More stories

  • in

    Pursuing a practical approach to research

    Koroush Shirvan, the John Clark Hardwick Career Development Professor in the Department of Nuclear Science and Engineering (NSE), knows that the nuclear industry has traditionally been wary of innovations until they are shown to have proven utility. As a result, he has relentlessly focused on practical applications in his research, work that has netted him the 2022 Reactor Technology Award from the American Nuclear Society. “The award has usually recognized practical contributions to the field of reactor design and has not often gone to academia,” Shirvan says.

    One of these “practical contributions” is in the field of accident-tolerant fuels, a program launched by the U.S. Nuclear Regulatory Commission in the wake of the 2011 Fukushima Daiichi incident. The goal within this program, says Shirvan, is to develop new forms of nuclear fuels that can tolerate heat. His team, with students from over 16 countries, is working on numerous possibilities that range in composition and method of production.

    Another aspect of Shirvan’s research focuses on how radiation impacts heat transfer mechanisms in the reactor. The team found fuel corrosion to be the driving force. “[The research] informs how nuclear fuels perform in the reactor, from a practical point of view,” Shirvan says.

    Optimizing nuclear reactor design

    A summer internship when Shirvan was an undergraduate at the University of Florida at Gainesville seeded his drive to focus on practical applications in his studies. A nearby nuclear utility was losing millions because of crud accumulating on fuel rods. Over time, the company was solving the problem by using more fuel, before it had extracted all the life from earlier batches.

    Placement of fuel rods in nuclear reactors is a complex problem with many factors — the life of the fuel, location of hot spots — affecting outcomes. Nuclear reactors change their configuration of fuel rods every 18-24 months to optimize close to 15-20 constraints, leading to roughly 200-800 assemblies. The mind-boggling nature of the problem means that plants have to rely on experienced engineers.

    During his internship, Shirvan optimized the program used to place fuel rods in the reactor. He found that certain rods in assemblies were more prone to the crud deposits, and reworked their configurations, optimizing for these rods’ performance instead of adding assemblies.

    In recent years, Shirvan has applied a branch of artificial intelligence — reinforcement learning — to the configuration problem and created a software program used by the largest U.S. nuclear utility. “This program gives even a layperson the ability to reconfigure the fuels and the reactor without having expert knowledge,” Shirvan says.

    From advanced math to counting jelly beans

    Shirvan’s own expertise in nuclear science and engineering developed quite organically. He grew up in Tehran, Iran, and when he was 14 the family moved to Gainesville, where Shirvan’s aunt and family live. He remembers an awkward couple of years at the new high school where he was grouped in with newly arrived international students, and placed in entry-level classes. “I went from doing advanced mathematics in Iran to counting jelly beans,” he laughs.

    Shirvan applied to the University of Florida for his undergraduate studies since it made economic sense; the school gave full scholarships to Floridian students who received a certain minimum SAT score. Shirvan qualified. His uncle, who was a professor in the nuclear engineering department then, encouraged Shirvan to take classes in the department. Under his uncle’s mentorship, the courses Shirvan took, and his internship, cemented his love of the interdisciplinary approach that the field demanded.

    Having always known that he wanted to teach — he remembers finishing his math tests early in Tehran so he could earn the reward of being class monitor — Shirvan knew graduate school was next. His uncle encouraged him to apply to MIT and to the University of Michigan, home to reputable programs in the field. Shirvan chose MIT because “only at MIT was there a program on nuclear design. There were faculty dedicated to designing new reactors, looking at multiple disciplines, and putting all of that together.” He went on to pursue his master’s and doctoral studies at NSE under the supervision of Professor Mujid Kazimi, focusing on compact pressurized and boiling water reactor designs. When Kazimi passed away suddenly in 2015, Shirvan was a research scientist, and switched to tenure track to guide the professor’s team.

    Another project that Shirvan took in 2015: leadership of MIT’s course on nuclear reactor technology for utility executives. Offered only by the Institute, the program is an introduction to nuclear engineering and safety for personnel who might not have much background in the area. “It’s a great course because you get to see what the real problems are in the energy sector … like grid stability,” Shirvan says.

    A multipronged approach to savings

    Another very real problem nuclear utilities face is cost. Contrary to what one hears on the news, one of the biggest stumbling blocks to building new nuclear facilities in the United States is cost, which today can be up to three times that of renewables, Shirvan says. While many approaches such as advanced manufacturing have been tried, Shirvan believes that the solution to decrease expenditures lies in designing more compact reactors.

    His team has developed an open-source advanced nuclear cost tool and has focused on two different designs: a small water reactor using compact steam technology and a horizontal gas reactor. Compactness also means making fuels more efficient, as Shirvan’s work does, and in improving the heat exchange device. It’s all back to the basics and bringing “commercial viable arguments in with your research,” Shirvan explains.

    Shirvan is excited about the future of the U.S. nuclear industry, and that the 2022 Inflation Reduction Act grants the same subsidies to nuclear as it does for renewables. In this new level playing field, advanced nuclear still has a long way to go in terms of affordability, he admits. “It’s time to push forward with cost-effective design,” Shirvan says, “I look forward to supporting this by continuing to guide these efforts with research from my team.” More

  • in

    Mining for the clean energy transition

    In a world powered increasingly by clean energy, drilling for oil and gas will gradually give way to digging for metals and minerals. Today, the “critical minerals” used to make electric cars, solar panels, wind turbines, and grid-scale battery storage are facing soaring demand — and some acute bottlenecks as miners race to catch up.

    According to a report from the International Energy Agency, by 2040, the worldwide demand for copper is expected to roughly double; demand for nickel and cobalt will grow at least sixfold; and the world’s hunger for lithium could reach 40 times what we use today.

    “Society is looking to the clean energy transition as a way to solve the environmental and social harms of climate change,” says Scott Odell, a visiting scientist at the MIT Environmental Solutions Initiative (ESI), where he helps run the ESI Mining, Environment, and Society Program, who is also a visiting assistant professor at George Washington University. “Yet mining the materials needed for that transition would also cause social and environmental impacts. So we need to look for ways to reduce our demand for minerals, while also improving current mining practices to minimize social and environmental impacts.”

    ESI recently hosted the inaugural MIT Conference on Mining, Environment, and Society to discuss how the clean energy transition may affect mining and the people and environments in mining areas. The conference convened representatives of mining companies, environmental and human rights groups, policymakers, and social and natural scientists to identify key concerns and possible collaborative solutions.

    “We can’t replace an abusive fossil fuel industry with an abusive mining industry that expands as we move through the energy transition,” said Jim Wormington, a senior researcher at Human Rights Watch, in a panel on the first day of the conference. “There’s a recognition from governments, civil society, and companies that this transition potentially has a really significant human rights and social cost, both in terms of emissions […] but also for communities and workers who are on the front lines of mining.”

    That focus on communities and workers was consistent throughout the three-day conference, as participants outlined the economic and social dimensions of standing up large numbers of new mines. Corporate mines can bring large influxes of government revenue and local investment, but the income is volatile and can leave policymakers and communities stranded when production declines or mineral prices fall. On the other hand, “artisanal” mining operations are an important source of critical minerals, but are hard to regulate and subject to abuses from brokers. And large reserves of minerals are found in conservation areas, regions with fragile ecosystems and experiencing water shortages that can be exacerbated by mining, in particular on Indigenous-controlled lands and other places where mine openings are deeply fraught.

    “One of the real triggers of conflict is a dissatisfaction with the current model of resource extraction,” said Jocelyn Fraser of the University of British Columbia in a panel discussion. “One that’s failed to support the long-term sustainable development of regions that host mining operations, and yet imposes significant local social and environmental impacts.”

    All these challenges point toward solutions in policy and in mining companies’ relationships with the communities where they work. Participants highlighted newer models of mining governance that can create better incentives for the ways mines operate — from full community ownership of mines to recognizing community rights to the benefits of mining to end-of-life planning for mines at the time they open.

    Many of the conference speakers also shared technological innovations that may help reduce mining challenges. Some operations are investing in desalination as alternative water sources in water-scarce regions; low-carbon alternatives are emerging to many of the fossil fuel-powered heavy machines that are mainstays of the industry; and work is being done to reclaim valuable minerals from mine tailings, helping to minimize both waste and the need to open new extraction sites.

    Increasingly, the mining industry itself is recognizing that reforms will allow it to thrive in a rapid clean-energy transition. “Decarbonization is really a profitability imperative,” said Kareemah Mohammed, managing director for sustainability services at the technology consultancy Accenture, on the conference’s second day. “It’s about securing a low-cost and steady supply of either minerals or metals, but it’s also doing so in an optimal way.”

    The three-day conference attracted over 350 attendees, from large mining companies, industry groups, consultancies, multilateral institutions, universities, nongovernmental organizations (NGOs), government, and more. It was held entirely virtually, a choice that helped make the conference not only truly international — participants joined from over 27 countries on six continents — but also accessible to members of nonprofits and professionals in the developing world.

    “Many people are concerned about the environmental and social challenges of supplying the clean energy revolution, and we’d heard repeatedly that there wasn’t a forum for government, industry, academia, NGOs, and communities to all sit at the same table and explore collaborative solutions,” says Christopher Noble, ESI’s director of corporate engagement. “Convening, and researching best practices, are roles that universities can play. The conversations at this conference have generated valuable ideas and consensus to pursue three parallel programs: best-in-class models for community engagement, improving ESG metrics and their use, and civil-society contributions to government/industry relations. We are developing these programs to keep the momentum going.”

    The MIT Conference on Mining, Environment, and Society was funded, in part, by Accenture, as part of the MIT/Accenture Convergence Initiative. Additional funding was provided by the Inter-American Development Bank. More

  • in

    A breakthrough on “loss and damage,” but also disappointment, at UN climate conference

    As the 2022 United Nations climate change conference, known as COP27, stretched into its final hours on Saturday, Nov. 19, it was uncertain what kind of agreement might emerge from two weeks of intensive international negotiations.

    In the end, COP27 produced mixed results: on the one hand, a historic agreement for wealthy countries to compensate low-income countries for “loss and damage,” but on the other, limited progress on new plans for reducing the greenhouse gas emissions that are warming the planet.

    “We need to drastically reduce emissions now — and this is an issue this COP did not address,” said U.N. Secretary-General António Guterres in a statement at the conclusion of COP27. “A fund for loss and damage is essential — but it’s not an answer if the climate crisis washes a small island state off the map — or turns an entire African country to desert.”

    Throughout the two weeks of the conference, a delegation of MIT students, faculty, and staff was at the Sharm El-Sheikh International Convention Center to observe the negotiations, conduct and share research, participate in panel discussions, and forge new connections with researchers, policymakers, and advocates from around the world.

    Loss and damage

    A key issue coming in to COP27 (COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held for the 27th time) was loss and damage: a term used by the U.N. to refer to harms caused by climate change — either through acute catastrophes like extreme weather events or slower-moving impacts like sea level rise — to which communities and countries are unable to adapt. 

    Ultimately, a deal on loss and damage proved to be COP27’s most prominent accomplishment. Negotiators reached an eleventh-hour agreement to “establish new funding arrangements for assisting developing countries that are particularly vulnerable to the adverse effects of climate change.” 

    “Providing financial assistance to developing countries so they can better respond to climate-related loss and damage is not only a moral issue, but also a pragmatic one,” said Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research, who attended COP27 and participated in side events. “Future emissions growth will be squarely centered in the developing world, and offering support through different channels is key to building the trust needed for more robust global cooperation on mitigation.”

    Youssef Shaker, a graduate student in the MIT Technology and Policy Program and a research assistant with the MIT Energy Initiative, attended the second week of the conference, where he followed the negotiations over loss and damage closely. 

    “While the creation of a fund is certainly an achievement,” Shaker said, “significant questions remain to be answered, such as the size of the funding available as well as which countries receive access to it.” A loss-and-damage fund that is not adequately funded, Shaker noted, “would not be an impactful outcome.” 

    The agreement on loss and damage created a new committee, made up of 24 country representatives, to “operationalize” the new funding arrangements, including identifying funding sources. The committee is tasked with delivering a set of recommendations at COP28, which will take place next year in Dubai.

    Advising the U.N. on net zero

    Though the decisions reached at COP27 did not include major new commitments on reducing emissions from the combustion of fossil fuels, the transition to a clean global energy system was nevertheless a key topic of conversation throughout the conference.

    The Council of Engineers for the Energy Transition (CEET), an independent, international body of engineers and energy systems experts formed to provide advice to the U.N. on achieving net-zero emissions globally by 2050, convened for the first time at COP27. Jessika Trancik, a professor in the MIT Institute for Data, Systems, and Society and a member of CEET, spoke on a U.N.-sponsored panel on solutions for the transition to clean energy.

    Trancik noted that the energy transition will look different in different regions of the world. “As engineers, we need to understand those local contexts and design solutions around those local contexts — that’s absolutely essential to support a rapid and equitable energy transition.”

    At the same time, Trancik noted that there is now a set of “low-cost, ready-to-scale tools” available to every region — tools that resulted from a globally competitive process of innovation, stimulated by public policies in different countries, that dramatically drove down the costs of technologies like solar energy and lithium-ion batteries. The key, Trancik said, is for regional transition strategies to “tap into global processes of innovation.”

    Reinventing climate adaptation

    Elfatih Eltahir, the H. M. King Bhumibol Professor of Hydrology and Climate, traveled to COP27 to present plans for the Jameel Observatory Climate Resilience Early Warning System (CREWSnet), one of the five projects selected in April 2022 as a flagship in MIT’s Climate Grand Challenges initiative. CREWSnet focuses on climate adaptation, the term for adapting to climate impacts that are unavoidable.

    The aim of CREWSnet, Eltahir told the audience during a panel discussion, is “nothing short of reinventing the process of climate change adaptation,” so that it is proactive rather than reactive; community-led; data-driven and evidence-based; and so that it integrates different climate risks, from heat waves to sea level rise, rather than treating them individually.

    “However, it’s easy to talk about these changes,” said Eltahir. “The real challenge, which we are now just launching and engaging in, is to demonstrate that on the ground.” Eltahir said that early demonstrations will happen in a couple of key locations, including southwest Bangladesh, where multiple climate risks — rising sea levels, increasing soil salinity, and intensifying heat waves and cyclones — are combining to threaten the area’s agricultural production.

    Building on COP26

    Some members of MIT’s delegation attended COP27 to advance efforts that had been formally announced at last year’s U.N. climate conference, COP26, in Glasgow, Scotland.

    At an official U.N. side event co-organized by MIT on Nov. 11, Greg Sixt, the director of the Food and Climate Systems Transformation (FACT) Alliance led by the Abdul Latif Jameel Water and Food Systems Lab, provided an update on the alliance’s work since its launch at COP26.

    Food systems are a major source of greenhouse gas emissions — and are increasingly vulnerable to climate impacts. The FACT Alliance works to better connect researchers to farmers, food businesses, policymakers, and other food systems stakeholders to make food systems (which include food production, consumption, and waste) more sustainable and resilient. 

    Sixt told the audience that the FACT Alliance now counts over 20 research and stakeholder institutions around the world among its members, but also collaborates with other institutions in an “open network model” to advance work in key areas — such as a new research project exploring how climate scenarios could affect global food supply chains.

    Marcela Angel, research program director for the Environmental Solutions Initiative (ESI), helped convene a meeting at COP27 of the Afro-InterAmerican Forum on Climate Change, which also launched at COP26. The forum works with Afro-descendant leaders across the Americas to address significant environmental issues, including climate risks and biodiversity loss. 

    At the event — convened with the Colombian government and the nonprofit Conservation International — ESI brought together leaders from six countries in the Americas and presented recent work that estimates that there are over 178 million individuals who identify as Afro-descendant living in the Americas, in lands of global environmental importance. 

    “There is a significant overlap between biodiversity hot spots, protected areas, and areas of high Afro-descendant presence,” said Angel. “But the role and climate contributions of these communities is understudied, and often made invisible.”    

    Limiting methane emissions

    Methane is a short-lived but potent greenhouse gas: When released into the atmosphere, it immediately traps about 120 times more heat than carbon dioxide does. More than 150 countries have now signed the Global Methane Pledge, launched at COP26, which aims to reduce methane emissions by at least 30 percent by 2030 compared to 2020 levels.

    Sergey Paltsev, the deputy director of the Joint Program on the Science and Policy of Global Change and a senior research scientist at the MIT Energy Initiative, gave the keynote address at a Nov. 17 event on methane, where he noted the importance of methane reductions from the oil and gas sector to meeting the 2030 goal.

    “The oil and gas sector is where methane emissions reductions could be achieved the fastest,” said Paltsev. “We also need to employ an integrated approach to address methane emissions in all sectors and all regions of the world because methane emissions reductions provide a near-term pathway to avoiding dangerous tipping points in the global climate system.”

    “Keep fighting relentlessly”

    Arina Khotimsky, a senior majoring in materials science and engineering and a co-president of the MIT Energy and Climate Club, attended the first week of COP27. She reflected on the experience in a social media post after returning home. 

    “COP will always have its haters. Is there greenwashing? Of course! Is everyone who should have a say in this process in the room? Not even close,” wrote Khotimsky. “So what does it take for COP to matter? It takes everyone who attended to not only put ‘climate’ on front-page news for two weeks, but to return home and keep fighting relentlessly against climate change. I know that I will.” More

  • in

    MIT Policy Hackathon produces new solutions for technology policy challenges

    Almost three years ago, the Covid-19 pandemic changed the world. Many are still looking to uncover a “new normal.”

    “Instead of going back to normal, [there’s a new generation that] wants to build back something different, something better,” says Jorge Sandoval, a second-year graduate student in MIT’s Technology and Policy Program (TPP) at the Institute for Data, Systems and Society (IDSS). “How do we communicate this mindset to others, that the world cannot be the same as before?”

    This was the inspiration behind “A New (Re)generation,” this year’s theme for the IDSS-student-run MIT Policy Hackathon, which Sandoval helped to organize as the event chair. The Policy Hackathon is a weekend-long, interdisciplinary competition that brings together participants from around the globe to explore potential solutions to some of society’s greatest challenges. 

    Unlike other competitions of its kind, Sandoval says MIT’s event emphasizes a humanistic approach. “The idea of our hackathon is to promote applications of technology that are humanistic or human-centered,” he says. “We take the opportunity to examine aspects of technology in the spaces where they tend to interact with society and people, an opportunity most technical competitions don’t offer because their primary focus is on the technology.”

    The competition started with 50 teams spread across four challenge categories. This year’s categories included Internet and Cybersecurity, Environmental Justice, Logistics, and Housing and City Planning. While some people come into the challenge with friends, Sandoval said most teams form organically during an online networking meeting hosted by MIT.

    “We encourage people to pair up with others outside of their country and to form teams of different diverse backgrounds and ages,” Sandoval says. “We try to give people who are often not invited to the decision-making table the opportunity to be a policymaker, bringing in those with backgrounds in not only law, policy, or politics, but also medicine, and people who have careers in engineering or experience working in nonprofits.”

    Once an in-person event, the Policy Hackathon has gone through its own regeneration process these past three years, according to Sandoval. After going entirely online during the pandemic’s height, last year they successfully hosted the first hybrid version of the event, which served as their model again this year.

    “The hybrid version of the event gives us the opportunity to allow people to connect in a way that is lost if it is only online, while also keeping the wide range of accessibility, allowing people to join from anywhere in the world, regardless of nationality or income, to provide their input,” Sandoval says.

    For Swetha Tadisina, an undergraduate computer science major at Lafayette College and participant in the internet and cybersecurity category, the hackathon was a unique opportunity to meet and work with people much more advanced in their careers. “I was surprised how such a diverse team that had never met before was able to work so efficiently and creatively,” Tadisina says.

    Erika Spangler, a public high school teacher from Massachusetts and member of the environmental justice category’s winning team, says that while each member of “Team Slime Mold” came to the table with a different set of skills, they managed to be in sync from the start — even working across the nine-and-a-half-hour time difference the four-person team faced when working with policy advocate Shruti Nandy from Calcutta, India.

    “We divided the project into data, policy, and research and trusted each other’s expertise,” Spangler says, “Despite having separate areas of focus, we made sure to have regular check-ins to problem-solve and cross-pollinate ideas.”

    During the 48-hour period, her team proposed the creation of an algorithm to identify high-quality brownfields that could be cleaned up and used as sites for building renewable energy. Their corresponding policy sought to mandate additional requirements for renewable energy businesses seeking tax credits from the Inflation Reduction Act.

    “Their policy memo had the most in-depth technical assessment, including deep dives in a few key cities to show the impact of their proposed approach for site selection at a very granular level,” says Amanda Levin, director of policy analysis for the Natural Resources Defense Council (NRDC). Levin acted as both a judge and challenge provider for the environmental justice category.

    “They also presented their policy recommendations in the memo in a well-thought-out way, clearly noting the relevant actor,” she adds. This clarity around what can be done, and who would be responsible for those actions, is highly valuable for those in policy.”

    Levin says the NRDC, one of the largest environmental nonprofits in the United States, provided five “challenge questions,” making it clear that teams did not need to address all of them. She notes that this gave teams significant leeway, bringing a wide variety of recommendations to the table. 

    “As a challenge partner, the work put together by all the teams is already being used to help inform discussions about the implementation of the Inflation Reduction Act,” Levin says. “Being able to tap into the collective intelligence of the hackathon helped uncover new perspectives and policy solutions that can help make an impact in addressing the important policy challenges we face today.”

    While having partners with experience in data science and policy definitely helped, fellow Team Slime Mold member Sara Sheffels, a PhD candidate in MIT’s biomaterials program, says she was surprised how much her experiences outside of science and policy were relevant to the challenge: “My experience organizing MIT’s Graduate Student Union shaped my ideas about more meaningful community involvement in renewables projects on brownfields. It is not meaningful to merely educate people about the importance of renewables or ask them to sign off on a pre-planned project without addressing their other needs.”

    “I wanted to test my limits, gain exposure, and expand my world,” Tadisina adds. “The exposure, friendships, and experiences you gain in such a short period of time are incredible.”

    For Willy R. Vasquez, an electrical and computer engineering PhD student at the University of Texas, the hackathon is not to be missed. “If you’re interested in the intersection of tech, society, and policy, then this is a must-do experience.” More

  • in

    Reversing the charge

    Owners of electric vehicles (EVs) are accustomed to plugging into charging stations at home and at work and filling up their batteries with electricity from the power grid. But someday soon, when these drivers plug in, their cars will also have the capacity to reverse the flow and send electrons back to the grid. As the number of EVs climbs, the fleet’s batteries could serve as a cost-effective, large-scale energy source, with potentially dramatic impacts on the energy transition, according to a new paper published by an MIT team in the journal Energy Advances.

    “At scale, vehicle-to-grid (V2G) can boost renewable energy growth, displacing the need for stationary energy storage and decreasing reliance on firm [always-on] generators, such as natural gas, that are traditionally used to balance wind and solar intermittency,” says Jim Owens, lead author and a doctoral student in the MIT Department of Chemical Engineering. Additional authors include Emre Gençer, a principal research scientist at the MIT Energy Initiative (MITEI), and Ian Miller, a research specialist for MITEI at the time of the study.

    The group’s work is the first comprehensive, systems-based analysis of future power systems, drawing on a novel mix of computational models integrating such factors as carbon emission goals, variable renewable energy (VRE) generation, and costs of building energy storage, production, and transmission infrastructure.

    “We explored not just how EVs could provide service back to the grid — thinking of these vehicles almost like energy storage on wheels — but also the value of V2G applications to the entire energy system and if EVs could reduce the cost of decarbonizing the power system,” says Gençer. “The results were surprising; I personally didn’t believe we’d have so much potential here.”

    Displacing new infrastructure

    As the United States and other nations pursue stringent goals to limit carbon emissions, electrification of transportation has taken off, with the rate of EV adoption rapidly accelerating. (Some projections show EVs supplanting internal combustion vehicles over the next 30 years.) With the rise of emission-free driving, though, there will be increased demand for energy. “The challenge is ensuring both that there’s enough electricity to charge the vehicles and that this electricity is coming from renewable sources,” says Gençer.

    But solar and wind energy is intermittent. Without adequate backup for these sources, such as stationary energy storage facilities using lithium-ion batteries, for instance, or large-scale, natural gas- or hydrogen-fueled power plants, achieving clean energy goals will prove elusive. More vexing, costs for building the necessary new energy infrastructure runs to the hundreds of billions.

    This is precisely where V2G can play a critical, and welcome, role, the researchers reported. In their case study of a theoretical New England power system meeting strict carbon constraints, for instance, the team found that participation from just 13.9 percent of the region’s 8 million light-duty (passenger) EVs displaced 14.7 gigawatts of stationary energy storage. This added up to $700 million in savings — the anticipated costs of building new storage capacity.

    Their paper also described the role EV batteries could play at times of peak demand, such as hot summer days. “V2G technology has the ability to inject electricity back into the system to cover these episodes, so we don’t need to install or invest in additional natural gas turbines,” says Owens. “The way that EVs and V2G can influence the future of our power systems is one of the most exciting and novel aspects of our study.”

    Modeling power

    To investigate the impacts of V2G on their hypothetical New England power system, the researchers integrated their EV travel and V2G service models with two of MITEI’s existing modeling tools: the Sustainable Energy System Analysis Modeling Environment (SESAME) to project vehicle fleet and electricity demand growth, and GenX, which models the investment and operation costs of electricity generation, storage, and transmission systems. They incorporated such inputs as different EV participation rates, costs of generation for conventional and renewable power suppliers, charging infrastructure upgrades, travel demand for vehicles, changes in electricity demand, and EV battery costs.

    Their analysis found benefits from V2G applications in power systems (in terms of displacing energy storage and firm generation) at all levels of carbon emission restrictions, including one with no emissions caps at all. However, their models suggest that V2G delivers the greatest value to the power system when carbon constraints are most aggressive — at 10 grams of carbon dioxide per kilowatt hour load. Total system savings from V2G ranged from $183 million to $1,326 million, reflecting EV participation rates between 5 percent and 80 percent.

    “Our study has begun to uncover the inherent value V2G has for a future power system, demonstrating that there is a lot of money we can save that would otherwise be spent on storage and firm generation,” says Owens.

    Harnessing V2G

    For scientists seeking ways to decarbonize the economy, the vision of millions of EVs parked in garages or in office spaces and plugged into the grid for 90 percent of their operating lives proves an irresistible provocation. “There is all this storage sitting right there, a huge available capacity that will only grow, and it is wasted unless we take full advantage of it,” says Gençer.

    This is not a distant prospect. Startup companies are currently testing software that would allow two-way communication between EVs and grid operators or other entities. With the right algorithms, EVs would charge from and dispatch energy to the grid according to profiles tailored to each car owner’s needs, never depleting the battery and endangering a commute.

    “We don’t assume all vehicles will be available to send energy back to the grid at the same time, at 6 p.m. for instance, when most commuters return home in the early evening,” says Gençer. He believes that the vastly varied schedules of EV drivers will make enough battery power available to cover spikes in electricity use over an average 24-hour period. And there are other potential sources of battery power down the road, such as electric school buses that are employed only for short stints during the day and then sit idle.

    The MIT team acknowledges the challenges of V2G consumer buy-in. While EV owners relish a clean, green drive, they may not be as enthusiastic handing over access to their car’s battery to a utility or an aggregator working with power system operators. Policies and incentives would help.

    “Since you’re providing a service to the grid, much as solar panel users do, you could be paid for your participation, and paid at a premium when electricity prices are very high,” says Gençer.

    “People may not be willing to participate ’round the clock, but if we have blackout scenarios like in Texas last year, or hot-day congestion on transmission lines, maybe we can turn on these vehicles for 24 to 48 hours, sending energy back to the system,” adds Owens. “If there’s a power outage and people wave a bunch of money at you, you might be willing to talk.”

    “Basically, I think this comes back to all of us being in this together, right?” says Gençer. “As you contribute to society by giving this service to the grid, you will get the full benefit of reducing system costs, and also help to decarbonize the system faster and to a greater extent.”

    Actionable insights

    Owens, who is building his dissertation on V2G research, is now investigating the potential impact of heavy-duty electric vehicles in decarbonizing the power system. “The last-mile delivery trucks of companies like Amazon and FedEx are likely to be the earliest adopters of EVs,” Owen says. “They are appealing because they have regularly scheduled routes during the day and go back to the depot at night, which makes them very useful for providing electricity and balancing services in the power system.”

    Owens is committed to “providing insights that are actionable by system planners, operators, and to a certain extent, investors,” he says. His work might come into play in determining what kind of charging infrastructure should be built, and where.

    “Our analysis is really timely because the EV market has not yet been developed,” says Gençer. “This means we can share our insights with vehicle manufacturers and system operators — potentially influencing them to invest in V2G technologies, avoiding the costs of building utility-scale storage, and enabling the transition to a cleaner future. It’s a huge win, within our grasp.”

    The research for this study was funded by MITEI’s Future Energy Systems Center. More

  • in

    With new heat treatment, 3D-printed metals can withstand extreme conditions

    A new MIT-developed heat treatment transforms the microscopic structure of 3D-printed metals, making the materials stronger and more resilient in extreme thermal environments. The technique could make it possible to 3D print high-performance blades and vanes for power-generating gas turbines and jet engines, which would enable new designs with improved fuel consumption and energy efficiency.

    Today’s gas turbine blades are manufactured through conventional casting processes in which molten metal is poured into complex molds and directionally solidified. These components are made from some of the most heat-resistant metal alloys on Earth, as they are designed to rotate at high speeds in extremely hot gas, extracting work to generate electricity in power plants and thrust in jet engines.

    There is growing interest in manufacturing turbine blades through 3D-printing, which, in addition to its environmental and cost benefits, could allow manufacturers to quickly produce more intricate, energy-efficient blade geometries. But efforts to 3D-print turbine blades have yet to clear a big hurdle: creep.

    In metallurgy, creep refers to a metal’s tendency to permanently deform in the face of persistent mechanical stress and high temperatures. While researchers have explored printing turbine blades, they have found that the printing process produces fine grains on the order of tens to hundreds of microns in size — a microstructure that is especially vulnerable to creep.

    “In practice, this would mean a gas turbine would have a shorter life or less fuel efficiency,” says Zachary Cordero, the Boeing Career Development Professor in Aeronautics and Astronautics at MIT. “These are costly, undesirable outcomes.”

    Cordero and his colleagues found a way to improve the structure of 3D-printed alloys by adding an additional heat-treating step, which transforms the as-printed material’s fine grains into much larger “columnar” grains — a sturdier microstructure that should minimize the material’s creep potential, since the “columns” are aligned with the axis of greatest stress. The researchers say the method, outlined today in Additive Manufacturing, clears the way for industrial 3D-printing of gas turbine blades.

    “In the near future, we envision gas turbine manufacturers will print their blades and vanes at large-scale additive manufacturing plants, then post-process them using our heat treatment,” Cordero says. “3D-printing will enable new cooling architectures that can improve the thermal efficiency of a turbine, so that it produces the same amount of power while burning less fuel and ultimately emits less carbon dioxide.”

    Cordero’s co-authors on the study are lead author Dominic Peachey, Christopher Carter, and Andres Garcia-Jimenez at MIT, Anugrahaprada Mukundan and Marie-Agathe Charpagne of the University of Illinois at Urbana-Champaign, and Donovan Leonard of Oak Ridge National Laboratory.

    Triggering a transformation

    The team’s new method is a form of directional recrystallization — a heat treatment that passes a material through a hot zone at a precisely controlled speed to meld a material’s many microscopic grains into larger, sturdier, and more uniform crystals.

    Directional recrystallization was invented more than 80 years ago and has been applied to wrought materials. In their new study, the MIT team adapted directional recrystallization for 3D-printed superalloys.

    The team tested the method on 3D-printed nickel-based superalloys — metals that are typically cast and used in gas turbines. In a series of experiments, the researchers placed 3D-printed samples of rod-shaped superalloys in a room-temperature water bath placed just below an induction coil. They slowly drew each rod out of the water and through the coil at various speeds, dramatically heating the rods to temperatures varying between 1,200 and 1,245 degrees Celsius.

    They found that drawing the rods at a particular speed (2.5 millimeters per hour) and through a specific temperature (1,235 degrees Celsius) created a steep thermal gradient that triggered a transformation in the material’s printed, fine-grained microstructure.

    “The material starts as small grains with defects called dislocations, that are like a mangled spaghetti,” Cordero explains. “When you heat this material up, those defects can annihilate and reconfigure, and the grains are able to grow. We’re continuously elongating the grains by consuming the defective material and smaller grains — a process termed recrystallization.”

    Creep away

    After cooling the heat-treated rods, the researchers examined their microstructure using optical and electron microscopy, and found that the material’s printed microscopic grains were replaced with “columnar” grains, or long crystal-like regions that were significantly larger than the original grains.

    “We’ve completely transformed the structure,” says lead author Dominic Peachey. “We show we can increase the grain size by orders of magnitude, to massive columnar grains, which theoretically should lead to dramatic improvements in creep properties.”

    The team also showed they could manipulate the draw speed and temperature of the rod samples to tailor the material’s growing grains, creating regions of specific grain size and orientation. This level of control, Cordero says, can enable manufacturers to print turbine blades with site-specific microstructures that are resilient to specific operating conditions.

    Cordero plans to test the heat treatment on 3D-printed geometries that more closely resemble turbine blades. The team is also exploring ways to speed up the draw rate, as well as test a heat-treated structure’s resistance to creep. Then, they envision that the heat treatment could enable the practical application of 3D-printing to produce industrial-grade turbine blades, with more complex shapes and patterns.

    “New blade and vane geometries will enable more energy-efficient land-based gas turbines, as well as, eventually, aeroengines,” Cordero notes. “This could from a baseline perspective lead to lower carbon dioxide emissions, just through improved efficiency of these devices.”

    This research was supported, in part, by the U.S. Office of Naval Research. More