extent of how invasive species and diseases have resulted in many of Hawaii’s endemic species becoming threatened,” says Domingo-Kameenui.  

    Domingo-Kameenui was part of a group of MIT students who conducted field research on the Big Island of Hawaii in the Traveling Research Environmental eXperiences (TREX) class offered by the Department of Civil and Environmental Engineering. The class provides undergraduates an opportunity to gain hands-on environmental fieldwork experience using Hawaii’s geology, chemistry, and biology to address two main topics of climate change concern: sulfur dioxide (SO2) emissions and forest health.

    “Hawaii is this great system for studying the effects of climate change,” says David Des Marais, the Cecil and Ida Green Career Development Professor of Civil and Environmental Engineering and lead instructor of TREX. “Historically, Hawaii has had occasional mild droughts that are related to El Niño, but the droughts are getting stronger and more frequent. And we know these types of extreme weather events are going to happen worldwide.”

    Climate change impacts on forests

    The frequency and intensity of extreme events are also becoming more of a problem for forests and plant life. Forests have a certain distribution of vegetation and as you get higher in elevation, the trees gradually turn into shrubs, and then rock. Trees don’t grow above the timberline, where the temperature and precipitation changes dramatically at the high elevations. “But unlike the Sierra Nevada or the Rockies, where the trees gradually change as you go up the mountains, in Hawaii, they gradually change, and then they just stop,” says Des Marais.

    “Why this is an interesting model for climate change,” explains Des Marais, “is that line where trees stop [growing] is going to move, and it’s going to become more unstable as the trade winds are affected by global patterns of air circulation, which are changing because of climate change.”

    The research question that Des Marais asks students to explore — How is the Hawaiian forest going to be affected by climate change? — uses Hawaii as a model for broader patterns in climate change for forests.

    To dive deeper into this question, students trekked up the mountain taking ground-level measurements of canopy cover with a camera app on their cellphones, estimating how much tree coverage blankets the sky when looking up, and observing how the canopy cover thins until they see no tree coverage at all as they go further up the mountain. Drones also flew above the forest to measure chlorophyll and how much plant matter remains. And then satellite data products from NASA and the European Space Agency were used to measure the distribution of chlorophyll, climate, and precipitation data from space.

    They also worked directly with community stakeholders at three locations around the island to access the forests and use technology to assess the ecology and biodiversity challenges. One of those stakeholders was the Kamehameha Schools Natural and Cultural Ecosystems Division, whose mission is to preserve the land and manage it in a sustainable way. Students worked with their plant biologists to help address and think about what management decisions will support the future health of their forests.

    “Across the island, rising temperatures and abnormal precipitation patterns are the main drivers of drought, which really has significant impacts on biodiversity, and overall human health,” says Ava Gillikin, a senior in civil and environmental engineering.

    Gillikin adds that “a good proportion of the island’s water system relies on rainwater catchment, exposing vulnerabilities to fluctuations in rain patterns that impact many people’s lives.”

    Deadly threats to native plants

    The other threats to Hawaii’s forests are invasive species causing ecological harm, from the prevalence of non-indigenous mosquitoes leading to increases in avian malaria and native bird death that threaten the native ecosystem, to a plant called strawberry guava.

    Strawberry guava is taking over Hawaii’s native ōhiʻa trees, which Domingo-Kameenui says is also contributing to Hawaii’s water production. “The plants absorb water quickly so there’s less water runoff for groundwater systems.”

    A fungal pathogen is also infecting native ōhiʻa trees. The disease, called rapid ʻohiʻa death (ROD), kills the tree within a few days to weeks. The pathogen was identified by researchers on the island in 2014 from the fungal genus, Ceratocystis. The fungal pathogen was likely carried into the forests by humans on their shoes, or contaminated tools, gear, and vehicles traveling from one location to another. The fungal disease is also transmitted by beetles that bore into trees and create a fine powder-like dust. This dust from an infected tree is then mixed with the fungal spores and can easily spread to other trees by wind, or contaminated soil.

    For Gillikin, seeing the effects of ROD in the field highlighted the impact improper care and preparation can have on native forests. “The ‘ohi’a tree is one of the most prominent native trees, and ROD can kill the trees very rapidly by putting a strain on its vascular system and preventing water from reaching all parts of the tree,” says Gillikin.

    Before entering the forests, students sprayed their shoes and gear with ethanol frequently to prevent the spread.

    Uncovering chemical and particle formation

    A second research project in TREX studied volcanic smog (vog) that plagues the air, making visibility problematic at times and causing a lot of health problems for people in Hawaii. The active Kilauea volcano releases SO2 into the atmosphere. When the SO2 mixes with other gasses emitted from the volcano and interacts with sunlight and the atmosphere, particulate matter forms.

    Students in the Kroll Group, led by Jesse Kroll, professor of civil and environmental engineering and chemical engineering, have been studying SO2 and particulate matter over the years, but not the chemistry directly in how those chemical transformations occur.

    “There’s a hypothesis that there is a functional connection between the SO2 and particular matter, but that’s never been directly demonstrated,” says Des Marais.

    Testing that hypothesis, the students were able to measure two different sizes of particulate matter formed from the SO2 and develop a model to show how much vog is generated downstream of the volcano.

    They spent five days at two sites from sunrise to late morning measuring particulate matter formation as the sun comes up and starts creating new particles. Using a combination of data sources for meteorology, such as UV index, wind speed, and humidity, the students built a model that demonstrates all the pieces of an equation that can calculate when new particles are formed.

    “You can build what you think that equation is based on first-principle understanding of the chemical composition, but what they did was measured it in real time with measurements of the chemical reagents,” says Des Marias.

    The students measured what was going to catalyze the chemical reaction of particulate matter — for instance, things like sunlight and ozone — and then calculated numbers to the outputs.

    “What they found, and what seems to be happening, is that the chemical reagents are accumulating overnight,” says Des Marais. “Then as soon as the sun rises in the morning all the transformation happens in the atmosphere. A lot of the reagents are used up and the wind blows everything away, leaving the other side of the island with polluted air,” adds Des Marais.

    “I found the vog particle formation fieldwork a surprising research learning,” adds Domingo-Kameenui who did some atmospheric chemistry research in the Kroll Group. “I just thought particle formation happened in the air, but we found wind direction and wind speed at a certain time of the day was extremely important to particle formation. It’s not just chemistry you need to look at, but meteorology and sunlight,” she adds.

    Both Domingo-Kameenui and Gillikin found the fieldwork class an important and memorable experience with new insight that they will carry with them beyond MIT.  

    How Gillikin approaches fieldwork or any type of community engagement in another culture is what she will remember most. “When entering another country or culture, you are getting the privilege to be on their land, to learn about their history and experiences, and to connect with so many brilliant people,” says Gillikin. “Everyone we met in Hawaii had so much passion for their work, and approaching those environments with respect and openness to learn is what I experienced firsthand and will take with me throughout my career.” More

  • in

    An education in climate change

    Several years ago, Christopher Knittel’s father, then a math teacher, shared a mailing he had received at his high school. When he opened the packet, alarm bells went off for Knittel, who is the George P. Shultz Professor of Energy Economics at the MIT Sloan School of Management and the deputy director for policy at the MIT Energy Initiative (MITEI). “It was a slickly produced package of materials purporting to show how to teach climate change,” he says. “In reality, it was a thinly veiled attempt to kindle climate change denial.”

    Knittel was especially concerned to learn that this package had been distributed to schools nationwide. “Many teachers in search of information on climate change might use this material because they are not in a position to judge its scientific validity,” says Knittel, who is also the faculty director of the MIT Center for Energy and Environmental Policy Research (CEEPR). “I decided that MIT, which is committed to true science, was in the perfect position to develop its own climate change curriculum.”

    Today, Knittel is spearheading the Climate Action Through Education (CATE) program, a curriculum rolling out in pilot form this year in more than a dozen Massachusetts high schools, and eventually in high schools across the United States. To spur its broad adoption, says Knittel, the CATE curriculum features a unique suite of attributes: the creation of climate-based lessons for a range of disciplines beyond science, adherence to state-based education standards to facilitate integration into established curricula, material connecting climate change impacts to specific regions, and opportunities for students to explore climate solutions.

    CATE aims to engage both students and teachers in a subject that can be overwhelming. “We will be honest about the threats posed by climate change but also give students a sense of agency that they can do something about this,” says Knittel. “And for the many teachers — especially non-science teachers — starved for knowledge and background material, CATE offers resources to give them confidence to implement our curriculum.”

    Partnering with teachers

    From the outset, CATE sought guidance and hands-on development help from educators. Project manager Aisling O’Grady surveyed teachers to learn about their experiences teaching about climate and to identify the kinds of resources they lacked. She networked with MIT’s K-12 education experts and with Antje Danielson, MITEI director of education, “bouncing ideas off of them to shape the direction of our effort,” she says.

    O’Grady gained two critical insights from this process: “I realized that we needed practicing high school teachers as curriculum developers and that they had to represent different subject areas, because climate change is inherently interdisciplinary,” she says. This echoes the philosophy behind MITEI’s Energy Studies minor, she remarks, which includes classes from MIT’s different schools. “While science helps us understand and find solutions for climate change, it touches so many other areas, from economics, policy, environmental justice and politics, to history and literature.”

    In line with this thinking, CATE recruited Massachusetts teachers representing key subject areas in the high school curriculum: Amy Block, a full-time math teacher, and Lisa Borgatti, a full-time science teacher, both at the Governor’s Academy in Byfield; and Kathryn Teissier du Cros, a full-time language arts teacher at Newton North High School.

    The fourth member of this cohort, Michael Kozuch, is a full-time history teacher at Newton South High School, where he has worked for 24 years. Kozuch became engaged with environmental issues 15 years ago, introducing an elective in sustainability at Newton South. He serves on the coordinating committee for the Climate Action Network at the Massachusetts Teachers Association. He also is president of Earth Day Boston and organized Boston’s 50th anniversary celebration of Earth Day. When he learned that MIT was seeking teachers to help develop a climate education curriculum, he immediately applied.

    “I’ve heard time and again from teachers across the state that they want to incorporate climate change into the curriculum but don’t know how to make it work, given lesson plans and schedules geared toward preparing students for specific tests,” says Kozuch. “I knew that for a climate curriculum to succeed, it had to be part of an integrated approach.”

    Using climate as a lens

    Over the course of a year, Kozuch and fellow educators created units that fit into their pre-existing syllabi but were woven through with relevant climate change themes. Kozuch already had some experience in this vein, describing the role of the Industrial Revolution in triggering the use of fossil fuels and the greenhouse gas emissions that resulted. For CATE, Kozuch explored additional ways of shifting focus in covering U.S. history. There are, for instance, lessons looking at westward expansion in terms of land use, expulsion of Indigenous people, and environmental justice, and at the Baby Boom period and the emergence of the environmental movement.

    In English/language arts, there are units dedicated to explaining terms used by scientists and policymakers, such as “anthropogenic,” as well as lessons devoted to climate change fiction and to student-originated sustainability projects.

    The science and math classes work independently but also dovetail. For instance, there are science lessons that demystify the greenhouse effect, utilizing experiments to track fossil fuel emissions, which link to math lessons that calculate and graph the average rate of change of global carbon emissions. To make these classes even more relevant, there are labs where students compare carbon emissions in Massachusetts to those of a neighboring state, and where they determine the environmental and economic costs of plugging in electric devices in their own homes.

    Throughout this curriculum-shaping process, O’Grady and the teachers sought feedback from MIT faculty from a range of disciplines, including David McGee, associate professor in the Department of Earth, Atmospheric and Planetary Sciences. With the help of CATE undergraduate researcher Heidi Li ’22, the team held a focus group with the Sustainable Energy Alliance, an undergraduate student club. In spring 2022, CATE convened a professional development workshop in collaboration with the Massachusetts Teachers Association Climate Action Network, Earth Day Boston, and MIT’s Office of Government and Community Relations, sponsored by the Beker Foundation, to evaluate 15 discrete CATE lessons. One of the workshop participants, Gary Smith, a teacher from St. John’s Preparatory School in Danvers, Massachusetts, signed on as a volunteer science curriculum developer.

    “We had a diverse pool of teachers who thought the lessons were fantastic, but among their suggestions noted that their student cohorts included new English speakers, who needed simpler language and more pictures,” says O’Grady. “This was extremely useful to us, and we revised the curriculum because we want to reach students at every level of learning.”

    Reaching all the schools

    Now, the CATE curriculum is in the hands of a cohort of Massachusetts teachers. Each of these educators will test one or more of the lessons and lab activities over the next year, checking in regularly with MIT partners to report on their classroom experiences. The CATE team is building a Climate Education Resource Network of MIT graduate students, postdocs, and research staff who can answer teachers’ specific climate questions and help them find additional resources or datasets. Additionally, teachers will have the opportunity to attend two in-person cohort meetings and be paired with graduate student “climate advisors.”

    In spring 2023, in honor of Earth Day, O’Grady and Knittel want to bring CATE first adopters — high school teachers, students, and their families — to campus. “We envision professors giving mini lectures, youth climate groups discussing how to get involved in local actions, and our team members handing out climate change packets to students to spark conversations with their families at home,” says O’Grady.

    By creating a positive experience around their curriculum in these pilot schools, the CATE team hopes to promote its dissemination to many more Massachusetts schools in 2023. The team plans on enhancing lessons, offering more paths to integration in high school studies, and creating a companion resource website for teachers. Knittel wants to establish footholds in school after school, in Massachusetts and beyond.

    “I plan to spend a lot of my time convincing districts and states to adopt,” he says. “If one teacher tells another that the curriculum is useful, with touchpoints in different disciplines, that’s how we get a foot in the door.”

    Knittel is not shying away from places where “climate change is a politicized topic.” He hopes to team up with universities in states where there might be resistance to including such lessons in schools to develop the curriculum. Although his day job involves computing household-level carbon footprints, determining the relationship between driving behavior and the price of gasoline, and promoting wise climate policy, Knittel plans to push CATE as far as he can. “I want this curriculum to be adopted by everybody — that’s my goal,” he says.

    “In one sense, I’m not the natural person for this job,” he admits. “But I share the mission and passion of MITEI and CEEPR for decarbonizing our economy in ways that are socially equitable and efficient, and part of doing that is educating Americans about the actual costs and consequences of climate change.”

    The CATE program is sponsored by MITEI, CEEPR, and the MIT Vice President for Research.

    This article appears in the Winter 2023 issue of Energy Futures, the magazine of the MIT Energy Initiative. More