More stories

  • in

    3 Questions: Robert Stoner unpacks US climate and infrastructure laws

    This month, the 2022 United Nations Climate Change Conference (COP27) takes place in Sharm El Sheikh, Egypt, bringing together governments, experts, journalists, industry, and civil society to discuss climate action to enable countries to collectively sharply limit anthropogenic climate change. As MIT Energy Initiative Deputy Director for Science and Technology Robert Stoner attends the conference, he takes a moment to speak about the climate and infrastructure laws enacted in the last year in the United States, and about the impact these laws can have in the global energy transition.

    Q: COP27 is now underway. Can you set the scene?

    A: There’s a lot of interest among vulnerable countries about compensation for the impacts climate change has had on them, or “loss and damage,” a topic that the United States refused to address last year at COP26, for fear of opening up a floodgate and leaving U.S. taxpayers exposed to unlimited liability for our past (and future) emissions. This is a crucial issue of fairness for developed countries — and, well, of acknowledging our common humanity. But in a sense, it’s also a sideshow, and addressing it won’t prevent a climate catastrophe — we really need to focus on mitigation. With the passage of the bipartisan Infrastructure Investment and Jobs Act and the Inflation Reduction Act (IRA), the United States is now in a strong position to twist some arms. These laws are largely about subsidizing the deployment of low-carbon technologies — pretty much all of them. We’re going to do a lot in the United States in the next decade that will lead to dramatic cost reductions for these technologies and enable other countries with fewer resources to adopt them as well. It’s exactly the leadership role the United States has needed to assume. Now we have the opportunity to rally the rest of the world and get other countries to commit to more ambitious decarbonization goals, and to build practical programs that take advantage of the investable pathways we’re going to create for public and private actors.

    But that alone won’t get us there — money is still a huge problem, especially in emerging markets and developing countries. And I don’t think the institutions we rely on to help these countries fund infrastructure — energy and everything else — are adequately funded. Nor do these institutions have the right structures, incentives, and staffing to fund low-carbon development in these countries rapidly enough or on the necessary scale. I’m talking about the World Bank, for instance, but the other multilateral organizations have similar issues. I frankly don’t think the multilaterals can be reformed or sufficiently redirected on a short enough time frame. We definitely need new leadership for these organizations, and I think we probably need to quickly establish new multilaterals with new people, more money, and a clarity of purpose that is likely beyond what can be achieved incrementally. I don’t know if this is going to be an active public discussion at COP27, but I hope it takes place somewhere soon. Given the strong role our government plays in financing and selecting the leadership of these institutions, perhaps this is another opportunity for the United States to demonstrate courage and leadership.

    Q: What “investable pathways” are you talking about?

    A: Well, the pathways we’re implicitly trying to pursue with the Infrastructure Act and IRA are pretty clear, and I’ll come back to them. But first let me describe the landscape: There are three main sources of demand for energy in the economy — industry (meaning chemical production, fuel for electricity generation, cement production, materials and manufacturing, and so on), transportation (cars, trucks, ships, planes, and trains), and buildings (for heating and cooling, mostly). That’s about it, and these three sectors account for 75 percent of our total greenhouse gas emissions. So the pathways are all about how to decarbonize these three end-use sectors. There are a lot of technologies — some that exist, some that don’t — that will have to be brought to bear. And so it can be a little overwhelming to try to imagine how it will all transpire, but it’s pretty clear at a high level what our options are:

    First, generate a lot of low-carbon electricity and electrify as many industrial processes, vehicles, and building heating systems as we can.
    Second, develop and deploy at massive scale technologies that can capture carbon dioxide from smokestacks, or the air, and put it somewhere that it can never escape from — in other words, carbon capture and sequestration, or CCS.
    Third, for end uses like aviation that really need to use fuels because of their extraordinary energy density, develop low-carbon alternatives to fossil fuels.
    And fourth is energy efficiency across the board — but I don’t really count that as a separate pathway per se.
    So, by “investable pathways” I mean specific ways to pursue these options that will attract investors. What the Infrastructure Act and the IRA do is deploy carrots (in the form of subsidies) in a variety of ways to close the gap between what it costs to deploy technologies like CCS that aren’t yet at a commercial stage because they’re immature, and what energy markets will tolerate. A similar situation occurs for low-carbon production of hydrogen, one of the leading low-carbon fuel candidates. We can make it by splitting water with electricity (electrolysis), but that costs too much with present-day technology; or we can make it more cheaply by separating it from methane (which is what natural gas mainly is), but that creates CO2 that has to be transported and sequestered somewhere. And then we have to store the hydrogen until we’re ready to use it, and transport it by pipeline to the industrial facilities where it will be used. That requires infrastructure that doesn’t exist — pipelines, compression stations, big tanks! Come to think of it, the demand for all that hydrogen doesn’t exist either — at least not if industry has to pay what it actually costs.

    So, one very important thing these new acts do is subsidize production of hydrogen in various ways — and subsidize the creation of a CCS industry. The other thing they do is subsidize the deployment at enormous scale of low-carbon energy technologies. Some of them are already pretty cheap, like solar and wind, but they need to be supported by a lot of storage on the grid (which we don’t yet have) and by other sorts of grid infrastructure that, again, don’t exist. So, they now get subsidized, too, along with other carbon-free and low-carbon generation technologies — basically all of them. The idea is that by stimulating at-scale deployment of all these established and emerging technologies, and funding demonstrations of novel infrastructure — effectively lowering the cost of supply of low-carbon energy in the form of electricity and fuels — we will draw out the private sector to build out much more of the connective infrastructure and invest in new industrial processes, new home heating systems, and low-carbon transportation. This subsidized build-out will take place over a decade and then phase out as costs fall — hopefully, leaving the foundation for a thriving low-carbon energy economy in its wake, along with crucial technologies and knowledge that will benefit the whole world.

    Q: Is all of the federal investment in energy infrastructure in the United States relevant to the energy crisis in Europe right now?

    A: Not in a direct way — Europe is a near-term catastrophe with a long-term challenge that is in many ways more difficult than ours because Europe doesn’t have the level of primary energy resources like oil and gas that we have in abundance. Energy costs more in Europe, especially absent Russian pipelines. In a way, the narrowing of Europe’s options creates an impetus to invest in low-carbon technologies sooner than otherwise. The result either way will be expensive energy and quite a lot of economic suffering for years. The near-term challenge is to protect people from high energy prices. The big spikes in electricity prices we see now are driven by the natural gas market disruption, which will eventually dissipate as new sources of electricity come online (Sweden, for example, just announced a plan to develop new nuclear, and we’re seeing other countries like Germany soften their stance on nuclear) — and gas markets will sort themselves out. Meanwhile governments are trying to shield their people with electricity price caps and other subsidies, but that’s enormously burdensome.

    The EU recently announced gas price caps for imported gas to try to eliminate price-gouging by importers and reduce the subsidy burden. That may help to lower downstream prices, or it may make matters worse by reducing the flow of gas into the EU and fueling scarcity pricing, and ultimately adding to the subsidy burden. A lot people are quite reasonably suggesting that if electricity prices are subject to crazy behavior in gas markets, then why not disconnect from the grid and self-generate? Wouldn’t that also help reduce demand for gas overall and also reduce CO2 emissions? It would. But it’s expensive to put solar panels on your roof and batteries in your basement — so for those rich enough to do this, it would lead to higher average electricity costs that would live on far into the future, even when grid prices eventually come down.

    So, an interesting idea is taking hold, with considerable encouragement from national governments — the idea of “energy communities,” basically, towns or cities that encourage local firms and homeowners to install solar and batteries, and make some sort of business arrangement with the local utility to allow the community to disconnect from the national grid at times of high prices and self-supply — in other words, use the utility’s wires to sell locally generated power locally. It’s interesting to think about — it takes less battery storage to handle the intermittency of solar when you have a lot of generators and consumers, so forming a community helps lower costs, and with a good deal from the utility for using their wires, it might not be that much more expensive. And of course, when the national grid is working well and prices are normal, the community would reconnect and buy power cheaply, while selling back its self-generated power to the grid. There are also potentially important social benefits that might accrue in these energy communities, too. It’s not a dumb idea, and we’ll see some interesting experimentation in this area in the coming years — as usual, the Germans are enthusiastic! More

  • in

    MIT PhD students shed light on important water and food research

    One glance at the news lately will reveal countless headlines on the dire state of global water and food security. Pollution, supply chain disruptions, and the war in Ukraine are all threatening water and food systems, compounding climate change impacts from heat waves, drought, floods, and wildfires.

    Every year, MIT’s Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) offers fellowships to outstanding MIT graduate students who are working on innovative ways to secure water and food supplies in light of these urgent worldwide threats. J-WAFS announced this year’s fellowship recipients last April. Aditya Ghodgaonkar and Devashish Gokhale were awarded Rasikbhai L. Meswani Fellowships for Water Solutions, which are made possible by a generous gift from Elina and Nikhil Meswani and family. James Zhang, Katharina Fransen, and Linzixuan (Rhoda) Zhang were awarded J-WAFS Fellowships for Water and Food Solutions. The J-WAFS Fellowship for Water and Food Solutions is funded in part by J-WAFS Research Affiliate companies: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    The five fellows were each awarded a stipend and full tuition for one semester. They also benefit from mentorship, networking connections, and opportunities to showcase their research.

    “This year’s cohort of J-WAFS fellows show an indefatigable drive to explore, create, and push back boundaries,” says John H. Lienhard, director of J-WAFS. “Their passion and determination to create positive change for humanity are evident in these unique video portraits, which describe their solutions-oriented research in water and food,” Lienhard adds.

    J-WAFS funder Community Jameel recently commissioned video portraitures of each student that highlight their work and their inspiration to solve challenges in water and food. More about each J-WAFS fellow and their research follows.

    Play video

    Katharina Fransen

    In Professor Bradley Olsen’s lab in the Department of Chemical Engineering, Katharina Fransen works to develop biologically-based, biodegradable plastics which can be used for food packing that won’t pollute the environment. Fransen, a third-year PhD student, is motivated by the challenge of protecting the most vulnerable global communities from waste generated by the materials that are essential to connecting them to the global food supply. “We can’t ensure that all of our plastic waste gets recycled or reused, and so we want to make sure that if it does escape into the environment it can degrade, and that’s kind of where a lot of my research really comes in,” says Fransen. Most of her work involves creating polymers, or “really long chains of chemicals,” kind of like the paper rings a lot of us looped into chains as kids, Fransen explains. The polymers are optimized for food packaging applications to keep food fresher for longer, preventing food waste. Fransen says she finds the work “really interesting from the scientific perspective as well as from the idea that [she’s] going to make the world a little better with these new materials.” She adds, “I think it is both really fulfilling and really exciting and engaging.”

    Play video

    Aditya Ghodgaonkar

    “When I went to Kenya this past spring break, I had an opportunity to meet a lot of farmers and talk to them about what kind of maintenance issues they face,” says Aditya Ghodgaonkar, PhD candidate in the Department of Mechanical Engineering. Ghodgaonkar works with Associate Professor Amos Winter in the Global Engineering and Research (GEAR) Lab, where he designs hydraulic components for drip irrigation systems to make them water-efficient, off-grid, inexpensive, and low-maintenance. On his trip to Kenya, Ghodgaonkar gained firsthand knowledge from farmers about a common problem they encounter: clogging of drip irrigation emitters. He learned that clogging can be an expensive technical challenge to diagnose, mitigate, and resolve. He decided to focus his attention on designing emitters that are resistant to clogging, testing with sand and passive hydrodynamic filtration back in the lab at MIT. “I got into this from an academic standpoint,” says Ghodgaonkar. “It is only once I started working on the emitters, spoke with industrial partners that make these emitters, spoke with farmers, that I really truly appreciated the impact of what we’re doing.”

    Play video

    Devashish Gokhale

    Devashish Gokhale is a PhD student advised by Professor Patrick Doyle in the Department of Chemical Engineering. Gokhale’s commitment to global water security stems from his childhood in Pune, India, where both flooding and drought can occur depending on the time of year. “I’ve had these experiences where there’s been too much water and also too little water” he recalls. At MIT, Gokhale is developing cost-effective, sustainable, and reusable materials for water treatment with a focus on the elimination of emerging contaminants and low-concentration pollutants like heavy metals. Specifically, he works on making and optimizing polymeric hydrogel microparticles that can absorb micropollutants. “I know how important it is to do something which is not just scientifically interesting, but something which is impactful in a real way,” says Gokhale. Before starting a research project he asks himself, “are people going to be able to afford this? Is it really going to reach the people who need it the most?” Adding these constraints in the beginning of the research process sometimes makes the problem more difficult to solve, but Gokhale notes that in the end, the solution is much more promising.

    Play video

    James Zhang

    “We don’t really think much about it, it’s transparent, odorless, we just turn on our sink in many parts of the world and it just flows through,” says James Zhang when talking about water. Yet he notes that “many other parts of the world face water scarcity and this will only get worse due to global climate change.” A PhD student in the Department of Mechanical Engineering, Zhang works in the Nano Engineering Laboratory with Professor Gang Chen. Zhang is working on a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light at different wavelengths interacts with liquids at the surface, particularly with brackish water surfaces. With strong theoretical and experimental components, his research could lead to innovations in desalinating water at high energy efficiencies. Zhang hopes that the technology can one day “produce lots of clean water for communities around the world that currently don’t have access to fresh water,” and create a new appreciation for this common liquid that many of us might not think about on a day-to-day basis.

    Play video

    Linzixuan (Rhoda) Zhang

    “Around the world there are about 2 billion people currently suffering from micronutrient deficiency because they do not have access to very healthy, very fresh food,” says chemical engineering PhD candidate Linzixuan (Rhoda) Zhang. This fact led Zhang to develop a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. With her advisors, Professor Robert Langer and Research Scientist Ana Jaklenec, Zhang brings biomedical engineering approaches to global health issues. Zhang says that “one of the most serious problems is vitamin A deficiency, because vitamin A is not very stable.” She goes on to explain that although vitamin A is present in different vegetables, when the vegetables are cooked, vitamin A can easily degrade. Zhang helped develop a group of biodegradable polymers that can stabilize micronutrients under cooking and storage conditions. With this technology, vitamin A, for example, could be encapsulated and effectively stabilized under boiling water. The platform has also shown efficient release in a simulation of the stomach environment. Zhang says it is the “little, tiny steps every day that are pushing us forward to the final impactful product.” More

  • in

    Advancing the energy transition amidst global crises

    “The past six years have been the warmest on the planet, and our track record on climate change mitigation is drastically short of what it needs to be,” said Robert C. Armstrong, MIT Energy Initiative (MITEI) director and the Chevron Professor of Chemical Engineering, introducing MITEI’s 15th Annual Research Conference.

    At the symposium, participants from academia, industry, and finance acknowledged the deepening difficulties of decarbonizing a world rocked by geopolitical conflicts and suffering from supply chain disruptions, energy insecurity, inflation, and a persistent pandemic. In spite of this grim backdrop, the conference offered evidence of significant progress in the energy transition. Researchers provided glimpses of a low-carbon future, presenting advances in such areas as long-duration energy storage, carbon capture, and renewable technologies.

    In his keynote remarks, Ernest J. Moniz, the Cecil and Ida Green Professor of Physics and Engineering Systems Emeritus, founding director of MITEI, and former U.S. secretary of energy, highlighted “four areas that have materially changed in the last year” that could shake up, and possibly accelerate, efforts to address climate change.

    Extreme weather seems to be propelling the public and policy makers of both U.S. parties toward “convergence … at least in recognition of the challenge,” Moniz said. He perceives a growing consensus that climate goals will require — in diminishing order of certainty — firm (always-on) power to complement renewable energy sources, a fuel (such as hydrogen) flowing alongside electricity, and removal of atmospheric carbon dioxide (CO2).

    Russia’s invasion of Ukraine, with its “weaponization of natural gas” and global energy impacts, underscores the idea that climate, energy security, and geopolitics “are now more or less recognized widely as one conversation.” Moniz pointed as well to new U.S. laws on climate change and infrastructure that will amplify the role of science and technology and “address the drive to technological dominance by China.”

    The rapid transformation of energy systems will require a comprehensive industrial policy, Moniz said. Government and industry must select and rapidly develop low-carbon fuels, firm power sources (possibly including nuclear power), CO2 removal systems, and long-duration energy storage technologies. “We will need to make progress on all fronts literally in this decade to come close to our goals for climate change mitigation,” he concluded.

    Global cooperation?

    Over two days, conference participants delved into many of the issues Moniz raised. In one of the first panels, scholars pondered whether the international community could forge a coordinated climate change response. The United States’ rift with China, especially over technology trade policies, loomed large.

    “Hatred of China is a bipartisan hobby and passion, but a blanket approach isn’t right, even for the sake of national security,” said Yasheng Huang, the Epoch Foundation Professor of Global Economics and Management at the MIT Sloan School of Management. “Although the United States and China working together would have huge effects for both countries, it is politically unpalatable in the short term,” said F. Taylor Fravel, the Arthur and Ruth Sloan Professor of Political Science and director of the MIT Security Studies Program. John E. Parsons, deputy director for research at the MIT Center for Energy and Environmental Policy Research, suggested that the United States should use this moment “to get our own act together … and start doing things,” such as building nuclear power plants in a cost-effective way.

    Debating carbon removal

    Several panels took up the matter of carbon emissions and the most promising technologies for contending with them. Charles Harvey, MIT professor of civil and environmental engineering, and Howard Herzog, a senior research engineer at MITEI, set the stage early, debating whether capturing carbon was essential to reaching net-zero targets.

    “I have no trouble getting to net zero without carbon capture and storage,” said David Keith, the Gordon McKay Professor of Applied Physics at Harvard University, in a subsequent roundtable. Carbon capture seems more risky to Keith than solar geoengineering, which involves injecting sulfur into the stratosphere to offset CO2 and its heat-trapping impacts.

    There are new ways of moving carbon from where it’s a problem to where it’s safer. Kripa K. Varanasi, MIT professor of mechanical engineering, described a process for modulating the pH of ocean water to remove CO2. Timothy Krysiek, managing director for Equinor Ventures, talked about construction of a 900-kilometer pipeline transporting CO2 from northern Germany to a large-scale storage site located in Norwegian waters 3,000 meters below the seabed. “We can use these offshore Norwegian assets as a giant carbon sink for Europe,” he said.

    A startup showcase featured additional approaches to the carbon challenge. Mantel, which received MITEI Seed Fund money, is developing molten salt material to capture carbon for long-term storage or for use in generating electricity. Verdox has come up with an electrochemical process for capturing dilute CO2 from the atmosphere.

    But while much of the global warming discussion focuses on CO2, other greenhouse gases are menacing. Another panel discussed measuring and mitigating these pollutants. “Methane has 82 times more warming power than CO2 from the point of emission,” said Desirée L. Plata, MIT associate professor of civil and environmental engineering. “Cutting methane is the strongest lever we have to slow climate change in the next 25 years — really the only lever.”

    Steven Hamburg, chief scientist and senior vice president of the Environmental Defense Fund, cautioned that emission of hydrogen molecules into the atmosphere can cause increases in other greenhouse gases such as methane, ozone, and water vapor. As researchers and industry turn to hydrogen as a fuel or as a feedstock for commercial processes, “we will need to minimize leakage … or risk increasing warming,” he said.

    Supply chains, markets, and new energy ventures

    In panels on energy storage and the clean energy supply chain, there were interesting discussions of challenges ahead. High-density energy materials such as lithium, cobalt, nickel, copper, and vanadium for grid-scale energy storage, electric vehicles (EVs), and other clean energy technologies, can be difficult to source. “These often come from water-stressed regions, and we need to be super thoughtful about environmental stresses,” said Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering. She also noted that in light of the explosive growth in demand for metals such as lithium, recycling EVs won’t be of much help. “The amount of material coming back from end-of-life batteries is minor,” she said, until EVs are much further along in their adoption cycle.

    Arvind Sanger, founder and managing partner of Geosphere Capital, said that the United States should be developing its own rare earths and minerals, although gaining the know-how will take time, and overcoming “NIMBYism” (not in my backyard-ism) is a challenge. Sanger emphasized that we must continue to use “denser sources of energy” to catalyze the energy transition over the next decade. In particular, Sanger noted that “for every transition technology, steel is needed,” and steel is made in furnaces that use coal and natural gas. “It’s completely woolly-headed to think we can just go to a zero-fossil fuel future in a hurry,” he said.

    The topic of power markets occupied another panel, which focused on ways to ensure the distribution of reliable and affordable zero-carbon energy. Integrating intermittent resources such as wind and solar into the grid requires a suite of retail markets and new digital tools, said Anuradha Annaswamy, director of MIT’s Active-Adaptive Control Laboratory. Tim Schittekatte, a postdoc at the MIT Sloan School of Management, proposed auctions as a way of insuring consumers against periods of high market costs.

    Another panel described the very different investment needs of new energy startups, such as longer research and development phases. Hooisweng Ow, technology principal at Eni Next LLC Ventures, which is developing drilling technology for geothermal energy, recommends joint development and partnerships to reduce risk. Michael Kearney SM ’11, PhD ’19, SM ’19 is a partner at The Engine, a venture firm built by MIT investing in path-breaking technology to solve the toughest challenges in climate and other problems. Kearney believes the emergence of new technologies and markets will bring on “a labor transition on an order of magnitude never seen before in this country,” he said. “Workforce development is not a natural zone for startups … and this will have to change.”

    Supporting the global South

    The opportunities and challenges of the energy transition look quite different in the developing world. In conversation with Robert Armstrong, Luhut Binsar Pandjaitan, the coordinating minister for maritime affairs and investment of the Republic of Indonesia, reported that his “nation is rich with solar, wind, and energy transition minerals like nickel and copper,” but cannot on its own tackle developing renewable energy or reducing carbon emissions and improving grid infrastructure. “Education is a top priority, and we are very far behind in high technologies,” he said. “We need help and support from MIT to achieve our target,” he said.

    Technologies that could springboard Indonesia and other nations of the global South toward their climate goals are emerging in MITEI-supported projects and at young companies MITEI helped spawn. Among the promising innovations unveiled at the conference are new materials and designs for cooling buildings in hot climates and reducing the environmental costs of construction, and a sponge-like substance that passively sucks moisture out of the air to lower the energy required for running air conditioners in humid climates.

    Other ideas on the move from lab to market have great potential for industrialized nations as well, such as a computational framework for maximizing the energy output of ocean-based wind farms; a process for using ammonia as a renewable fuel with no CO2 emissions; long-duration energy storage derived from the oxidation of iron; and a laser-based method for unlocking geothermal steam to drive power plants. More

  • in

    New materials could enable longer-lasting implantable batteries

    For the last few decades, battery research has largely focused on rechargeable lithium-ion batteries, which are used in everything from electric cars to portable electronics and have improved dramatically in terms of affordability and capacity. But nonrechargeable batteries have seen little improvement during that time, despite their crucial role in many important uses such as implantable medical devices like pacemakers.

    Now, researchers at MIT have come up with a way to improve the energy density of these nonrechargeable, or “primary,” batteries. They say it could enable up to a 50 percent increase in useful lifetime, or a corresponding decrease in size and weight for a given amount of power or energy capacity, while also improving safety, with little or no increase in cost.

    The new findings, which involve substituting the conventionally inactive battery electrolyte with a material that is active for energy delivery, are reported today in the journal Proceedings of the National Academy of Sciences, in a paper by MIT Kavanaugh Postdoctoral Fellow Haining Gao, graduate student Alejandro Sevilla, associate professor of mechanical engineering Betar Gallant, and four others at MIT and Caltech.

    Replacing the battery in a pacemaker or other medical implant requires a surgical procedure, so any increase in the longevity of their batteries could have a significant impact on the patient’s quality of life, Gallant says. Primary batteries are used for such essential applications because they can provide about three times as much energy for a given size and weight as rechargeable batteries.

    That difference in capacity, Gao says, makes primary batteries “critical for applications where charging is not possible or is impractical.” The new materials work at human body temperature, so would be suitable for medical implants. In addition to implantable devices, with further development to make the batteries operate efficiently at cooler temperatures, applications could also include sensors in tracking devices for shipments, for example to ensure that temperature and humidity requirements for food or drug shipments are properly maintained throughout the shipping process. Or, they might be used in remotely operated aerial or underwater vehicles that need to remain ready for deployment over long periods.

    Pacemaker batteries typically last from five to 10 years, and even less if they require high-voltage functions such as defibrillation. Yet for such batteries, Gao says, the technology is considered mature, and “there haven’t been any major innovations in fundamental cell chemistries in the past 40 years.”

    The key to the team’s innovation is a new kind of electrolyte — the material that lies between the two electrical poles of the battery, the cathode and the anode, and allows charge carriers to pass through from one side to the other. Using a new liquid fluorinated compound, the team found that they could combine some of the functions of the cathode and the electrolyte in one compound, called a catholyte. This allows for saving much of the weight of typical primary batteries, Gao says.

    While there are other materials besides this new compound that could theoretically function in a similar catholyte role in a high-capacity battery, Gallant explains, those materials have lower inherent voltages that do not match those of the remainder of the material in a conventional pacemaker battery, a type known as CFx. Because the overall output from the battery can’t be more than that of the lesser of the two electrode materials,  the extra capacity would go to waste because of the voltage mismatch. But with the new material, “one of the key merits of our fluorinated liquids is that their voltage aligns very well with that of CFx,” Gallant says.

    In a conventional  CFx battery, the liquid electrolyte is essential because it allows charged particles to pass through from one electrode to the other. But “those electrolytes are actually chemically inactive, so they’re basically dead weight,” Gao says. This means about 50 percent of the battery’s key components, mainly the electrolyte, is inactive material. But in the new design with the fluorinated catholyte material, the amount of dead weight can be reduced to about 20 percent, she says.

    The new cells also provide safety improvements over other kinds of proposed chemistries that would use toxic and corrosive catholyte materials, which their formula does not, Gallant says. And preliminary tests have demonstrated a stable shelf life over more than a year, an important characteristic for primary batteries, she says.

    So far, the team has not yet experimentally achieved the full 50 percent improvement in energy density predicted by their analysis. They have demonstrated a 20 percent improvement, which in itself would be an important gain for some applications, Gallant says. The design of the cell itself has not yet been fully optimized, but the researchers can project the cell performance based on the performance of the active material itself. “We can see the projected cell-level performance when it’s scaled up can reach around 50 percent higher than the CFx cell,” she says. Achieving that level experimentally is the team’s next goal.

    Sevilla, a doctoral student in the mechanical engineering department, will be focusing on that work in the coming year. “I was brought into this project to try to understand some of the limitations of why we haven’t been able to attain the full energy density possible,” he says. “My role has been trying to fill in the gaps in terms of understanding the underlying reaction.”

    One big advantage of the new material, Gao says, is that it can easily be integrated into existing battery manufacturing processes, as a simple substitution of one material for another. Preliminary discussions with manufacturers confirm this potentially easy substitution, Gao says. The basic starting material, used for other purposes, has already been scaled up for production, she says, and its price is comparable to that of the materials currently used in CFx batteries. The cost of batteries using the new material is likely to be comparable to the existing batteries as well, she says. The team has already applied for a patent on the catholyte, and they expect that the medical applications are likely to be the first to be commercialized, perhaps with a full-scale prototype ready for testing in real devices within about a year.

    Further down the road, other applications could likely take advantage of the new materials as well, such as smart water or gas meters that can be read out remotely, or devices like EZPass transponders, increasing their usable lifetime, the researchers say. Power for drone aircraft or undersea vehicles would require higher power and so may take longer to be developed. Other uses could include batteries for equipment used at remote sites, such as drilling rigs for oil and gas, including devices sent down into the wells to monitor conditions.

    The team also included Gustavo Hobold, Aaron Melemed, and Rui Guo at MIT and Simon Jones at Caltech. The work was supported by MIT Lincoln Laboratory and the Army Research Office. More

  • in

    Ocean microbes get their diet through a surprising mix of sources, study finds

    One of the smallest and mightiest organisms on the planet is a plant-like bacterium known to marine biologists as Prochlorococcus. The green-tinted microbe measures less than a micron across, and its populations suffuse through the upper layers of the ocean, where a single teaspoon of seawater can hold millions of the tiny organisms.

    Prochlorococcus grows through photosynthesis, using sunlight to convert the atmosphere’s carbon dioxide into organic carbon molecules. The microbe is responsible for 5 percent of the world’s photosynthesizing activity, and scientists have assumed that photosynthesis is the microbe’s go-to strategy for acquiring the carbon it needs to grow.

    But a new MIT study in Nature Microbiology today has found that Prochlorococcus relies on another carbon-feeding strategy, more than previously thought.

    Organisms that use a mix of strategies to provide carbon are known as mixotrophs. Most marine plankton are mixotrophs. And while Prochlorococcus is known to occasionally dabble in mixotrophy, scientists have assumed the microbe primarily lives a phototrophic lifestyle.

    The new MIT study shows that in fact, Prochlorococcus may be more of a mixotroph than it lets on. The microbe may get as much as one-third of its carbon through a second strategy: consuming the dissolved remains of other dead microbes.

    The new estimate may have implications for climate models, as the microbe is a significant force in capturing and “fixing” carbon in the Earth’s atmosphere and ocean.

    “If we wish to predict what will happen to carbon fixation in a different climate, or predict where Prochlorococcus will or will not live in the future, we probably won’t get it right if we’re missing a process that accounts for one-third of the population’s carbon supply,” says Mick Follows, a professor in MIT’s Department of Earth, Atmospheric and Planetary Sciences (EAPS), and its Department of Civil and Environmental Engineering.

    The study’s co-authors include first author and MIT postdoc Zhen Wu, along with collaborators from the University of Haifa, the Leibniz-Institute for Baltic Sea Research, the Leibniz-Institute of Freshwater Ecology and Inland Fisheries, and Potsdam University.

    Persistent plankton

    Since Prochlorococcus was first discovered in the Sargasso Sea in 1986, by MIT Institute Professor Sallie “Penny” Chisholm and others, the microbe has been observed throughout the world’s oceans, inhabiting the upper sunlit layers ranging from the surface down to about 160 meters. Within this range, light levels vary, and the microbe has evolved a number of ways to photosynthesize carbon in even low-lit regions.

    The organism has also evolved ways to consume organic compounds including glucose and certain amino acids, which could help the microbe survive for limited periods of time in dark ocean regions. But surviving on organic compounds alone is a bit like only eating junk food, and there is evidence that Prochlorococcus will die after a week in regions where photosynthesis is not an option.

    And yet, researchers including Daniel Sher of the University of Haifa, who is a co-author of the new study, have observed healthy populations of Prochlorococcus that persist deep in the sunlit zone, where the light intensity should be too low to maintain a population. This suggests that the microbes must be switching to a non-photosynthesizing, mixotrophic lifestyle in order to consume other organic sources of carbon.

    “It seems that at least some Prochlorococcus are using existing organic carbon in a mixotrophic way,” Follows says. “That stimulated the question: How much?”

    What light cannot explain

    In their new paper, Follows, Wu, Sher, and their colleagues looked to quantify the amount of carbon that Prochlorococcus is consuming through processes other than photosynthesis.

    The team looked first to measurements taken by Sher’s team, which previously took ocean samples at various depths in the Mediterranean Sea and measured the concentration of phytoplankton, including Prochlorococcus, along with the associated intensity of light and the concentration of nitrogen — an essential nutrient that is richly available in deeper layers of the ocean and that plankton can assimilate to make proteins.

    Wu and Follows used this data, and similar information from the Pacific Ocean, along with previous work from Chisholm’s lab, which established the rate of photosynthesis that Prochlorococcus could carry out in a given intensity of light.

    “We converted that light intensity profile into a potential growth rate — how fast the population of Prochlorococcus could grow if it was acquiring all it’s carbon by photosynthesis, and light is the limiting factor,” Follows explains.

    The team then compared this calculated rate to growth rates that were previously observed in the Pacific Ocean by several other research teams.

    “This data showed that, below a certain depth, there’s a lot of growth happening that photosynthesis simply cannot explain,” Follows says. “Some other process must be at work to make up the difference in carbon supply.”

    The researchers inferred that, in deeper, darker regions of the ocean, Prochlorococcus populations are able to survive and thrive by resorting to mixotrophy, including consuming organic carbon from detritus. Specifically, the microbe may be carrying out osmotrophy — a process by which an organism passively absorbs organic carbon molecules via osmosis.

    Judging by how fast the microbe is estimated to be growing below the sunlit zone, the team calculates that Prochlorococcus obtains up to one-third of its carbon diet through mixotrophic strategies.

    “It’s kind of like going from a specialist to a generalist lifestyle,” Follows says. “If I only eat pizza, then if I’m 20 miles from a pizza place, I’m in trouble, whereas if I eat burgers as well, I could go to the nearby McDonald’s. People had thought of Prochlorococcus as a specialist, where they do this one thing (photosynthesis) really well. But it turns out they may have more of a generalist lifestyle than we previously thought.”

    Chisholm, who has both literally and figuratively written the book on Prochlorococcus, says the group’s findings “expand the range of conditions under which their populations can not only survive, but also thrive. This study changes the way we think about the role of Prochlorococcus in the microbial food web.”

    This research was supported, in part, by the Israel Science Foundation, the U.S. National Science Foundation, and the Simons Foundation. More

  • in

    Methane research takes on new urgency at MIT

    One of the most notable climate change provisions in the 2022 Inflation Reduction Act is the first U.S. federal tax on a greenhouse gas (GHG). That the fee targets methane (CH4), rather than carbon dioxide (CO2), emissions is indicative of the urgency the scientific community has placed on reducing this short-lived but powerful gas. Methane persists in the air about 12 years — compared to more than 1,000 years for CO2 — yet it immediately causes about 120 times more warming upon release. The gas is responsible for at least a quarter of today’s gross warming. 

    “Methane has a disproportionate effect on near-term warming,” says Desiree Plata, the director of MIT Methane Network. “CH4 does more damage than CO2 no matter how long you run the clock. By removing methane, we could potentially avoid critical climate tipping points.” 

    Because GHGs have a runaway effect on climate, reductions made now will have a far greater impact than the same reductions made in the future. Cutting methane emissions will slow the thawing of permafrost, which could otherwise lead to massive methane releases, as well as reduce increasing emissions from wetlands.  

    “The goal of MIT Methane Network is to reduce methane emissions by 45 percent by 2030, which would save up to 0.5 degree C of warming by 2100,” says Plata, an associate professor of civil and environmental engineering at MIT and director of the Plata Lab. “When you consider that governments are trying for a 1.5-degree reduction of all GHGs by 2100, this is a big deal.” 

    Under normal concentrations, methane, like CO2, poses no health risks. Yet methane assists in the creation of high levels of ozone. In the lower atmosphere, ozone is a key component of air pollution, which leads to “higher rates of asthma and increased emergency room visits,” says Plata. 

    Methane-related projects at the Plata Lab include a filter made of zeolite — the same clay-like material used in cat litter — designed to convert methane into CO2 at dairy farms and coal mines. At first glance, the technology would appear to be a bit of a hard sell, since it converts one GHG into another. Yet the zeolite filter’s low carbon and dollar costs, combined with the disproportionate warming impact of methane, make it a potential game-changer.

    The sense of urgency about methane has been amplified by recent studies that show humans are generating far more methane emissions than previously estimated, and that the rates are rising rapidly. Exactly how much methane is in the air is uncertain. Current methods for measuring atmospheric methane, such as ground, drone, and satellite sensors, “are not readily abundant and do not always agree with each other,” says Plata.  

    The Plata Lab is collaborating with Tim Swager in the MIT Department of Chemistry to develop low-cost methane sensors. “We are developing chemiresisitive sensors that cost about a dollar that you could place near energy infrastructure to back-calculate where leaks are coming from,” says Plata.  

    The researchers are working on improving the accuracy of the sensors using machine learning techniques and are planning to integrate internet-of-things technology to transmit alerts. Plata and Swager are not alone in focusing on data collection: the Inflation Reduction Act adds significant funding for methane sensor research. 

    Other research at the Plata Lab includes the development of nanomaterials and heterogeneous catalysis techniques for environmental applications. The lab also explores mitigation solutions for industrial waste, particularly those related to the energy transition. Plata is the co-founder of an lithium-ion battery recycling startup called Nth Cycle. 

    On a more fundamental level, the Plata Lab is exploring how to develop products with environmental and social sustainability in mind. “Our overarching mission is to change the way that we invent materials and processes so that environmental objectives are incorporated along with traditional performance and cost metrics,” says Plata. “It is important to do that rigorous assessment early in the design process.”

    Play video

    MIT amps up methane research 

    The MIT Methane Network brings together 26 researchers from MIT along with representatives of other institutions “that are dedicated to the idea that we can reduce methane levels in our lifetime,” says Plata. The organization supports research such as Plata’s zeolite and sensor projects, as well as designing pipeline-fixing robots, developing methane-based fuels for clean hydrogen, and researching the capture and conversion of methane into liquid chemical precursors for pharmaceuticals and plastics. Other members are researching policies to encourage more sustainable agriculture and land use, as well as methane-related social justice initiatives. 

    “Methane is an especially difficult problem because it comes from all over the place,” says Plata. A recent Global Carbon Project study estimated that half of methane emissions are caused by humans. This is led by waste and agriculture (28 percent), including cow and sheep belching, rice paddies, and landfills.  

    Fossil fuels represent 18 percent of the total budget. Of this, about 63 percent is derived from oil and gas production and pipelines, 33 percent from coal mining activities, and 5 percent from industry and transportation. Human-caused biomass burning, primarily from slash-and-burn agriculture, emits about 4 percent of the global total.  

    The other half of the methane budget includes natural methane emissions from wetlands (20 percent) and other natural sources (30 percent). The latter includes permafrost melting and natural biomass burning, such as forest fires started by lightning.  

    With increases in global warming and population, the line between anthropogenic and natural causes is getting fuzzier. “Human activities are accelerating natural emissions,” says Plata. “Climate change increases the release of methane from wetlands and permafrost and leads to larger forest and peat fires.”  

    The calculations can get complicated. For example, wetlands provide benefits from CO2 capture, biological diversity, and sea level rise resiliency that more than compensate for methane releases. Meanwhile, draining swamps for development increases emissions. 

    Over 100 nations have signed onto the U.N.’s Global Methane Pledge to reduce at least 30 percent of anthropogenic emissions within the next 10 years. The U.N. report estimates that this goal can be achieved using proven technologies and that about 60 percent of these reductions can be accomplished at low cost. 

    Much of the savings would come from greater efficiencies in fossil fuel extraction, processing, and delivery. The methane fees in the Inflation Reduction Act are primarily focused on encouraging fossil fuel companies to accelerate ongoing efforts to cap old wells, flare off excess emissions, and tighten pipeline connections.  

    Fossil fuel companies have already made far greater pledges to reduce methane than they have with CO2, which is central to their business. This is due, in part, to the potential savings, as well as in preparation for methane regulations expected from the Environmental Protection Agency in late 2022. The regulations build upon existing EPA oversight of drilling operations, and will likely be exempt from the U.S. Supreme Court’s ruling that limits the federal government’s ability to regulate GHGs. 

    Zeolite filter targets methane in dairy and coal 

    The “low-hanging fruit” of gas stream mitigation addresses most of the 20 percent of total methane emissions in which the gas is released in sufficiently high concentrations for flaring. Plata’s zeolite filter aims to address the thornier challenge of reducing the 80 percent of non-flammable dilute emissions. 

    Plata found inspiration in decades-old catalysis research for turning methane into methanol. One strategy has been to use an abundant, low-cost aluminosilicate clay called zeolite.  

    “The methanol creation process is challenging because you need to separate a liquid, and it has very low efficiency,” says Plata. “Yet zeolite can be very efficient at converting methane into CO2, and it is much easier because it does not require liquid separation. Converting methane to CO2 sounds like a bad thing, but there is a major anti-warming benefit. And because methane is much more dilute than CO2, the relative CO2 contribution is minuscule.”  

    Using zeolite to create methanol requires highly concentrated methane, high temperatures and pressures, and industrial processing conditions. Yet Plata’s process, which dopes the zeolite with copper, operates in the presence of oxygen at much lower temperatures under typical pressures. “We let the methane proceed the way it wants from a thermodynamic perspective from methane to methanol down to CO2,” says Plata. 

    Researchers around the world are working on other dilute methane removal technologies. Projects include spraying iron salt aerosols into sea air where they react with natural chlorine or bromine radicals, thereby capturing methane. Most of these geoengineering solutions, however, are difficult to measure and would require massive scale to make a difference.  

    Plata is focusing her zeolite filters on environments where concentrations are high, but not so high as to be flammable. “We are trying to scale zeolite into filters that you could snap onto the side of a cross-ventilation fan in a dairy barn or in a ventilation air shaft in a coal mine,” says Plata. “For every packet of air we bring in, we take a lot of methane out, so we get more bang for our buck.”  

    The major challenge is creating a filter that can handle high flow rates without getting clogged or falling apart. Dairy barn air handlers can push air at up to 5,000 cubic feet per minute and coal mine handlers can approach 500,000 CFM. 

    Plata is exploring engineering options including fluidized bed reactors with floating catalyst particles. Another filter solution, based in part on catalytic converters, features “higher-order geometric structures where you have a porous material with a long path length where the gas can interact with the catalyst,” says Plata. “This avoids the challenge with fluidized beds of containing catalyst particles in the reactor. Instead, they are fixed within a structured material.”  

    Competing technologies for removing methane from mine shafts “operate at temperatures of 1,000 to 1,200 degrees C, requiring a lot of energy and risking explosion,” says Plata. “Our technology avoids safety concerns by operating at 300 to 400 degrees C. It reduces energy use and provides more tractable deployment costs.” 

    Potentially, energy and dollar costs could be further reduced in coal mines by capturing the heat generated by the conversion process. “In coal mines, you have enrichments above a half-percent methane, but below the 4 percent flammability threshold,” says Plata. “The excess heat from the process could be used to generate electricity using off-the-shelf converters.” 

    Plata’s dairy barn research is funded by the Gerstner Family Foundation and the coal mining project by the U.S. Department of Energy. “The DOE would like us to spin out the technology for scale-up within three years,” says Plata. “We cannot guarantee we will hit that goal, but we are trying to develop this as quickly as possible. Our society needs to start reducing methane emissions now.”  More

  • in

    Coordinating climate and air-quality policies to improve public health

    As America’s largest investment to fight climate change, the Inflation Reduction Act positions the country to reduce its greenhouse gas emissions by an estimated 40 percent below 2005 levels by 2030. But as it edges the United States closer to achieving its international climate commitment, the legislation is also expected to yield significant — and more immediate — improvements in the nation’s health. If successful in accelerating the transition from fossil fuels to clean energy alternatives, the IRA will sharply reduce atmospheric concentrations of fine particulates known to exacerbate respiratory and cardiovascular disease and cause premature deaths, along with other air pollutants that degrade human health. One recent study shows that eliminating air pollution from fossil fuels in the contiguous United States would prevent more than 50,000 premature deaths and avoid more than $600 billion in health costs each year.

    While national climate policies such as those advanced by the IRA can simultaneously help mitigate climate change and improve air quality, their results may vary widely when it comes to improving public health. That’s because the potential health benefits associated with air quality improvements are much greater in some regions and economic sectors than in others. Those benefits can be maximized, however, through a prudent combination of climate and air-quality policies.

    Several past studies have evaluated the likely health impacts of various policy combinations, but their usefulness has been limited due to a reliance on a small set of standard policy scenarios. More versatile tools are needed to model a wide range of climate and air-quality policy combinations and assess their collective effects on air quality and human health. Now researchers at the MIT Joint Program on the Science and Policy of Global Change and MIT Institute for Data, Systems and Society (IDSS) have developed a publicly available, flexible scenario tool that does just that.

    In a study published in the journal Geoscientific Model Development, the MIT team introduces its Tool for Air Pollution Scenarios (TAPS), which can be used to estimate the likely air-quality and health outcomes of a wide range of climate and air-quality policies at the regional, sectoral, and fuel-based level. 

    “This tool can help integrate the siloed sustainability issues of air pollution and climate action,” says the study’s lead author William Atkinson, who recently served as a Biogen Graduate Fellow and research assistant at the IDSS Technology and Policy Program’s (TPP) Research to Policy Engagement Initiative. “Climate action does not guarantee a clean air future, and vice versa — but the issues have similar sources that imply shared solutions if done right.”

    The study’s initial application of TAPS shows that with current air-quality policies and near-term Paris Agreement climate pledges alone, short-term pollution reductions give way to long-term increases — given the expected growth of emissions-intensive industrial and agricultural processes in developing regions. More ambitious climate and air-quality policies could be complementary, each reducing different pollutants substantially to give tremendous near- and long-term health benefits worldwide.

    “The significance of this work is that we can more confidently identify the long-term emission reduction strategies that also support air quality improvements,” says MIT Joint Program Deputy Director C. Adam Schlosser, a co-author of the study. “This is a win-win for setting climate targets that are also healthy targets.”

    TAPS projects air quality and health outcomes based on three integrated components: a recent global inventory of detailed emissions resulting from human activities (e.g., fossil fuel combustion, land-use change, industrial processes); multiple scenarios of emissions-generating human activities between now and the year 2100, produced by the MIT Economic Projection and Policy Analysis model; and emissions intensity (emissions per unit of activity) scenarios based on recent data from the Greenhouse Gas and Air Pollution Interactions and Synergies model.

    “We see the climate crisis as a health crisis, and believe that evidence-based approaches are key to making the most of this historic investment in the future, particularly for vulnerable communities,” says Johanna Jobin, global head of corporate reputation and responsibility at Biogen. “The scientific community has spoken with unanimity and alarm that not all climate-related actions deliver equal health benefits. We’re proud of our collaboration with the MIT Joint Program to develop this tool that can be used to bridge research-to-policy gaps, support policy decisions to promote health among vulnerable communities, and train the next generation of scientists and leaders for far-reaching impact.”

    The tool can inform decision-makers about a wide range of climate and air-quality policies. Policy scenarios can be applied to specific regions, sectors, or fuels to investigate policy combinations at a more granular level, or to target short-term actions with high-impact benefits.

    TAPS could be further developed to account for additional emissions sources and trends.

    “Our new tool could be used to examine a large range of both climate and air quality scenarios. As the framework is expanded, we can add detail for specific regions, as well as additional pollutants such as air toxics,” says study supervising co-author Noelle Selin, professor at IDSS and the MIT Department of Earth, Atmospheric and Planetary Sciences, and director of TPP.    

    This research was supported by the U.S. Environmental Protection Agency and its Science to Achieve Results (STAR) program; Biogen; TPP’s Leading Technology and Policy Initiative; and TPP’s Research to Policy Engagement Initiative. More

  • in

    Doubling down on sustainability innovation in Kendall Square

    From its new headquarters in Cambridge’s Kendall Square, The Engine is investing in a number of “tough tech” startups seeking to transform the world’s energy systems. A few blocks away, the startup Inari is using gene editing to improve seeds’ resilience to climate change. On the MIT campus nearby, researchers are working on groundbreaking innovations to meet the urgent challenges our planet faces.

    Kendall Square is known as the biotech capital of the world, but as the latest annual meeting of the Kendal Square Association (KSA) made clear, it’s also a thriving hub of sustainability-related innovation.

    The Oct. 20 event, which began at MIT’s Welcome Center before moving to the MIT Museum for a panel discussion, brought together professionals from across Cambridge’s prolific innovation ecosystem — not just entrepreneurs working at startups, but also students, restaurant and retail shop owners, and people from local nonprofits.

    Titled “[Re] Imagining a Sustainable Future,” the meeting highlighted advances in climate change technologies that are afoot in Kendall Square, to help inspire and connect the community as it works toward common sustainability goals.

    “Our focus is on building a better future together — and together is the most important word there,” KSA Executive Director Beth O’Neill Maloney said in her opening remarks. “This is an incredibly innovative ecosystem and community that’s making changes that affect us here in Kendall Square and far, far beyond.”

    The pace of change

    The main event of the evening was a panel discussion moderated by Lee McGuire, the chief communications officer of the Broad Institute of MIT and Harvard. The panel featured Stuart Brown, chief financial officer at Inari; Emily Knight, chief operating officer at The Engine; and Joe Higgins, vice president for campus services and stewardship at MIT.

    “Sustainability is obviously one of the most important — if not the most important — challenge facing us as a society today,” said McGuire, opening the discussion. “Kendall Square is known for its work in biotech, life sciences, AI, and climate, and the more we dug into it the more we realized how interconnected all of those things are. The talent in Kendall Square wants to work on problems relevant for humanity, and the tools and skills you need for that can be very similar depending on the problem you’re working on.”

    Higgins, who oversees the creation of programs to reduce MIT’s environmental impact and improve the resilience of campus operations, focused on the enormity of the problem humanity is facing. He showed the audience a map of the U.S. power grid, with power plants and transmission lines illuminated in a complex web across the country, to underscore the scale of electrification that will be needed to mitigate the worst effects of climate change.

    “The U.S. power grid is the largest machine ever made by mankind,” Higgins said. “It’s been developed over 100 years; it has 7,000 generating plants that feed into it every day; it has 7 million miles of cable and wires; there are transformers and substations; and it lives in every single one of your walls. But people don’t think about it that much.”

    Many cities, states, and organizations like MIT have made commitments to shift to 100 percent clean energy in coming decades. Higgins wanted the audience to try to grasp what that’s going to take.

    “Hundreds of millions of devices and equipment across the planet are going to have to be swapped from fossil fuel to electric-based,” Higgins said. “Our cars, appliances, processes in industry, like making steel and concrete, are going to need to come from this grid. It’ll need to undergo a major modernization and transformation. The good news is it’s already changing.”

    Multiple panelists pointed to developments like the passing of the Inflation Reduction Act to show there was progress being made in reaching urgent sustainability goals.

    “There is a tide change coming, and it’s not only being driven by private capital,” Knight said. “There’s a huge opportunity here, and it’s a really important part of this [Kendall Square] ecosystem.”

    Chief among the topics of discussion was technology development. Even as leaders implement today’s technologies to decarbonize, people in Kendall Square keep a close eye on the new tech being developed and commercialized nearby.

    “I was trying to think about where we are with gene editing,” Brown said. “CRISPR’s been around for 10 years. Compare that to video games. Pong was the first video game when it came out in 1972. Today you have Chess.com using artificial intelligence to power chess games. On gene editing and a lot of these other technologies, we’re much closer to Pong than we are to where it’s going to be. We just can’t imagine today the technology changes we’re going to see over the next five to 10 years.”

    In that regard, Knight discussed some of the promising portfolio companies of The Engine, which invests in early stage, technologically innovative companies. In particular, she highlighted two companies seeking to transform the world’s energy systems with entirely new, 100 percent clean energy sources. MIT spinout Commonwealth Fusion Systems is working on nuclear fusion reactors that could provide abundant, safe, and constant streams of clean energy to our grids, while fellow MIT spinout Quaise Energy is seeking to harvest a new kind of deep geothermal energy using millimeter wave drilling technology.

    “All of our portfolio companies have a focus on sustainability in one way or another,” Knight said. “People who are working on these very hard technologies will change the world.”

    Knight says the kind of collaboration championed by the KSA is important for startups The Engine invests in.

    “We know these companies need a lot of people around them, whether from government, academia, advisors, corporate partners, anyone who can help them on their path, because for a lot of them this is a new path and a new market,” Knight said.

    Reasons for hope

    The KSA is made up of over 150 organizations across Kendall Square. From major employers like Sanofi, Pfizer, MIT, and the Broad Institute to local nonprofit organizations, startups, and independent shops and restaurants, the KSA represents the entire Kendall ecosystem.

    O’Neill Maloney celebrated a visible example of sustainability in Kendall Square early on by the Charles River Conservancy, which has built a floating wetland designed to naturally remove harmful algae blooms from Charles River.

    Other examples of sustainability work in the neighborhood can be found at MIT. Under its “Fast Forward” climate action plan, the Institute has set a goal of eliminating direct emissions from its campus by 2050, including a near-term milestone of achieving net-zero emissions by 2026. Since 2014, when MIT launched a five-year plan for action on climate change, net campus emissions have already been cut by 20 percent by making its campus buildings more energy efficient, transitioning to electric vehicles, and enabling large-scale renewable energy projects, among other strategies.

    In the face of a daunting global challenge, such milestones are reason for optimism.

    “If anybody’s going to be able to do this [shift to 100 percent clean energy] and show how it can be done at an urban, city scale, it’s probably MIT and the city of Cambridge,” McGuire said. “We have a lot of good ingredients to figure this out.”

    Throughout the night, many speakers, attendees, and panelists echoed that sentiment. They said they see plenty of reasons for hope.

    “I’m absolutely optimistic,” Higgins said. “I’m seeing utility companies working with businesses working with regulators — people are coming together on this topic. And one of these new technologies being commercialized is going to change things before 2030, whether its fusion, deep geothermal, small modular nuclear reactors, the technology is just moving so quickly.” More