More stories

  • in

    Reducing pesticide use while increasing effectiveness

    Farming can be a low-margin, high-risk business, subject to weather and climate patterns, insect population cycles, and other unpredictable factors. Farmers need to be savvy managers of the many resources they deal, and chemical fertilizers and pesticides are among their major recurring expenses.

    Despite the importance of these chemicals, a lack of technology that monitors and optimizes sprays has forced farmers to rely on personal experience and rules of thumb to decide how to apply these chemicals. As a result, these chemicals tend to be over-sprayed, leading to their runoff into waterways and buildup up in the soil.

    That could change, thanks to a new approach of feedback-optimized spraying, invented by AgZen, an MIT spinout founded in 2020 by Professor Kripa Varanasi and Vishnu Jayaprakash SM ’19, PhD ’22.

    Play video

    AgZen has developed a system for farming that can monitor exactly how much of the sprayed chemicals adheres to plants, in real time, as the sprayer drives through a field. Built-in software running on a tablet shows the operator exactly how much of each leaf has been covered by the spray.

    Over the past decade, AgZen’s founders have developed products and technologies to control the interactions of droplets and sprays with plant surfaces. The Boston-based venture-backed company launched a new commercial product in 2024 and is currently piloting another related product. Field tests of both have shown the products can help farmers spray more efficiently and effectively, using fewer chemicals overall.

    “Worldwide, farms spend approximately $60 billion a year on pesticides. Our objective is to reduce the number of pesticides sprayed and lighten the financial burden on farms without sacrificing effective pest management,” Varanasi says.

    Getting droplets to stick

    While the world pesticide market is growing rapidly, a lot of the pesticides sprayed don’t reach their target. A significant portion bounces off the plant surfaces, lands on the ground, and becomes part of the runoff that flows to streams and rivers, often causing serious pollution. Some of these pesticides can be carried away by wind over very long distances.

    “Drift, runoff, and poor application efficiency are well-known, longstanding problems in agriculture, but we can fix this by controlling and monitoring how sprayed droplets interact with leaves,” Varanasi says.

    With support from MIT Tata Center and the Abdul Latif Jameel Water and Food Systems Lab, Varanasi and his team analyzed how droplets strike plant surfaces, and explored ways to increase application efficiency. This research led them to develop a novel system of nozzles that cloak droplets with compounds that enhance the retention of droplets on the leaves, a product they call EnhanceCoverage.

    Field studies across regions — from Massachusetts to California to Italy and France —showed that this droplet-optimization system could allow farmers to cut the amount of chemicals needed by more than half because more of the sprayed substances would stick to the leaves.

    Measuring coverage

    However, in trying to bring this technology to market, the researchers faced a sticky problem: Nobody knew how well pesticide sprays were adhering to the plants in the first place, so how could AgZen say that the coverage was better with its new EnhanceCoverage system?

    “I had grown up spraying with a backpack on a small farm in India, so I knew this was an issue,” Jayaprakash says. “When we spoke to growers, they told me how complicated spraying is when you’re on a large machine. Whenever you spray, there are so many things that can influence how effective your spray is. How fast do you drive the sprayer? What flow rate are you using for the chemicals? What chemical are you using? What’s the age of the plants, what’s the nozzle you’re using, what is the weather at the time? All these things influence agrochemical efficiency.”

    Agricultural spraying essentially comes down to dissolving a chemical in water and then spraying droplets onto the plants. “But the interaction between a droplet and the leaf is complex,” Varanasi says. “We were coming in with ways to optimize that, but what the growers told us is, hey, we’ve never even really looked at that in the first place.”

    Although farmers have been spraying agricultural chemicals on a large scale for about 80 years, they’ve “been forced to rely on general rules of thumb and pick all these interlinked parameters, based on what’s worked for them in the past. You pick a set of these parameters, you go spray, and you’re basically praying for outcomes in terms of how effective your pest control is,” Varanasi says.

    Before AgZen could sell farmers on the new system to improve droplet coverage, the company had to invent a way to measure precisely how much spray was adhering to plants in real-time.

    Comparing before and after

    The system they came up with, which they tested extensively on farms across the country last year, involves a unit that can be bolted onto the spraying arm of virtually any sprayer. It carries two sensor stacks, one just ahead of the sprayer nozzles and one behind. Then, built-in software running on a tablet shows the operator exactly how much of each leaf has been covered by the spray. It also computes how much those droplets will spread out or evaporate, leading to a precise estimate of the final coverage.

    “There’s a lot of physics that governs how droplets spread and evaporate, and this has been incorporated into software that a farmer can use,” Varanasi says. “We bring a lot of our expertise into understanding droplets on leaves. All these factors, like how temperature and humidity influence coverage, have always been nebulous in the spraying world. But now you have something that can be exact in determining how well your sprays are doing.”

    “We’re not only measuring coverage, but then we recommend how to act,” says Jayaprakash, who is AgZen’s CEO. “With the information we collect in real-time and by using AI, RealCoverage tells operators how to optimize everything on their sprayer, from which nozzle to use, to how fast to drive, to how many gallons of spray is best for a particular chemical mix on a particular acre of a crop.”

    The tool was developed to prove how much AgZen’s EnhanceCoverage nozzle system (which will be launched in 2025) improves coverage. But it turns out that monitoring and optimizing droplet coverage on leaves in real-time with this system can itself yield major improvements.

    “We worked with large commercial farms last year in specialty and row crops,” Jayaprakash says. “When we saved our pilot customers up to 50 percent of their chemical cost at a large scale, they were very surprised.” He says the tool has reduced chemical costs and volume in fallow field burndowns, weed control in soybeans, defoliation in cotton, and fungicide and insecticide sprays in vegetables and fruits. Along with data from commercial farms, field trials conducted by three leading agricultural universities have also validated these results.

    “Across the board, we were able to save between 30 and 50 percent on chemical costs and increase crop yields by enabling better pest control,” Jayaprakash says. “By focusing on the droplet-leaf interface, our product can help any foliage spray throughout the year, whereas most technological advancements in this space recently have been focused on reducing herbicide use alone.” The company now intends to lease the system across thousands of acres this year.

    And these efficiency gains can lead to significant returns at scale, he emphasizes: In the U.S., farmers currently spend $16 billion a year on chemicals, to protect about $200 billion of crop yields.

    The company launched its first product, the coverage optimization system called RealCoverage, this year, reaching a wide variety of farms with different crops and in different climates. “We’re going from proof-of-concept with pilots in large farms to a truly massive scale on a commercial basis with our lease-to-own program,” Jayaprakash says.

    “We’ve also been tapped by the USDA to help them evaluate practices to minimize pesticides in watersheds,” Varanasi says, noting that RealCoverage can also be useful for regulators, chemical companies, and agricultural equipment manufacturers.

    Once AgZen has proven the effectiveness of using coverage as a decision metric, and after the RealCoverage optimization system is widely in practice, the company will next roll out its second product, EnhanceCoverage, designed to maximize droplet adhesion. Because that system will require replacing all the nozzles on a sprayer, the researchers are doing pilots this year but will wait for a full rollout in 2025, after farmers have gained experience and confidence with their initial product.

    “There is so much wastage,” Varanasi says. “Yet farmers must spray to protect crops, and there is a lot of environmental impact from this. So, after all this work over the years, learning about how droplets stick to surfaces and so on, now the culmination of it in all these products for me is amazing, to see all this come alive, to see that we’ll finally be able to solve the problem we set out to solve and help farmers.” More

  • in

    Power when the sun doesn’t shine

    In 2016, at the huge Houston energy conference CERAWeek, MIT materials scientist Yet-Ming Chiang found himself talking to a Tesla executive about a thorny problem: how to store the output of solar panels and wind turbines for long durations.        

    Chiang, the Kyocera Professor of Materials Science and Engineering, and Mateo Jaramillo, a vice president at Tesla, knew that utilities lacked a cost-effective way to store renewable energy to cover peak levels of demand and to bridge the gaps during windless and cloudy days. They also knew that the scarcity of raw materials used in conventional energy storage devices needed to be addressed if renewables were ever going to displace fossil fuels on the grid at scale.

    Energy storage technologies can facilitate access to renewable energy sources, boost the stability and reliability of power grids, and ultimately accelerate grid decarbonization. The global market for these systems — essentially large batteries — is expected to grow tremendously in the coming years. A study by the nonprofit LDES (Long Duration Energy Storage) Council pegs the long-duration energy storage market at between 80 and 140 terawatt-hours by 2040. “That’s a really big number,” Chiang notes. “Every 10 people on the planet will need access to the equivalent of one EV [electric vehicle] battery to support their energy needs.”

    In 2017, one year after they met in Houston, Chiang and Jaramillo joined forces to co-found Form Energy in Somerville, Massachusetts, with MIT graduates Marco Ferrara SM ’06, PhD ’08 and William Woodford PhD ’13, and energy storage veteran Ted Wiley.

    “There is a burgeoning market for electrical energy storage because we want to achieve decarbonization as fast and as cost-effectively as possible,” says Ferrara, Form’s senior vice president in charge of software and analytics.

    Investors agreed. Over the next six years, Form Energy would raise more than $800 million in venture capital.

    Bridging gaps

    The simplest battery consists of an anode, a cathode, and an electrolyte. During discharge, with the help of the electrolyte, electrons flow from the negative anode to the positive cathode. During charge, external voltage reverses the process. The anode becomes the positive terminal, the cathode becomes the negative terminal, and electrons move back to where they started. Materials used for the anode, cathode, and electrolyte determine the battery’s weight, power, and cost “entitlement,” which is the total cost at the component level.

    During the 1980s and 1990s, the use of lithium revolutionized batteries, making them smaller, lighter, and able to hold a charge for longer. The storage devices Form Energy has devised are rechargeable batteries based on iron, which has several advantages over lithium. A big one is cost.

    Chiang once declared to the MIT Club of Northern California, “I love lithium-ion.” Two of the four MIT spinoffs Chiang founded center on innovative lithium-ion batteries. But at hundreds of dollars a kilowatt-hour (kWh) and with a storage capacity typically measured in hours, lithium-ion was ill-suited for the use he now had in mind.

    The approach Chiang envisioned had to be cost-effective enough to boost the attractiveness of renewables. Making solar and wind energy reliable enough for millions of customers meant storing it long enough to fill the gaps created by extreme weather conditions, grid outages, and when there is a lull in the wind or a few days of clouds.

    To be competitive with legacy power plants, Chiang’s method had to come in at around $20 per kilowatt-hour of stored energy — one-tenth the cost of lithium-ion battery storage.

    But how to transition from expensive batteries that store and discharge over a couple of hours to some as-yet-undefined, cheap, longer-duration technology?

    “One big ball of iron”

    That’s where Ferrara comes in. Ferrara has a PhD in nuclear engineering from MIT and a PhD in electrical engineering and computer science from the University of L’Aquila in his native Italy. In 2017, as a research affiliate at the MIT Department of Materials Science and Engineering, he worked with Chiang to model the grid’s need to manage renewables’ intermittency.

    How intermittent depends on where you are. In the United States, for instance, there’s the windy Great Plains; the sun-drenched, relatively low-wind deserts of Arizona, New Mexico, and Nevada; and the often-cloudy Pacific Northwest.

    Ferrara, in collaboration with Professor Jessika Trancik of MIT’s Institute for Data, Systems, and Society and her MIT team, modeled four representative locations in the United States and concluded that energy storage with capacity costs below roughly $20/kWh and discharge durations of multiple days would allow a wind-solar mix to provide cost-competitive, firm electricity in resource-abundant locations.

    Now that they had a time frame, they turned their attention to materials. At the price point Form Energy was aiming for, lithium was out of the question. Chiang looked at plentiful and cheap sulfur. But a sulfur, sodium, water, and air battery had technical challenges.

    Thomas Edison once used iron as an electrode, and iron-air batteries were first studied in the 1960s. They were too heavy to make good transportation batteries. But this time, Chiang and team were looking at a battery that sat on the ground, so weight didn’t matter. Their priorities were cost and availability.

    “Iron is produced, mined, and processed on every continent,” Chiang says. “The Earth is one big ball of iron. We wouldn’t ever have to worry about even the most ambitious projections of how much storage that the world might use by mid-century.” If Form ever moves into the residential market, “it’ll be the safest battery you’ve ever parked at your house,” Chiang laughs. “Just iron, air, and water.”

    Scientists call it reversible rusting. While discharging, the battery takes in oxygen and converts iron to rust. Applying an electrical current converts the rusty pellets back to iron, and the battery “breathes out” oxygen as it charges. “In chemical terms, you have iron, and it becomes iron hydroxide,” Chiang says. “That means electrons were extracted. You get those electrons to go through the external circuit, and now you have a battery.”

    Form Energy’s battery modules are approximately the size of a washer-and-dryer unit. They are stacked in 40-foot containers, and several containers are electrically connected with power conversion systems to build storage plants that can cover several acres.

    The right place at the right time

    The modules don’t look or act like anything utilities have contracted for before.

    That’s one of Form’s key challenges. “There is not widespread knowledge of needing these new tools for decarbonized grids,” Ferrara says. “That’s not the way utilities have typically planned. They’re looking at all the tools in the toolkit that exist today, which may not contemplate a multi-day energy storage asset.”

    Form Energy’s customers are largely traditional power companies seeking to expand their portfolios of renewable electricity. Some are in the process of decommissioning coal plants and shifting to renewables.

    Ferrara’s research pinpointing the need for very low-cost multi-day storage provides key data for power suppliers seeking to determine the most cost-effective way to integrate more renewable energy.

    Using the same modeling techniques, Ferrara and team show potential customers how the technology fits in with their existing system, how it competes with other technologies, and how, in some cases, it can operate synergistically with other storage technologies.

    “They may need a portfolio of storage technologies to fully balance renewables on different timescales of intermittency,” he says. But other than the technology developed at Form, “there isn’t much out there, certainly not within the cost entitlement of what we’re bringing to market.”  Thanks to Chiang and Jaramillo’s chance encounter in Houston, Form has a several-year lead on other companies working to address this challenge. 

    In June 2023, Form Energy closed its biggest deal to date for a single project: Georgia Power’s order for a 15-megawatt/1,500-megawatt-hour system. That order brings Form’s total amount of energy storage under contracts with utility customers to 40 megawatts/4 gigawatt-hours. To meet the demand, Form is building a new commercial-scale battery manufacturing facility in West Virginia.

    The fact that Form Energy is creating jobs in an area that lost more than 10,000 steel jobs over the past decade is not lost on Chiang. “And these new jobs are in clean tech. It’s super exciting to me personally to be doing something that benefits communities outside of our traditional technology centers.

    “This is the right time for so many reasons,” Chiang says. He says he and his Form Energy co-founders feel “tremendous urgency to get these batteries out into the world.”

    This article appears in the Winter 2024 issue of Energy Futures, the magazine of the MIT Energy Initiative. More

  • in

    Moving past the Iron Age

    MIT graduate student Sydney Rose Johnson has never seen the steel mills in central India. She’s never toured the American Midwest’s hulking steel plants or the mini mills dotting the Mississippi River. But in the past year, she’s become more familiar with steel production than she ever imagined.

    A fourth-year dual degree MBA and PhD candidate in chemical engineering and a graduate research assistant with the MIT Energy Initiative (MITEI) as well as a 2022-23 Shell Energy Fellow, Johnson looks at ways to reduce carbon dioxide (CO2) emissions generated by industrial processes in hard-to-abate industries. Those include steel.

    Almost every aspect of infrastructure and transportation — buildings, bridges, cars, trains, mass transit — contains steel. The manufacture of steel hasn’t changed much since the Iron Age, with some steel plants in the United States and India operating almost continually for more than a century, their massive blast furnaces re-lined periodically with carbon and graphite to keep them going.

    According to the World Economic Forum, steel demand is projected to increase 30 percent by 2050, spurred in part by population growth and economic development in China, India, Africa, and Southeast Asia.

    The steel industry is among the three biggest producers of CO2 worldwide. Every ton of steel produced in 2020 emitted, on average, 1.89 tons of CO2 into the atmosphere — around 8 percent of global CO2 emissions, according to the World Steel Association.

    A combination of technical strategies and financial investments, Johnson notes, will be needed to wrestle that 8 percent figure down to something more planet-friendly.

    Johnson’s thesis focuses on modeling and analyzing ways to decarbonize steel. Using data mined from academic and industry sources, she builds models to calculate emissions, costs, and energy consumption for plant-level production.

    “I optimize steel production pathways using emission goals, industry commitments, and cost,” she says. Based on the projected growth of India’s steel industry, she applies this approach to case studies that predict outcomes for some of the country’s thousand-plus factories, which together have a production capacity of 154 million metric tons of steel. For the United States, she looks at the effect of Inflation Reduction Act (IRA) credits. The 2022 IRA provides incentives that could accelerate the steel industry’s efforts to minimize its carbon emissions.

    Johnson compares emissions and costs across different production pathways, asking questions such as: “If we start today, what would a cost-optimal production scenario look like years from now? How would it change if we added in credits? What would have to happen to cut 2005 levels of emissions in half by 2030?”

    “My goal is to gain an understanding of how current and emerging decarbonization strategies will be integrated into the industry,” Johnson says.

    Grappling with industrial problems

    Growing up in Marietta, Georgia, outside Atlanta, the closest she ever came to a plant of any kind was through her father, a chemical engineer working in logistics and procuring steel for an aerospace company, and during high school, when she spent a semester working alongside chemical engineers tweaking the pH of an anti-foaming agent.

    At Kennesaw Mountain High School, a STEM magnet program in Cobb County, students devote an entire semester of their senior year to an internship and research project.

    Johnson chose to work at Kemira Chemicals, which develops chemical solutions for water-intensive industries with a focus on pulp and paper, water treatment, and energy systems.

    “My goal was to understand why a polymer product was falling out of suspension — essentially, why it was less stable,” she recalls. She learned how to formulate a lab-scale version of the product and conduct tests to measure its viscosity and acidity. Comparing the lab-scale and regular product results revealed that acidity was an important factor. “Through conversations with my mentor, I learned this was connected with the holding conditions, which led to the product being oxidized,” she says. With the anti-foaming agent’s problem identified, steps could be taken to fix it.

    “I learned how to apply problem-solving. I got to learn more about working in an industrial environment by connecting with the team in quality control as well as with R&D and chemical engineers at the plant site,” Johnson says. “This experience confirmed I wanted to pursue engineering in college.”

    As an undergraduate at Stanford University, she learned about the different fields — biotechnology, environmental science, electrochemistry, and energy, among others — open to chemical engineers. “It seemed like a very diverse field and application range,” she says. “I was just so intrigued by the different things I saw people doing and all these different sets of issues.”

    Turning up the heat

    At MIT, she turned her attention to how certain industries can offset their detrimental effects on climate.

    “I’m interested in the impact of technology on global communities, the environment, and policy. Energy applications affect every field. My goal as a chemical engineer is to have a broad perspective on problem-solving and to find solutions that benefit as many people, especially those under-resourced, as possible,” says Johnson, who has served on the MIT Chemical Engineering Graduate Student Advisory Board, the MIT Energy and Climate Club, and is involved with diversity and inclusion initiatives.

    The steel industry, Johnson acknowledges, is not what she first imagined when she saw herself working toward mitigating climate change.

    “But now, understanding the role the material has in infrastructure development, combined with its heavy use of coal, has illuminated how the sector, along with other hard-to-abate industries, is important in the climate change conversation,” Johnson says.

    Despite the advanced age of many steel mills, some are quite energy-efficient, she notes. Yet these operations, which produce heat upwards of 3,000 degrees Fahrenheit, are still emission-intensive.

    Steel is made from iron ore, a mixture of iron, oxygen, and other minerals found on virtually every continent, with Brazil and Australia alone exporting millions of metric tons per year. Commonly based on a process dating back to the 19th century, iron is extracted from the ore through smelting — heating the ore with blast furnaces until the metal becomes spongy and its chemical components begin to break down.

    A reducing agent is needed to release the oxygen trapped in the ore, transforming it from its raw form to pure iron. That’s where most emissions come from, Johnson notes.

    “We want to reduce emissions, and we want to make a cleaner and safer environment for everyone,” she says. “It’s not just the CO2 emissions. It’s also sometimes NOx and SOx [nitrogen oxides and sulfur oxides] and air pollution particulate matter at some of these production facilities that can affect people as well.”

    In 2020, the International Energy Agency released a roadmap exploring potential technologies and strategies that would make the iron and steel sector more compatible with the agency’s vision of increased sustainability. Emission reductions can be accomplished with more modern technology, the agency suggests, or by substituting the fuels producing the immense heat needed to process ore. Traditionally, the fuels used for iron reduction have been coal and natural gas. Alternative fuels include clean hydrogen, electricity, and biomass.

    Using the MITEI Sustainable Energy System Analysis Modeling Environment (SESAME), Johnson analyzes various decarbonization strategies. She considers options such as switching fuel for furnaces to hydrogen with a little bit of natural gas or adding carbon-capture devices. The models demonstrate how effective these tactics are likely to be. The answers aren’t always encouraging.

    “Upstream emissions can determine how effective the strategies are,” Johnson says. Charcoal derived from forestry biomass seemed to be a promising alternative fuel, but her models showed that processing the charcoal for use in the blast furnace limited its effectiveness in negating emissions.

    Despite the challenges, “there are definitely ways of moving forward,” Johnson says. “It’s been an intriguing journey in terms of understanding where the industry is at. There’s still a long way to go, but it’s doable.”

    Johnson is heartened by the steel industry’s efforts to recycle scrap into new steel products and incorporate more emission-friendly technologies and practices, some of which result in significantly lower CO2 emissions than conventional production.

    A major issue is that low-carbon steel can be more than 50 percent more costly than conventionally produced steel. “There are costs associated with making the transition, but in the context of the environmental implications, I think it’s well worth it to adopt these technologies,” she says.

    After graduation, Johnson plans to continue to work in the energy field. “I definitely want to use a combination of engineering knowledge and business knowledge to work toward mitigating climate change, potentially in the startup space with clean technology or even in a policy context,” she says. “I’m interested in connecting the private and public sectors to implement measures for improving our environment and benefiting as many people as possible.” More

  • in

    Q&A: A blueprint for sustainable innovation

    Atacama Biomaterials is a startup combining architecture, machine learning, and chemical engineering to create eco-friendly materials with multiple applications. Passionate about sustainable innovation, its co-founder Paloma Gonzalez-Rojas SM ’15, PhD ’21 highlights here how MIT has supported the project through several of its entrepreneurship initiatives, and reflects on the role of design in building a holistic vision for an expanding business.

    Q: What role do you see your startup playing in the sustainable materials space?

    A: Atacama Biomaterials is a venture dedicated to advancing sustainable materials through state-of-the-art technology. With my co-founder Jose Tomas Dominguez, we have been working on developing our technology since 2019. We initially started the company in 2020 under another name and received Sandbox funds the next year. In 2021, we went through The Engine’s accelerator, Blueprint, and changed our name to Atacama Biomaterials in 2022 during the MITdesignX program. 

    This technology we have developed allows us to create our own data and material library using artificial intelligence and machine learning, and serves as a platform applicable to various industries horizontally — biofuels, biological drugs, and even mining. Vertically, we produce inexpensive, regionally sourced, and environmentally friendly bio-based polymers and packaging — that is, naturally compostable plastics as a flagship product, along with AI products.

    Q: What motivated you to venture into biomaterials and found Atacama?

    A: I’m from Chile, a country with a beautiful, rich geography and nature where we can see all the problems stemming from industry, waste management, and pollution. We named our company Atacama Biomaterials because the Atacama Desert in Chile — one of the places where you can best see the stars in the world — is becoming a plastic dump, as many other places on Earth. I care deeply about sustainability, and I have an emotional attachment to stop these problems. Considering that manufacturing accounts for 29 percent of global carbon emissions, it is clear that sustainability has a role in how we define technology and entrepreneurship, as well as a socio-economic dimension.

    When I first came to MIT, it was to develop software in the Department of Architecture’s Design and Computation Group, with MIT professors Svafa Gronfeldt as co-advisor and Regina Barzilay as committee member. During my PhD, I studied machine-learning methods simulating pedestrian motion to understand how people move in space. In my work, I would use lots of plastics for 3D printing and I couldn’t stop thinking about sustainability and climate change, so I reached out to material science and mechanical engineering professors to look into biopolymers and degradable bio-based materials. This is how I met my co-founder, as we were both working with MIT Professor Neil Gershenfeld. Together, we were part of one of the first teams in the world to 3D print wood fibers, which is difficult — it’s slow and expensive — and quickly pivoted to sustainable packaging. 

    I then won a fellowship from MCSC [the MIT Climate and Sustainability Consortium], which gave me freedom to explore further, and I eventually got a postdoc in MIT chemical engineering, guided by MIT Professor Gregory Rutledge, a polymer physicist. This was unexpected in my career path. Winning Nucleate Eco Track 2022 and the MITdesignX Innovation Award in 2022 profiled Atacama Biomaterials as one of the rising startups in Boston’s biotechnology and climate-tech scene.

    Q: What is your process to develop new biomaterials?

    A: My PhD research, coupled with my background in material development and molecular dynamics, sparked the realization that principles I studied simulating pedestrian motion could also apply to molecular engineering. This connection may seem unconventional, but for me, it was a natural progression. Early in my career, I developed an intuition for materials, understanding their mechanics and physics.

    Using my experience and skills, and leveraging machine learning as a technology jump, I applied a similar conceptual framework to simulate the trajectories of molecules and find potential applications in biomaterials. Making that parallel and shift was amazing. It allowed me to optimize a state-of-the-art molecular dynamic software to run twice as fast as more traditional technologies through my algorithm presented at the International Conference of Machine Learning this year. This is very important, because this kind of simulation usually takes a week, so narrowing it down to two days has major implications for scientists and industry, in material science, chemical engineering, computer science and related fields. Such work greatly influenced the foundation of Atacama Biomaterials, where we developed our own AI to deploy our materials. In an effort to mitigate the environmental impact of manufacturing, Atacama is targeting a 16.7 percent reduction in carbon dioxide emissions associated with the manufacturing process of its polymers, through the use of renewable energy. 

    Another thing is that I was trained as an architect in Chile, and my degree had a design component. I think design allows me to understand problems at a very high level, and how things interconnect. It contributed to developing a holistic vision for Atacama, because it allowed me to jump from one technology or discipline to another and understand broader applications on a conceptual level. Our design approach also meant that sustainability came to the center of our work from the very beginning, not just a plus or an added cost.

    Q: What was the role of MITdesignX in Atacama’s development?

    A: I have known Svafa Grönfeldt, MITdesignX’s faculty director, for almost six years. She was the co-advisor of my PhD, and we had a mentor-mentee relationship. I admire the fact that she created a space for people interested in business and entrepreneurship to grow within the Department of Architecture. She and Executive Director Gilad Rosenzweig gave us fantastic advice, and we received significant support from mentors. For example, Daniel Tsai helped us with intellectual property, including a crucial patent for Atacama. And we’re still in touch with the rest of the cohort. I really like this “design your company” approach, which I find quite unique, because it gives us the opportunity to reflect on who we want to be as designers, technologists, and entrepreneurs. Studying user insights also allowed us to understand the broad applicability of our research, and align our vision with market demands, ultimately shaping Atacama into a company with a holistic perspective on sustainable material development.

    Q: How does Atacama approach scaling, and what are the immediate next steps for the company?

    A: When I think about accomplishing our vision, I feel really inspired by my 3-year-old daughter. I want her to experience a world with trees and wildlife when she’s 100 years old, and I hope Atacama will contribute to such a future.

    Going back to the designer’s perspective, we designed the whole process holistically, from feedstock to material development, incorporating AI and advanced manufacturing. Having proved that there is a demand for the materials we are developing, and having tested our products, manufacturing process, and technology in critical environments, we are now ready to scale. Our level of technology-readiness is comparable to the one used by NASA (level 4).

    We have proof of concept: a biodegradable and recyclable packaging material which is cost- and energy-efficient as a clean energy enabler in large-scale manufacturing. We have received pre-seed funding, and are sustainably scaling by taking advantage of available resources around the world, like repurposing machinery from the paper industry. As presented in the MIT Industrial Liaison and STEX Program’s recent Sustainability Conference, unlike our competitors, we have cost-parity with current packaging materials, as well as low-energy processes. And we also proved the demand for our products, which was an important milestone. Our next steps involve strategically expanding our manufacturing capabilities and research facilities and we are currently evaluating building a factory in Chile and establishing an R&D lab plus a manufacturing plant in the U.S. More

  • in

    Meeting the clean energy needs of tomorrow

    Yuri Sebregts, chief technology officer at Shell, succinctly laid out the energy dilemma facing the world over the rest of this century. On one hand, demand for energy is quickly growing as countries in the developing world modernize and the global population grows, with 100 gigajoules of energy per person needed annually to enable quality-of-life benefits and industrialization around the globe. On the other, traditional energy sources are quickly warming the planet, with the world already seeing the devastating effects of increasingly frequent extreme weather events. 

    While the goals of energy security and energy sustainability are seemingly at odds with one another, the two must be pursued in tandem, Sebregts said during his address at the MIT Energy Initiative Fall Colloquium.

    “An environmentally sustainable energy system that isn’t also a secure energy system is not sustainable,” Sebregts said. “And conversely, a secure energy system that is not environmentally sustainable will do little to ensure long-term energy access and affordability. Therefore, security and sustainability must go hand-in-hand. You can’t trade off one for the other.”

    Sebregts noted that there are several potential pathways to help strike this balance, including investments in renewable energy sources, the use of carbon offsets, and the creation of more efficient tools, products, and processes. However, he acknowledged that meeting growing energy demands while minimizing environmental impacts is a global challenge requiring an unprecedented level of cooperation among countries and corporations across the world. 

    “At Shell, we recognize that this will require a lot of collaboration between governments, businesses, and civil society,” Sebregts said. “That’s not always easy.”

    Global conflict and global warming

    In 2021, Sebregts noted, world leaders gathered in Glasgow, Scotland and collectively promised to deliver on the “stretch goal” of the 2015 Paris Agreement, which would limit global warming to 1.5 degrees Celsius — a level that scientists believe will help avoid the worst potential impacts of climate change. But, just a few months later, Russia invaded Ukraine, resulting in chaos in global energy markets and illustrating the massive impact that geopolitical friction can have on efforts to reduce carbon emissions.

    “Even though global volatility has been a near constant of this century, the situation in Ukraine is proving to be a turning point,” Sebregts said. “The stress it placed on the global supply of energy, food, and other critical materials was enormous.”

    In Europe, Sebregts noted, countries affected by the loss of Russia’s natural gas supply began importing from the Middle East and the United States. This, in turn, drove up prices. While this did result in some efforts to limit energy use, such as Europeans lowering their thermostats in the winter, it also caused some energy buyers to turn to coal. For instance, the German government approved additional coal mining to boost its energy security — temporarily reversing a decades-long transition away from the fuel. To put this into wider perspective, in a single quarter, China increased its coal generation capacity by as much as Germany had reduced its own over the previous 20 years.

    The promise of electrification

    Sebregts noted the strides being made toward electrification, which is expected to have a significant impact on global carbon emissions. To meet net-zero emissions (the point at which humans are adding no more carbon to the atmosphere than they are removing) by 2050, the share of electricity as a portion of total worldwide energy consumption must reach 37 percent by 2030, up from 20 percent in 2020, Sebregts said.

    He pointed out that Shell has become one of the world’s largest electric vehicle charging companies, with more than 30,000 public charge points. By 2025, that number will increase to 70,000, and it is expected to soar to 200,000 by 2030. While demand and infrastructure for electric vehicles are growing, Sebregts said that the “real needle-mover” will be industrial electrification, especially in so-called “hard-to-abate” sectors.

    This progress will depend heavily on global cooperation — Sebregts pointed out that China dominates the international market for many rare elements that are key components of electrification infrastructure. “It shouldn’t be a surprise that the political instability, shifting geopolitical tensions, and environmental and social governance issues are significant risks for the energy transition,” he said. “It is imperative that we reduce, control, and mitigate these risks as much as possible.”

    Two possible paths

    For decades, Sebregts said, Shell has created scenarios to help senior managers think through the long-term challenges facing the company. While Sebregts stressed that these scenarios are not predictions, they do take into account real-world conditions, and they are meant to give leaders the opportunity to grapple with plausible situations.

    With this in mind, Sebregts outlined Shell’s most recent Energy Security Scenarios, describing the potential future consequences of attempts to balance growing energy demand with sustainability — scenarios that envision vastly different levels of global cooperation, with huge differences in projected results. 

    The first scenario, dubbed “Archipelagos,” imagines countries pursuing energy security through self-interest — a fragmented, competitive process that would result in a global temperature increase of 2.2 degrees Celsius by the end of this century. The second scenario, “Sky 2050,” envisions countries around the world collaborating to change the energy system for their mutual benefit. This more optimistic scenario would see a much lower global temperature increase of 1.2 C by 2100.

    “The good news is that in both scenarios, the world is heading for net-zero emissions at some point,” Sebregts said. “The difference is a question of when it gets there. In Sky 2050, it is the middle of the century. In Archipelagos, it is early in the next century.”

    On the other hand, Sebregts added, the average global temperature will increase by more than 1.5 C for some period of time in either scenario. But, in the Archipelagos scenario, this overshoot will be much larger, and will take much longer to come down. “So, two very different futures,” Sebregts said. “Two very different worlds.”

    The work ahead

    Questioned about the costs of transitioning to a net-zero energy ecosystem, Sebregts said that it is “very hard” to provide an accurate answer. “If you impose an additional constraint … you’re going to have to add some level of cost,” he said. “But then, of course, there’s 30 years of technology development pathway that might counteract some of that.”

    In some cases, such as air travel, Sebregts said, it will likely remain impractical to either rely on electrification or sequester carbon at the source of emission. Direct air capture (DAC) methods, which mechanically pull carbon directly from the atmosphere, will have a role to play in offsetting these emissions, he said. Sebregts predicted that the price of DAC could come down significantly by the middle of this century. “I would venture that a price of $200 to $250 a ton of CO2 by 2050 is something that the world would be willing to spend, at least in developed economies, to offset those very hard-to-abate instances.”

    Sebregts noted that Shell is working on demonstrating DAC technologies in Houston, Texas, constructing what will become Europe’s largest hydrogen plant in the Netherlands, and taking other steps to profitably transition to a net-zero emissions energy company by 2050. “We need to understand what can help our customers transition quicker and how we can continue to satisfy their needs,” he said. “We must ensure that energy is affordable, accessible, and sustainable, as soon as possible.” More

  • in

    Cobalt-free batteries could power cars of the future

    Many electric vehicles are powered by batteries that contain cobalt — a metal that carries high financial, environmental, and social costs.

    MIT researchers have now designed a battery material that could offer a more sustainable way to power electric cars. The new lithium-ion battery includes a cathode based on organic materials, instead of cobalt or nickel (another metal often used in lithium-ion batteries).

    In a new study, the researchers showed that this material, which could be produced at much lower cost than cobalt-containing batteries, can conduct electricity at similar rates as cobalt batteries. The new battery also has comparable storage capacity and can be charged up faster than cobalt batteries, the researchers report.

    “I think this material could have a big impact because it works really well,” says Mircea Dincă, the W.M. Keck Professor of Energy at MIT. “It is already competitive with incumbent technologies, and it can save a lot of the cost and pain and environmental issues related to mining the metals that currently go into batteries.”

    Dincă is the senior author of the study, which appears today in the journal ACS Central Science. Tianyang Chen PhD ’23 and Harish Banda, a former MIT postdoc, are the lead authors of the paper. Other authors include Jiande Wang, an MIT postdoc; Julius Oppenheim, an MIT graduate student; and Alessandro Franceschi, a research fellow at the University of Bologna.

    Alternatives to cobalt

    Most electric cars are powered by lithium-ion batteries, a type of battery that is recharged when lithium ions flow from a positively charged electrode, called a cathode, to a negatively electrode, called an anode. In most lithium-ion batteries, the cathode contains cobalt, a metal that offers high stability and energy density.

    However, cobalt has significant downsides. A scarce metal, its price can fluctuate dramatically, and much of the world’s cobalt deposits are located in politically unstable countries. Cobalt extraction creates hazardous working conditions and generates toxic waste that contaminates land, air, and water surrounding the mines.

    “Cobalt batteries can store a lot of energy, and they have all of features that people care about in terms of performance, but they have the issue of not being widely available, and the cost fluctuates broadly with commodity prices. And, as you transition to a much higher proportion of electrified vehicles in the consumer market, it’s certainly going to get more expensive,” Dincă says.

    Because of the many drawbacks to cobalt, a great deal of research has gone into trying to develop alternative battery materials. One such material is lithium-iron-phosphate (LFP), which some car manufacturers are beginning to use in electric vehicles. Although still practically useful, LFP has only about half the energy density of cobalt and nickel batteries.

    Another appealing option are organic materials, but so far most of these materials have not been able to match the conductivity, storage capacity, and lifetime of cobalt-containing batteries. Because of their low conductivity, such materials typically need to be mixed with binders such as polymers, which help them maintain a conductive network. These binders, which make up at least 50 percent of the overall material, bring down the battery’s storage capacity.

    About six years ago, Dincă’s lab began working on a project, funded by Lamborghini, to develop an organic battery that could be used to power electric cars. While working on porous materials that were partly organic and partly inorganic, Dincă and his students realized that a fully organic material they had made appeared that it might be a strong conductor.

    This material consists of many layers of TAQ (bis-tetraaminobenzoquinone), an organic small molecule that contains three fused hexagonal rings. These layers can extend outward in every direction, forming a structure similar to graphite. Within the molecules are chemical groups called quinones, which are the electron reservoirs, and amines, which help the material to form strong hydrogen bonds.

    Those hydrogen bonds make the material highly stable and also very insoluble. That insolubility is important because it prevents the material from dissolving into the battery electrolyte, as some organic battery materials do, thereby extending its lifetime.

    “One of the main methods of degradation for organic materials is that they simply dissolve into the battery electrolyte and cross over to the other side of the battery, essentially creating a short circuit. If you make the material completely insoluble, that process doesn’t happen, so we can go to over 2,000 charge cycles with minimal degradation,” Dincă says.

    Strong performance

    Tests of this material showed that its conductivity and storage capacity were comparable to that of traditional cobalt-containing batteries. Also, batteries with a TAQ cathode can be charged and discharged faster than existing batteries, which could speed up the charging rate for electric vehicles.

    To stabilize the organic material and increase its ability to adhere to the battery’s current collector, which is made of copper or aluminum, the researchers added filler materials such as cellulose and rubber. These fillers make up less than one-tenth of the overall cathode composite, so they don’t significantly reduce the battery’s storage capacity.

    These fillers also extend the lifetime of the battery cathode by preventing it from cracking when lithium ions flow into the cathode as the battery charges.

    The primary materials needed to manufacture this type of cathode are a quinone precursor and an amine precursor, which are already commercially available and produced in large quantities as commodity chemicals. The researchers estimate that the material cost of assembling these organic batteries could be about one-third to one-half the cost of cobalt batteries.

    Lamborghini has licensed the patent on the technology. Dincă’s lab plans to continue developing alternative battery materials and is exploring possible replacement of lithium with sodium or magnesium, which are cheaper and more abundant than lithium. More

  • in

    A new way to swiftly eliminate micropollutants from water

    “Zwitterionic” might not be a word you come across every day, but for Professor Patrick Doyle of the MIT Department of Chemical Engineering, it’s a word that’s central to the technology his group is developing to remove micropollutants from water. Derived from the German word “zwitter,” meaning “hybrid,” “zwitterionic” molecules are those with an equal number of positive and negative charges.

    Devashish Gokhale, a PhD student in Doyle’s lab, uses the example of a magnet to describe zwitterionic materials. “On a magnet, you have a north pole and a south pole that stick to each other, and on a zwitterionic molecule, you have a positive charge and a negative charge which stick to each other in a similar way.” Because many inorganic micropollutants and some organic micropollutants are themselves charged, Doyle and his team have been investigating how to deploy zwitterionic molecules to capture micropollutants in water. 

    In a new paper in Nature Water, Doyle, Gokhale, and undergraduate student Andre Hamelberg explain how they use zwitterionic hydrogels to sustainably capture both organic and inorganic micropollutants from water with minimal operational complexity. In the past, zwitterionic molecules have been used as coatings on membranes for water treatment because of their non-fouling properties. But in the Doyle group’s system, zwitterionic molecules are used to form the scaffold material, or backbone within the hydrogel — a porous three-dimensional network of polymer chains that contains a significant amount of water. “Zwitterionic molecules have very strong attraction to water compared to other materials which are used to make hydrogels or polymers,” says Gokhale. What’s more, the positive and negative charges on zwitterionic molecules cause the hydrogels to have lower compressibility than what has been commonly observed in hydrogels. This makes for significantly more swollen, robust, and porous hydrogels, which is important for the scale up of the hydrogel-based system for water treatment.

    The early stages of this research were supported by a seed grant from MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS). Doyle’s group is now pursuing commercialization of the platform for both at-home use and industrial scale applications, with support from a J-WAFS Solutions grant.

    Seeking a sustainable solution

    Micropollutants are chemically diverse materials that can be harmful to human health and the environment, even though they are typically found at low concentrations (micrograms to milligrams per liter) relative to conventional contaminants. Micropollutants can be organic or inorganic and can be naturally-occurring or synthetic. Organic micropollutants are mostly carbon-based molecules and include pesticides and per- and polyfluoroalkyl substances (PFAS), known as “forever chemicals.” Inorganic micropollutants, such as heavy metals like lead and arsenic, tend to be smaller than organic micropollutants. Unfortunately, both organic and inorganic micropollutants are pervasive in the environment.

    Many micropollutants come from industrial processes, but the effects of human-induced climate change are also contributing to the environmental spread of micropollutants. Gokhale explains that, in California, for example, fires burn plastic electrical cables and leech micropollutants into natural ecosystems. Doyle adds that “outside of climate change, things like pandemics can spike the number of organic micropollutants in the environment due to high concentrations of pharmaceuticals in wastewater.”

    It’s no surprise then, that over the past few years micropollutants have become more and more of a concern. These chemicals have garnered attention in the media and led to “significant change in the environmental engineering and regulatory landscape” says Gokhale. In March 2023, the U.S. Environmental Protection Agency (EPA) proposed a strict, federal standard that would regulate six different PFAS chemicals in drinking water. Just last October, the EPA proposed banning the micropollutant trichloroethylene, a cancer-causing chemical that can be found in brake cleaners and other consumer products. And as recently as November, the EPA proposed that water utilities nationwide be required to replace all of their lead pipes to protect the public from lead exposure. Internationally, Gokhale notes the Oslo Paris Convention, whose mission is to protect the marine environment of the northeast Atlantic Ocean, including phasing out the discharge of offshore chemicals from the oil and gas industries. 

    With each new, necessary regulation to protect the safety of our water resources, the need for effective water treatment processes grows. Compounding this challenge is the need to make water treatment processes that are sustainable and energy-efficient. 

    The benchmark method to treat micropollutants in water is activated carbon. However, making filters with activated carbon is energy-intensive, requiring very high temperatures in large, centralized facilities. Gokhale says approximately “four kilograms of coal are needed to make one kilogram of activated carbon, so you lose a significant amount of carbon dioxide to the environment.” According to the World Economic Forum, global water and wastewater treatment accounts for 5 percent of annual emissions. In the U.S. alone, the EPA reports that drinking water and wastewater systems account for over 45 million tons of greenhouse gas emissions annually.

    “We need to develop methods which have smaller climate footprints than methods which are being used industrially today,” says Gokhale.

    Supporting a “high-risk” project

    In September 2019, Doyle and his lab embarked on an initial project to develop a microparticle-based platform to remove a broad range of micropollutants from water. Doyle’s group had been using hydrogels in pharmaceutical processing to formulate drug molecules into pill format. When he learned about the J-WAFS seed grant opportunity for early-stage research in water and food systems, Doyle realized his pharmaceutical work with hydrogels could be applied to environmental issues like water treatment. “I would never have gotten funding for this project if I went to the NSF [National Science Foundation], because they would just say, ‘you’re not a water person.’ But the J-WAFS seed grant offered a way for a high-risk, high-reward kind of project,” Doyle says.

    In March 2022, Doyle, Gokhale, and MIT undergraduate Ian Chen published findings from the seed grant work, describing their use of micelles within hydrogels for water treatment. Micelles are spherical structures that form when molecules called surfactants (found in things like soap), come in contact with water or other liquids. The team was able to synthesize micelle-laden hydrogel particles that soak up micropollutants from water like a sponge. Unlike activated carbon, the hydrogel particle system is made from environmentally friendly materials. Furthermore, the system’s materials are made at room temperature, making them exceedingly more sustainable than activated carbon.

    Building off the success of the seed grant, Doyle and his team were awarded a J-WAFS Solutions grant in September 2022 to help move their technology from the lab to the market. With this support, the researchers have been able to build, test, and refine pilot-scale prototypes of their hydrogel platform. System iterations during the solutions grant period have included the use of the zwitterionic molecules, a novel advancement from the seed grant work.  

    Rapid elimination of micropollutants is of special importance in commercial water treatment processes, where there is a limited amount of time water can spend inside the operational filtration unit. This is referred to as contact time, explains Gokhale. In municipal-scale or industrial-scale water treatment systems, contact times are usually less than 20 minutes and can be as short as five minutes. 

    “But as people have been trying to target these emerging micropollutants of concern, they realized they can’t get to sufficiently low concentrations on the same time scales as conventional contaminants,” Gokhale says. “Most technologies focus only on specific molecules or specific classes of molecules. So, you have whole technologies which are focusing only on PFAS, and then you have other technologies for lead and metals. When you start thinking about removing all of these contaminants from water, you end up with designs which have a very large number of unit operations. And that’s an issue because you have plants which are in the middle of large cities, and they don’t necessarily have space to expand to increase their contact times to efficiently remove multiple micropollutants,” he adds.

    Since zwitterionic molecules possess unique properties that confer high porosity, the researchers have been able to engineer a system for quicker uptake of micropollutants from water. Tests show that the hydrogels can eliminate six chemically diverse micropollutants at least 10 times faster than commercial activated carbon. The system is also compatible with a diverse set of materials, making it multifunctional. Micropollutants can bind to many different sites within the hydrogel platform: organic micropollutants bind to the micelles or surfactants while inorganic micropollutants bind to the zwitterionic molecules. Micelles, surfactants, zwitterionic molecules, and other chelating agents can be swapped in and out to essentially tune the system with different functionalities based on the profile of the water being treated. This kind of “plug-and-play” addition of various functional agents does not require a change in the design or synthesis of the hydrogel platform, and adding more functionalities does not take away from existing functionality. In this way, the zwitterionic-based system can rapidly remove multiple contaminants at lower concentrations in a single step, without the need for large, industrial units or capital expenditure. 

    Perhaps most importantly, the particles in the Doyle group’s system can be regenerated and used over and over again. By simply soaking the particles in an ethanol bath, they can be washed of micropollutants for indefinite use without loss of efficacy. When activated carbon is used for water treatment, the activated carbon itself becomes contaminated with micropollutants and must be treated as toxic chemical waste and disposed of in special landfills. Over time, micropollutants in landfills will reenter the ecosystem, perpetuating the problem.

    Arjav Shah, a PhD-MBA candidate in MIT’s Department of Chemical Engineering and the MIT Sloan School of Management, respectively, recently joined the team to lead commercialization efforts. The team has found that the zwitterionic hydrogels could be used in several real-world contexts, ranging from large-scale industrial packed beds to small-scale, portable, off-grid applications — for example, in tablets that could clean water in a canteen — and they have begun piloting the technology through a number of commercialization programs at MIT and in the greater Boston area.

    The combined strengths of each member of the team continue to drive the project forward in impactful ways, including undergraduate students like Andre Hamelberg, the third author on the Nature Water paper. Hamelberg is a participant in MIT’s Undergraduate Research Opportunities Program (UROP). Gokhale, who is also a J-WAFS Fellow, provides training and mentorship to Hamelberg and other UROP students in the lab.

    “We see this as an educational opportunity,” says Gokhale, noting that the UROP students learn science and chemical engineering through the research they conduct in the lab. The J-WAFS project has also been “a way of getting undergrads interested in water treatment and the more sustainable aspects of chemical engineering,” Gokhale says. He adds that it’s “one of the few projects which goes all the way from designing specific chemistries to building small filters and units and scaling them up and commercializing them. It’s a really good learning opportunity for the undergrads and we’re always excited to have them work with us.”

    In four years, the technology has been able to grow from an initial idea to a technology with scalable, real-world applications, making it an exemplar J-WAFS project. The fruitful collaboration between J-WAFS and the Doyle lab serves as inspiration for any MIT faculty who may want to apply their research to water or food systems projects.

    “The J-WAFS project serves as a way to demystify what a chemical engineer does,” says Doyle. “I think that there’s an old idea of chemical engineering as working in just oil and gas. But modern chemical engineering is focused on things which make life and the environment better.” More

  • in

    Shell joins MIT.nano Consortium

    MIT.nano has announced that Shell, a global group of energy and petrochemical companies, has joined the MIT.nano Consortium.

    “With an international perspective on the world’s energy challenges, Shell is an exciting addition to the MIT.nano Consortium,” says Vladimir Bulović, the founding faculty director of MIT.nano and the Fariborz Maseeh (1990) Professor of Emerging Technologies. “The quest to build a sustainable energy future will require creative thinking backed by broad and deep expertise that our Shell colleagues bring. They will be insightful collaborators for the MIT community and for our member companies as we work together to explore innovative technology strategies.”

    Founded in 1907 when Shell Transport and Trading Co. merged with Royal Dutch, Shell has more than a century’s worth of experience in the exploration, production, refining, and marketing of oil and natural gas and the manufacturing and marketing of chemicals. Operating in over 70 countries, Shell has set a target to become a net-zero emissions energy business by 2050. To achieve this, Shell is supporting developments of low-carbon energy solutions such as biofuels, hydrogen, charging for electric vehicles, and electricity generated by solar and wind power.

    “In line with our Powering Progress strategy, our research efforts to become a net-zero emission energy company by 2050 will require intense collaboration with academic leaders across a wide range of disciplines,” says Rolf van Benthem, Shell’s chief scientist for materials science. “We look forward to engaging with the top-notch PIs [principal investigators] at MIT.nano who excel in fields like materials design and nanoscale characterization for use in energy applications and carbon utilization. Together we can work on truly sustainable solutions for our society.”

    Shell has been engaged in research collaborations with MIT since 2002 and is a founding member of the MIT Energy Initiative (MITEI). Recent MIT projects supported by Shell include an urban building energy model with the MIT Sustainable Design Laboratory that explores energy-saving building retrofits, a study of the role and impact of hydrogen-based technology pathways with MITEI, and a materials science and engineering project to design better batteries for electric vehicles.

    The MIT.nano Consortium is a platform for academia-industry collaboration centered around research and innovation emerging from nanoscale science and engineering at MIT. Through activities that include quarterly industry consortium meetings, Shell will gain insight into the work of MIT.nano’s community of users and provide advice to help guide and advance nanoscale innovations at MIT alongside the 11 other consortium companies:

    Analog Devices;
    Draper;
    Edwards;
    Fujikura;
    IBM Research;
    Lam Research;
    NC;
    NEC;
    Raith;
    UpNano; and
    Viavi Solutions.
    MIT.nano continues to welcome new companies as sustaining members. For more details, visit the MIT.nano Consortium page. More