More stories

  • in

    Aligning economic and regulatory frameworks for today’s nuclear reactor technology

    Liam Hines ’22 didn’t move to Sarasota, Florida, until high school, but he’s a Floridian through and through. He jokes that he’s even got a floral shirt, what he calls a “Florida formal,” for every occasion.Which is why it broke his heart when toxic red algae used to devastate the Sunshine State’s coastline, including at his favorite beach, Caspersen. The outbreak made headline news during his high school years, with the blooms destroying marine wildlife and adversely impacting the state’s tourism-driven economy.In Florida, Hines says, environmental awareness is pretty high because everyday citizens are being directly impacted by climate change. After all, it’s hard not to worry when beautiful white sand beaches are covered in dead fish. Ongoing concerns about the climate cemented Hines’ resolve to pick a career that would have a strong “positive environmental impact.” He chose nuclear, as he saw it as “a green, low-carbon-emissions energy source with a pretty straightforward path to implementation.”

    Liam Hines: Ensuring that nuclear policy keeps up with nuclear technology.

    Undergraduate studies at MITKnowing he wanted a career in the sciences, Hines applied and got accepted to MIT for undergraduate studies in fall 2018. An orientation program hosted by the Department of Nuclear Science and Engineering (NSE) sold him on the idea of pursuing the field. “The department is just a really tight-knit community, and that really appealed to me,” Hines says.During his undergraduate years, Hines realized he needed a job to pay part of his bills. “Instead of answering calls at the dorm front desk or working in the dining halls, I decided I’m going to become a licensed nuclear operator onsite,” he says. “Reactor operations offer so much hands-on experience with real nuclear systems. It doesn’t hurt that it pays better.” Becoming a licensed nuclear reactor operator is hard work, however, involving a year-long training process studying maintenance, operations, and equipment oversight. A bonus: The job, supervising the MIT Nuclear Reactor Laboratory, taught him the fundamentals of nuclear physics and engineering.Always interested in research, Hines got an early start by exploring the regulatory challenges of advanced fusion systems. There have been questions related to licensing requirements and the safety consequences of the onsite radionuclide inventory. Hines’ undergraduate research work involved studying precedent for such fusion facilities and comparing them to experimental facilities such as the Tokamak Fusion Test Reactor at the Princeton Plasma Physics Laboratory.Doctoral focus on legal and regulatory frameworksWhen scientists want to make technologies as safe as possible, they have to do two things in concert: First they evaluate the safety of the technology, and then make sure legal and regulatory structures take into account the evolution of these advanced technologies. Hines is taking such a two-pronged approach to his doctoral work on nuclear fission systems.Under the guidance of Professor Koroush Shirvan, Hines is conducting systems modeling of various reactor cores that include graphite, and simulating operations under long time spans. He then studies radionuclide transport from low-level waste facilities — the consequences of offsite storage after 50 or 100 or even 10,000 years of storage. The work has to make sure to hit safety and engineering margins, but also tread a fine line. “You want to make sure you’re not over-engineering systems and adding undue cost, but also making sure to assess the unique hazards of these advanced technologies as accurately as possible,” Hines says.On a parallel track, under Professor Haruko Wainwright’s advisement, Hines is applying the current science on radionuclide geochemistry to track radionuclide wastes and map their profile for hazards. One of the challenges fission reactors face is that existing low-level waste regulations were fine-tuned to old reactors. Regulations have not kept up: “Now that we have new technologies with new wastes, some of the hazards of the new waste are completely missed by existing standards,” Hines says. He is working to seal these gaps.A philosophy-driven outlookHines is grateful for the dynamic learning environment at NSE. “A lot of the faculty have that go-getter attitude,” he points out, impressed by the entrepreneurial spirit on campus. “It’s made me confident to really tackle the things that I care about.”An ethics class as an undergraduate made Hines realize there were discussions in class he could apply to the nuclear realm, especially when it came to teasing apart the implications of the technology — where the devices would be built and who they would serve. He eventually went on to double-major in NSE and philosophy.The framework style of reading and reasoning involved in studying philosophy is particularly relevant in his current line of work, where he has to extract key points regarding nuclear regulatory issues. Much like philosophy discussions today that involve going over material that has been discussed for centuries and framing them through new perspectives, nuclear regulatory issues too need to take the long view.“In philosophy, we have to insert ourselves into very large conversations. Similarly, in nuclear engineering, you have to understand how to take apart the discourse that’s most relevant to your research and frame it,” Hines says. This technique is especially necessary because most of the time the nuclear regulatory issues might seem like wading in the weeds of nitty-gritty technical matters, but they can have a huge impact on the public and public perception, Hines adds.As for Florida, Hines visits every chance he can get. The red tide still surfaces but not as consistently as it once did. And since he started his job as a nuclear operator in his undergraduate days, Hines has progressed to senior reactor operator. This time around he gets to sign off on the checklists. “It’s much like when I was shift lead at Dunkin’ Donuts in high school,” Hines says, “everyone is kind of doing the same thing, but you get to be in charge for the afternoon.” More

  • in

    Where flood policy helps most — and where it could do more

    Flooding, including the devastation caused recently by Hurricane Helene, is responsible for $5 billion in annual damages in the U.S. That’s more than any other type of weather-related extreme event.To address the problem, the federal government instituted a program in 1990 that helps reduce flood insurance costs in communities enacting measures to better handle flooding. If, say, a town preserves open space as a buffer against coastal flooding, or develops better stormwater management, area policy owners get discounts on their premiums. Studies show the program works well: It has reduced overall flood damage in participating communities.However, a new study led by an MIT researcher shows that the effects of the program differ greatly from place to place. For instance, higher-population communities, which likely have more means to introduce flood defenses, benefit more than smaller communities, to the tune of about $4,000 per insured household.“When we evaluate it, the effects of the same policy vary widely among different types of communities,” says study co-author Lidia Cano Pecharromán, a PhD candidate in MIT’s Department of Urban Studies and Planning.Referring to climate and environmental justice concerns, she adds: “It’s important to understand not just if a policy is effective, but who is benefitting, so that we can make necessary adjustments and reach all the targets we want to reach.”The paper, “Exposing Disparities in Flood Adaptation for Equitable Future Interventions in the USA,” is published today in Nature Communications. The authors are Cano Pecharromán and ChangHoon Hahn, an associate research scholar at Princeton University.Able to afford helpThe program in question was developed by the Federal Emergency Management Agency (FEMA), which has a division, the Flood Insurance Mitigation Administration, focusing on this issue. In 1990, FEMA initiated the National Flood Insurance Program’s Community Rating System, which incentivizes communities to enact measures that help prevent or reduce flooding.Communities can engage in a broad set of related activities, including floodplain mapping, preservation of open spaces, stormwater management activities, creating flood warning systems, or even developing public information and participation programs. In exchange, area residents receive a discount on their flood insurance premium rates.To conduct the study, the researchers examined 2.5 million flood insurance claims filed with FEMA since then. They also examined U.S. Census Bureau data to analyze demographic and economic data about communities, and incorporated flood risk data from the First Street Foundation.By comparing over 1,500 communities in the FEMA program, the researchers were able to quantify its different relative effects — depending on community characteristics such as population, race, income or flood risk. For instance, higher-income communities seem better able to make more flood-control and mitigation investments, earning better FEMA ratings and, ultimately, enacting more effective measures.“You see some positive effects for low-income communities, but as the risks go up, these disappear, while only high-income communities continue seeing these positive effects,” says Cano Pecharromán. “They are likely able to afford measures that handle a higher risk indices for flooding.”Similarly, the researchers found, communities with higher overall levels of education fare better from the flood-insurance program, with about $2,000 more in savings per individual policy than communities with lower levels of education. One way or another, communities with more assets in the first place — size, wealth, education — are better able to deploy or hire the civic and technical expertise necessary to enact more best practices against flood damage.And even among lower-income communities in the program, communities with less population diversity see greater effectiveness from their flood program activities, realizing a gain of about $6,000 per household compared to communities where racial and ethnic minorities are predominant.“These are substantial effects, and we should consider these things when making decisions and reviewing if our climate adaptation policies work,” Cano Pecharromán says.An even larger number of communities is not in the FEMA program at all. The study identified 14,729 unique U.S. communities with flood issues. Many of those are likely lacking the capacity to engage on flooding issues the way even the lower-ranked communities within the FEMA program have at least taken some action so far.“If we are able to consider all the communities that are not in the program because they can’t afford to do the basics, we would likely see that the effects are even larger among different communities,” Cano Pecharromán says.Getting communities startedTo make the program more effective for more people, Cano Pecharromán suggests that the federal government should consider how to help communities enact flood-control and mitigation measures in the first place.“When we set out these kinds of policies, we need to consider how certain types of communities might need help with implementation,” she says.Methodologically, the researchers arrived at their conclusions using an advanced statistical approach that Hahn, who is an astrophysicist by training, has applied to the study of dark energy and galaxies. Instead of finding one “average treatment effect” of the FEMA program across all participating communities, they quantified the program’s impact while subdividing the set of participating set of communities according to their characteristics.“We are able to calculate the causal effect of [the program], not as an average, which can hide these inequalities, but at every given level of the specific characteristic of communities we’re looking at, different levels of income, different levels of education, and more,” Cano Pecharromán says.Government officials have seen Cano Pecharromán present the preliminary findings at meetings, and expressed interest in the results. Currently, she is also working on a follow-up study, which aims to pinpoint which types of local flood-mitigation programs provide the biggest benefits for local communities.Support for the research was provided, in part, by the La Caixa Foundation, the MIT Martin Family Society of Fellows for Sustainability, and the AI Accelerator program of the Schmidt Futures Foundation. More

  • in

    Study evaluates impacts of summer heat in U.S. prison environments

    When summer temperatures spike, so does our vulnerability to heat-related illness or even death. For the most part, people can take measures to reduce their heat exposure by opening a window, turning up the air conditioning, or simply getting a glass of water. But for people who are incarcerated, freedom to take such measures is often not an option. Prison populations therefore are especially vulnerable to heat exposure, due to their conditions of confinement.A new study by MIT researchers examines summertime heat exposure in prisons across the United States and identifies characteristics within prison facilities that can further contribute to a population’s vulnerability to summer heat.The study’s authors used high-spatial-resolution air temperature data to determine the daily average outdoor temperature for each of 1,614 prisons in the U.S., for every summer between the years 1990 and 2023. They found that the prisons that are exposed to the most extreme heat are located in the southwestern U.S., while prisons with the biggest changes in summertime heat, compared to the historical record, are in the Pacific Northwest, the Northeast, and parts of the Midwest.Those findings are not entirely unique to prisons, as any non-prison facility or community in the same geographic locations would be exposed to similar outdoor air temperatures. But the team also looked at characteristics specific to prison facilities that could further exacerbate an incarcerated person’s vulnerability to heat exposure. They identified nine such facility-level characteristics, such as highly restricted movement, poor staffing, and inadequate mental health treatment. People living and working in prisons with any one of these characteristics may experience compounded risk to summertime heat. The team also looked at the demographics of 1,260 prisons in their study and found that the prisons with higher heat exposure on average also had higher proportions of non-white and Hispanic populations. The study, appearing today in the journal GeoHealth, provides policymakers and community leaders with ways to estimate, and take steps to address, a prison population’s heat risk, which they anticipate could worsen with climate change.“This isn’t a problem because of climate change. It’s becoming a worse problem because of climate change,” says study lead author Ufuoma Ovienmhada SM ’20, PhD ’24, a graduate of the MIT Media Lab, who recently completed her doctorate in MIT’s Department of Aeronautics and Astronautics (AeroAstro). “A lot of these prisons were not built to be comfortable or humane in the first place. Climate change is just aggravating the fact that prisons are not designed to enable incarcerated populations to moderate their own exposure to environmental risk factors such as extreme heat.”The study’s co-authors include Danielle Wood, MIT associate professor of media arts and sciences, and of AeroAstro; and Brent Minchew, MIT associate professor of geophysics in the Department of Earth, Atmospheric and Planetary Sciences; along with Ahmed Diongue ’24, Mia Hines-Shanks of Grinnell College, and Michael Krisch of Columbia University.Environmental intersectionsThe new study is an extension of work carried out at the Media Lab, where Wood leads the Space Enabled research group. The group aims to advance social and environmental justice issues through the use of satellite data and other space-enabled technologies.The group’s motivation to look at heat exposure in prisons came in 2020 when, as co-president of MIT’s Black Graduate Student Union, Ovienmhada took part in community organizing efforts following the murder of George Floyd by Minneapolis police.“We started to do more organizing on campus around policing and reimagining public safety. Through that lens I learned more about police and prisons as interconnected systems, and came across this intersection between prisons and environmental hazards,” says Ovienmhada, who is leading an effort to map the various environmental hazards that prisons, jails, and detention centers face. “In terms of environmental hazards, extreme heat causes some of the most acute impacts for incarcerated people.”She, Wood, and their colleagues set out to use Earth observation data to characterize U.S. prison populations’ vulnerability, or their risk of experiencing negative impacts, from heat.The team first looked through a database maintained by the U.S. Department of Homeland Security that lists the location and boundaries of carceral facilities in the U.S. From the database’s more than 6,000 prisons, jails, and detention centers, the researchers highlighted 1,614 prison-specific facilities, which together incarcerate nearly 1.4 million people, and employ about 337,000 staff.They then looked to Daymet, a detailed weather and climate database that tracks daily temperatures across the United States, at a 1-kilometer resolution. For each of the 1,614 prison locations, they mapped the daily outdoor temperature, for every summer between the years 1990 to 2023, noting that the majority of current state and federal correctional facilities in the U.S. were built by 1990.The team also obtained U.S. Census data on each facility’s demographic and facility-level characteristics, such as prison labor activities and conditions of confinement. One limitation of the study that the researchers acknowledge is a lack of information regarding a prison’s climate control.“There’s no comprehensive public resource where you can look up whether a facility has air conditioning,” Ovienmhada notes. “Even in facilities with air conditioning, incarcerated people may not have regular access to those cooling systems, so our measurements of outdoor air temperature may not be far off from reality.”Heat factorsFrom their analysis, the researchers found that more than 98 percent of all prisons in the U.S. experienced at least 10 days in the summer that were hotter than every previous summer, on average, for a given location. Their analysis also revealed the most heat-exposed prisons, and the prisons that experienced the highest temperatures on average, were mostly in the Southwestern U.S. The researchers note that with the exception of New Mexico, the Southwest is a region where there are no universal air conditioning regulations in state-operated prisons.“States run their own prison systems, and there is no uniformity of data collection or policy regarding air conditioning,” says Wood, who notes that there is some information on cooling systems in some states and individual prison facilities, but the data is sparse overall, and too inconsistent to include in the group’s nationwide study.While the researchers could not incorporate air conditioning data, they did consider other facility-level factors that could worsen the effects that outdoor heat triggers. They looked through the scientific literature on heat, health impacts, and prison conditions, and focused on 17 measurable facility-level variables that contribute to heat-related health problems. These include factors such as overcrowding and understaffing.“We know that whenever you’re in a room that has a lot of people, it’s going to feel hotter, even if there’s air conditioning in that environment,” Ovienmhada says. “Also, staffing is a huge factor. Facilities that don’t have air conditioning but still try to do heat risk-mitigation procedures might rely on staff to distribute ice or water every few hours. If that facility is understaffed or has neglectful staff, that may increase people’s susceptibility to hot days.”The study found that prisons with any of nine of the 17 variables showed statistically significant greater heat exposures than the prisons without those variables. Additionally, if a prison exhibits any one of the nine variables, this could worsen people’s heat risk through the combination of elevated heat exposure and vulnerability. The variables, they say, could help state regulators and activists identify prisons to prioritize for heat interventions.“The prison population is aging, and even if you’re not in a ‘hot state,’ every state has responsibility to respond,” Wood emphasizes. “For instance, areas in the Northwest, where you might expect to be temperate overall, have experienced a number of days in recent years of increasing heat risk. A few days out of the year can still be dangerous, particularly for a population with reduced agency to regulate their own exposure to heat.”This work was supported, in part, by NASA, the MIT Media Lab, and MIT’s Institute for Data, Systems and Society’s Research Initiative on Combatting Systemic Racism. More

  • in

    Liftoff: The Climate Project at MIT takes flight

    The leaders of The Climate Project at MIT met with community members at a campus forum on Monday, helping to kick off the Institute’s major new effort to accelerate and scale up climate change solutions.“The Climate Project is a whole-of-MIT mobilization,” MIT President Sally Kornbluth said in her opening remarks. “It’s designed to focus the Institute’s talent and resources so that we can achieve much more, faster, in terms of real-world impact, from mitigation to adaptation.”The event, “Climate Project at MIT: Launching the Missions,” drew a capacity crowd to MIT’s Samberg Center.While the Climate Project has a number of facets, a central component of the effort consists of its six “missions,” broad areas where MIT researchers will seek to identify gaps in the global climate response that MIT can help fill, and then launch and execute research and innovation projects aimed at those areas. Each mission is led by campus faculty, and Monday’s event represented the first public conversation between the mission directors and the larger campus community.“Today’s event is an important milestone,” said Richard Lester, MIT’s interim vice president for climate and the Japan Steel Industry Professor of Nuclear Science and Engineering, who led the Climate Project’s formation. He praised Kornbluth’s sustained focus on climate change as a leading priority for MIT.“The reason we’re all here is because of her leadership and vision for MIT,” Lester said. “We’re also here because the MIT community — our faculty, our staff, our students — has made it abundantly clear that it wants to do more, much more, to help solve this great problem.”The mission directors themselves emphasized the need for deep community involvement in the project — and that the Climate Project is designed to facilitate researcher-driven enterprise across campus.“There’s a tremendous amount of urgency,” said Elsa Olivetti PhD ’07, director of the Decarbonizing Energy and Industry mission, during an onstage discussion. “We all need to do everything we can, and roll up our sleeves and get it done.” Olivetti, the Jerry McAfee Professor in Engineering, has been a professor of materials science and engineering at the Institute since 2014.“What’s exciting about this is the chance of MIT really meeting its potential,” said Jesse Kroll, co-director of the mission for Restoring the Atmosphere, Protecting the Land and Oceans. Kroll is the Peter de Florez Professor in MIT’s Department of Civil and Environmental Engineering, a professor of chemical engineering, and the director of the Ralph M. Parsons Laboratory.MIT, Kroll noted, features “so much amazing work going on in all these different aspects of the problem. Science, engineering, social science … we put it all together and there is huge potential, a huge opportunity for us to make a difference.”MIT has pledged an initial $75 million to the Climate Project, including $25 million from the MIT Sloan School of Management for a complementary effort, the MIT Climate Policy Center. However, the Institute is anticipating that it will also build new connections with outside partners, whose role in implementing and scaling Climate Project solutions will be critical.Monday’s event included a keynote talk from Brian Deese, currently the MIT Innovation and Climate Impact Fellow and the former director of the White House National Economic Council in the Biden administration.“The magnitude of the risks associated with climate change are extraordinary,” Deese said. However, he added, “these are solvable issues. In fact, the energy transition globally will be the greatest economic opportunity in human history. … It has the potential to actually lift people out of poverty, it has the potential to drive international cooperation, it has the potential to drive innovation and improve lives — if we get this right.”Deese’s remarks centered on a call for the U.S. to develop a current-day climate equivalent of the Marshall Plan, the U.S. initiative to provide aid to Western Europe after World War II. He also suggested three characteristics of successful climate projects, noting that many would be interdisciplinary in nature and would “engage with policy early in the design process” to become feasible.In addition to those features, Deese said, people need to “start and end with very high ambition” when working on climate solutions. He added: “The good thing about MIT and our community is that we, you, have done this before. We’ve got examples where MIT has taken something that seemed completely improbable and made it possible, and I believe that part of what is required of this collective effort is to keep that kind of audacious thinking at the top of our mind.” The MIT mission directors all participated in an onstage discussion moderated by Somini Sengupta, the international climate reporter on the climate team of The New York Times. Sengupta asked the group about a wide range of topics, from their roles and motivations to the political constraints on global climate progress, and more.Andrew Babbin, co-director of the mission for Restoring the Atmosphere, Protecting the Land and Oceans, defined part of the task of the MIT missions as “identifying where those gaps of knowledge are and filling them rapidly,” something he believes is “largely not doable in the conventional way,” based on small-scale research projects. Instead, suggested Babbin, who is the Cecil and Ida Green Career Development Professor in MIT’s Program in Atmospheres, Oceans, and Climate, the collective input of research and innovation communities could help zero in on undervalued approaches to climate action.Some innovative concepts, the mission directors noted, can be tried out on the MIT campus, in an effort to demonstrate how a more sustainable infrastructure and systems can operate at scale.“That is absolutely crucial,” said Christoph Reinhart, director of the Building and Adapting Healthy, Resilient Cities mission, expressing the need to have the campus reach net-zero emissions. Reinhart is the Alan and Terri Spoon Professor of Architecture and Climate and director of MIT’s Building Technology Program in the School of Architecture and Planning.In response to queries from Sengupta, the mission directors affirmed that the Climate Project needs to develop solutions that can work in different societies around the world, while acknowledging that there are many political hurdles to worldwide climate action.“Any kind of quality engaged projects that we’ve done with communities, it’s taken years to build trust. … How you scale that without compromising is the challenge I’m faced with,” said Miho Mazereeuw, director of the Empowering Frontline Communities mission, an associate professor of architecture and urbanism, and director of MIT’s Urban Risk Lab.“I think we will impact different communities in different parts of the world in different ways,” said Benedetto Marelli, an associate professor in MIT’s Department of Civil and Environmental Engineering, adding that it would be important to “work with local communities [and] engage stakeholders, and at the same time, use local brains to solve the problem.” The mission he directs, Wild Cards, is centered on identifying unconventional solutions that are high risk and also high reward.Any climate program “has to be politically feasible, it has to be in separate nations’ self-interest,” said Christopher Knittel, mission director for Inventing New Policy Approaches. In an ever-shifting political world, he added, that means people must “think about not just the policy but the resiliency of the policy.” Knittel is the George P. Shultz Professor and professor of applied economics at the MIT Sloan School of Management, director of the MIT Climate Policy Center, and associate dean for Climate and Sustainability.In all, MIT has more than 300 faculty and senior researchers who, along with their students and staff, are already working on climate issues.Kornbluth, for her part, referred to MIT’s first-year students while discussing the larger motivations for taking concerted action to address the challenges of climate change. It might be easy for younger people to despair over the world’s climate trajectory, she noted, but the best response to that includes seeking new avenues for climate progress.“I understand their anxiety and concern,” Kornbluth said. “But I have no doubt at all that together, we can make a difference. I believe that we have a special obligation to the new students and their entire generation to do everything we can to create a positive change. The most powerful antidote to defeat and despair is collection action.” More

  • in

    Affordable high-tech windows for comfort and energy savings

    Imagine if the windows of your home didn’t transmit heat. They’d keep the heat indoors in winter and outdoors on a hot summer’s day. Your heating and cooling bills would go down; your energy consumption and carbon emissions would drop; and you’d still be comfortable all year ’round.AeroShield, a startup spun out of MIT, is poised to start manufacturing such windows. Building operations make up 36 percent of global carbon dioxide emissions, and today’s windows are a major contributor to energy inefficiency in buildings. To improve building efficiency, AeroShield has developed a window technology that promises to reduce heat loss by up to 65 percent, significantly reducing energy use and carbon emissions in buildings, and the company just announced the opening of a new facility to manufacture its breakthrough energy-efficient windows.“Our mission is to decarbonize the built environment,” says Elise Strobach SM ’17, PhD ’20, co-founder and CEO of AeroShield. “The availability of affordable, thermally insulating windows will help us achieve that goal while also reducing homeowner’s heating and cooling bills.” According to the U.S. Department of Energy, for most homeowners, 30 percent of that bill results from window inefficiencies.Technology development at MITResearch on AeroShield’s window technology began a decade ago in the MIT lab of Evelyn Wang, Ford Professor of Engineering, now on leave to serve as director of the Advanced Research Projects Agency-Energy (ARPA-E). In late 2014, the MIT team received funding from ARPA-E, and other sponsors followed, including the MIT Energy Initiative through the MIT Tata Center for Technology and Design in 2016.The work focused on aerogels, remarkable materials that are ultra-porous, lighter than a marshmallow, strong enough to support a brick, and an unparalleled barrier to heat flow. Aerogels were invented in the 1930s and used by NASA and others as thermal insulation. The team at MIT saw the potential for incorporating aerogel sheets into windows to keep heat from escaping or entering buildings. But there was one problem: Nobody had been able to make aerogels transparent.An aerogel is made of transparent, loosely connected nanoscale silica particles and is 95 percent air. But an aerogel sheet isn’t transparent because light traveling through it gets scattered by the silica particles.After five years of theoretical and experimental work, the MIT team determined that the key to transparency was having the silica particles both small and uniform in size. This allows light to pass directly through, so the aerogel becomes transparent. Indeed, as long as the particle size is small and uniform, increasing the thickness of an aerogel sheet to achieve greater thermal insulation won’t make it less clear.Teams in the MIT lab looked at various applications for their super-insulating, transparent aerogels. Some focused on improving solar thermal collectors by making the systems more efficient and less expensive. But to Strobach, increasing the thermal efficiency of windows looked especially promising and potentially significant as a means of reducing climate change.The researchers determined that aerogel sheets could be inserted into the gap in double-pane windows, making them more than twice as insulating. The windows could then be manufactured on existing production lines with minor changes, and the resulting windows would be affordable and as wide-ranging in style as the window options available today. Best of all, once purchased and installed, the windows would reduce electricity bills, energy use, and carbon emissions.The impact on energy use in buildings could be considerable. “If we only consider winter, windows in the United States lose enough energy to power over 50 million homes,” says Strobach. “That wasted energy generates about 350 million tons of carbon dioxide — more than is emitted by 76 million cars.” Super-insulating windows could help home and building owners reduce carbon dioxide emissions by gigatons while saving billions in heating and cooling costs.The AeroShield storyIn 2019, Strobach and her MIT colleagues — Aaron Baskerville-Bridges MBA ’20, SM ’20 and Kyle Wilke PhD ’19 — co-founded AeroShield to further develop and commercialize their aerogel-based technology for windows and other applications. And in the subsequent five years, their hard work has attracted attention, recently leading to two major accomplishments.In spring 2024, the company announced the opening of its new pilot manufacturing facility in Waltham, Massachusetts, where the team will be producing, testing, and certifying their first full-size windows and patio doors for initial product launch. The 12,000 square foot facility will significantly expand the company’s capabilities, with cutting-edge aerogel R&D labs, manufacturing equipment, assembly lines, and testing equipment. Says Strobach, “Our pilot facility will supply window and door manufacturers as we launch our first products and will also serve as our R&D headquarters as we develop the next generation of energy-efficient products using transparent aerogels.”Also in spring 2024, AeroShield received a $14.5 million award from ARPA-E’s “Seeding Critical Advances for Leading Energy technologies with Untapped Potential” (SCALEUP) program, which provides new funding to previous ARPA-E awardees that have “demonstrated a viable path to market.” That funding will enable the company to expand its production capacity to tens of thousands, or even hundreds of thousands, of units per year.Strobach also cites two less-obvious benefits of the SCALEUP award.First, the funding is enabling the company to move more quickly on the scale-up phase of their technology development. “We know from our fundamental studies and lab experiments that we can make large-area aerogel sheets that could go in an entry or patio door,” says Elise. “The SCALEUP award allows us to go straight for that vision. We don’t have to do all the incremental sizes of aerogels to prove that we can make a big one. The award provides capital for us to buy the big equipment to make the big aerogel.”Second, the SCALEUP award confirms the viability of the company to other potential investors and collaborators. Indeed, AeroShield recently announced $5 million of additional funding from existing investors Massachusetts Clean Energy Center and MassVentures, as well as new investor MassMutual Ventures. Strobach notes that the company now has investor, engineering, and customer partners.She stresses the importance of partners in achieving AeroShield’s mission. “We know that what we’ve got from a fundamental perspective can change the industry,” she says. “Now we want to go out and do it. With the right partners and at the right pace, we may actually be able to increase the energy efficiency of our buildings early enough to help make a real dent in climate change.” More

  • in

    3 Questions: The past, present, and future of sustainability science

    It was 1978, over a decade before the word “sustainable” would infiltrate environmental nomenclature, and Ronald Prinn, MIT professor of atmospheric science, had just founded the Advanced Global Atmospheric Gases Experiment (AGAGE). Today, AGAGE provides real-time measurements for well over 50 environmentally harmful trace gases, enabling us to determine emissions at the country level, a key element in verifying national adherence to the Montreal Protocol and the Paris Accord. This, Prinn says, started him thinking about doing science that informed decision making.Much like global interest in sustainability, Prinn’s interest and involvement continued to grow into what would become three decades worth of achievements in sustainability science. The Center for Global Change Science (CGCS) and Joint Program on the Science and Policy Global Change, respectively founded and co-founded by Prinn, have recently joined forces to create the MIT School of Science’s new Center for Sustainability Science and Strategy (CS3), lead by former CGCS postdoc turned MIT professor, Noelle Selin.As he prepares to pass the torch, Prinn reflects on how far sustainability has come, and where it all began.Q: Tell us about the motivation for the MIT centers you helped to found around sustainability.A: In 1990 after I founded the Center for Global Change Science, I also co-founded the Joint Program on the Science and Policy Global Change with a very important partner, [Henry] “Jake” Jacoby. He’s now retired, but at that point he was a professor in the MIT Sloan School of Management. Together, we determined that in order to answer questions related to what we now call sustainability of human activities, you need to combine the natural and social sciences involved in these processes. Based on this, we decided to make a joint program between the CGCS and a center that he directed, the Center for Energy and Environmental Policy Research (CEEPR).It was called the “joint program” and was joint for two reasons — not only were two centers joining, but two disciplines were joining. It was not about simply doing the same science. It was about bringing a team of people together that could tackle these coupled issues of environment, human development and economy. We were the first group in the world to fully integrate these elements together.Q: What has been your most impactful contribution and what effect did it have on the greater public’s overall understanding?A: Our biggest contribution is the development, and more importantly, the application of the Integrated Global System Model [IGSM] framework, looking at human development in both developing countries and developed countries that had a significant impact on the way people thought about climate issues. With IGSM, we were able to look at the interactions among human and natural components, studying the feedbacks and impacts that climate change had on human systems; like how it would alter agriculture and other land activities, how it would alter things we derive from the ocean, and so on.Policies were being developed largely by economists or climate scientists working independently, and we started showing how the real answers and analysis required a coupling of all of these components. We showed, and I think convincingly, that what people used to study independently, must be coupled together, because the impacts of climate change and air pollution affected so many things.To address the value of policy, despite the uncertainty in climate projections, we ran multiple runs of the IGSM with and without policy, with different choices for uncertain IGSM variables. For public communication, around 2005, we introduced our signature Greenhouse Gamble interactive visualization tools; these have been renewed over time as science and policies evolved.Q: What can MIT provide now at this critical juncture in understanding climate change and its impact?A: We need to further push the boundaries of integrated global system modeling to ensure full sustainability of human activity and all of its beneficial dimensions, which is the exciting focus that the CS3 is designed to address. We need to focus on sustainability as a central core element and use it to not just analyze existing policies but to propose new ones. Sustainability is not just climate or air pollution, it’s got to do with human impacts in general. Human health is central to sustainability, and equally important to equity. We need to expand the capability for credibly assessing what the impact policies have not just on developed countries, but on developing countries, taking into account that many places around the world are at artisanal levels of their economies. They cannot be blamed for anything that is changing climate and causing air pollution and other detrimental things that are currently going on. They need our help. That’s what sustainability is in its full dimensions.Our capabilities are evolving toward a modeling system so detailed that we can find out detrimental things about policies even at local levels before investing in changing infrastructure. This is going to require collaboration among even more disciplines and creating a seamless connection between research and decision making; not just for policies enacted in the public sector, but also for decisions that are made in the private sector.  More

  • in

    MIT students combat climate anxiety through extracurricular teams

    Climate anxiety affects nearly half of young people aged 16-25. Students like second-year Rachel Mohammed find hope and inspiration through her involvement in innovative climate solutions, working alongside peers who share her determination. “I’ve met so many people at MIT who are dedicated to finding climate solutions in ways that I had never imagined, dreamed of, or heard of. That is what keeps me going, and I’m doing my part,” she says.Hydrogen-fueled enginesHydrogen offers the potential for zero or near-zero emissions, with the ability to reduce greenhouse gases and pollution by 29 percent. However, the hydrogen industry faces many challenges related to storage solutions and costs.Mohammed leads the hydrogen team on MIT’s Electric Vehicle Team (EVT), which is dedicated to harnessing hydrogen power to build a cleaner, more sustainable future. EVT is one of several student-led build teams at the Edgerton Center focused on innovative climate solutions. Since its founding in 1992, the Edgerton Center has been a hub for MIT students to bring their ideas to life.Hydrogen is mostly used in large vehicles like trucks and planes because it requires a lot of storage space. EVT is building their second iteration of a motorcycle based on what Mohammed calls a “goofy hypothesis” that you can use hydrogen to power a small vehicle. The team employs a hydrogen fuel cell system, which generates electricity by combining hydrogen with oxygen. However, the technology faces challenges, particularly in storage, which EVT is tackling with innovative designs for smaller vehicles.Presenting at the 2024 World Hydrogen Summit reaffirmed Mohammed’s confidence in this project. “I often encounter skepticism, with people saying it’s not practical. Seeing others actively working on similar initiatives made me realize that we can do it too,” Mohammed says.The team’s first successful track test last October allowed them to evaluate the real-world performance of their hydrogen-powered motorcycle, marking a crucial step in proving the feasibility and efficiency of their design.MIT’s Sustainable Engine Team (SET), founded by junior Charles Yong, uses the combustion method to generate energy with hydrogen. This is a promising technology route for high-power-density applications, like aviation, but Yong believes it hasn’t received enough attention. Yong explains, “In the hydrogen power industry, startups choose fuel cell routes instead of combustion because gas turbine industry giants are 50 years ahead. However, these giants are moving very slowly toward hydrogen due to its not-yet-fully-developed infrastructure. Working under the Edgerton Center allows us to take risks and explore advanced tech directions to demonstrate that hydrogen combustion can be readily available.”Both EVT and SET are publishing their research and providing detailed instructions for anyone interested in replicating their results.Running on sunshineThe Solar Electric Vehicle Team powers a car built from scratch with 100 percent solar energy.The team’s single-occupancy car Nimbus won the American Solar Challenge two years in a row. This year, the team pushed boundaries further with Gemini, a multiple-occupancy vehicle that challenges conventional perceptions of solar-powered cars.Senior Andre Greene explains, “the challenge comes from minimizing how much energy you waste because you work with such little energy. It’s like the equivalent power of a toaster.”Gemini looks more like a regular car and less like a “spaceship,” as NBC’s 1st Look affectionately called Nimbus. “It more resembles what a fully solar-powered car could look like versus the single-seaters. You don’t see a lot of single-seater cars on the market, so it’s opening people’s minds,” says rising junior Tessa Uviedo, team captain.All-electric since 2013The MIT Motorsports team switched to an all-electric powertrain in 2013. Captain Eric Zhou takes inspiration from China, the world’s largest market for electric vehicles. “In China, there is a large government push towards electric, but there are also five or six big companies almost as large as Tesla size, building out these electric vehicles. The competition drives the majority of vehicles in China to become electric.”The team is also switching to four-wheel drive and regenerative braking next year, which reduces the amount of energy needed to run. “This is more efficient and better for power consumption because the torque from the motors is applied straight to the tires. It’s more efficient than having a rear motor that must transfer torque to both rear tires. Also, you’re taking advantage of all four tires in terms of producing grip, while you can only rely on the back tires in a rear-wheel-drive car,” Zhou says.Zhou adds that Motorsports wants to help prepare students for the electric vehicle industry. “A large majority of upperclassmen on the team have worked, or are working, at Tesla or Rivian.”Former Motorsports powertrain lead Levi Gershon ’23, SM ’24 recently founded CRABI Robotics — a fully autonomous marine robotic system designed to conduct in-transit cleaning of marine vessels by removing biofouling, increasing vessels’ fuel efficiency.An Indigenous approach to sustainable rocketsFirst Nations Launch, the all-Indigenous student rocket team, recently won the Grand Prize in the 2024 NASA First Nations Launch High-Power Rocket Competition. Using Indigenous methodologies, this team considers the environment in the materials and methods they employ.“The environmental impact is always something that we consider when we’re making design decisions and operational decisions. We’ve thought about things like biodegradable composites and parachutes,” says rising junior Hailey Polson, team captain. “Aerospace has been a very wasteful industry in the past. There are huge leaps and bounds being made with forward progress in regard to reusable rockets, which is definitely lowering the environmental impact.”Collecting climate change data with autonomous boatsArcturus, the recent first-place winner in design at the 16th Annual RoboBoat Competition, is developing autonomous surface vehicles that can greatly aid in marine research. “The ocean is one of our greatest resources to combat climate change; thus, the accessibility of data will help scientists understand climate patterns and predict future trends. This can help people learn how to prepare for potential disasters and how to reduce each of our carbon footprints,” says Arcturus captain and rising junior Amy Shi.“We are hoping to expand our outreach efforts to incorporate more sustainability-related programs. This can include more interactions with local students to introduce them to how engineering can make a positive impact in the climate space or other similar programs,” Shi says.Shi emphasizes that hope is a crucial force in the battle against climate change. “There are great steps being taken every day to combat this seemingly impending doom we call the climate crisis. It’s important to not give up hope, because this hope is what’s driving the leaps and bounds of innovation happening in the climate community. The mainstream media mostly reports on the negatives, but the truth is there is a lot of positive climate news every day. Being more intentional about where you seek your climate news can really help subside this feeling of doom about our planet.” More

  • in

    MIT engineers’ new theory could improve the design and operation of wind farms

    The blades of propellers and wind turbines are designed based on aerodynamics principles that were first described mathematically more than a century ago. But engineers have long realized that these formulas don’t work in every situation. To compensate, they have added ad hoc “correction factors” based on empirical observations.Now, for the first time, engineers at MIT have developed a comprehensive, physics-based model that accurately represents the airflow around rotors even under extreme conditions, such as when the blades are operating at high forces and speeds, or are angled in certain directions. The model could improve the way rotors themselves are designed, but also the way wind farms are laid out and operated. The new findings are described today in the journal Nature Communications, in an open-access paper by MIT postdoc Jaime Liew, doctoral student Kirby Heck, and Michael Howland, the Esther and Harold E. Edgerton Assistant Professor of Civil and Environmental Engineering.“We’ve developed a new theory for the aerodynamics of rotors,” Howland says. This theory can be used to determine the forces, flow velocities, and power of a rotor, whether that rotor is extracting energy from the airflow, as in a wind turbine, or applying energy to the flow, as in a ship or airplane propeller. “The theory works in both directions,” he says.Because the new understanding is a fundamental mathematical model, some of its implications could potentially be applied right away. For example, operators of wind farms must constantly adjust a variety of parameters, including the orientation of each turbine as well as its rotation speed and the angle of its blades, in order to maximize power output while maintaining safety margins. The new model can provide a simple, speedy way of optimizing those factors in real time.“This is what we’re so excited about, is that it has immediate and direct potential for impact across the value chain of wind power,” Howland says.Modeling the momentumKnown as momentum theory, the previous model of how rotors interact with their fluid environment — air, water, or otherwise — was initially developed late in the 19th century. With this theory, engineers can start with a given rotor design and configuration, and determine the maximum amount of power that can be derived from that rotor — or, conversely, if it’s a propeller, how much power is needed to generate a given amount of propulsive force.Momentum theory equations “are the first thing you would read about in a wind energy textbook, and are the first thing that I talk about in my classes when I teach about wind power,” Howland says. From that theory, physicist Albert Betz calculated in 1920 the maximum amount of energy that could theoretically be extracted from wind. Known as the Betz limit, this amount is 59.3 percent of the kinetic energy of the incoming wind.But just a few years later, others found that the momentum theory broke down “in a pretty dramatic way” at higher forces that correspond to faster blade rotation speeds or different blade angles, Howland says. It fails to predict not only the amount, but even the direction of changes in thrust force at higher rotation speeds or different blade angles: Whereas the theory said the force should start going down above a certain rotation speed or blade angle, experiments show the opposite — that the force continues to increase. “So, it’s not just quantitatively wrong, it’s qualitatively wrong,” Howland says.The theory also breaks down when there is any misalignment between the rotor and the airflow, which Howland says is “ubiquitous” on wind farms, where turbines are constantly adjusting to changes in wind directions. In fact, in an earlier paper in 2022, Howland and his team found that deliberately misaligning some turbines slightly relative to the incoming airflow within a wind farm significantly improves the overall power output of the wind farm by reducing wake disturbances to the downstream turbines.In the past, when designing the profile of rotor blades, the layout of wind turbines in a farm, or the day-to-day operation of wind turbines, engineers have relied on ad hoc adjustments added to the original mathematical formulas, based on some wind tunnel tests and experience with operating wind farms, but with no theoretical underpinnings.Instead, to arrive at the new model, the team analyzed the interaction of airflow and turbines using detailed computational modeling of the aerodynamics. They found that, for example, the original model had assumed that a drop in air pressure immediately behind the rotor would rapidly return to normal ambient pressure just a short way downstream. But it turns out, Howland says, that as the thrust force keeps increasing, “that assumption is increasingly inaccurate.”And the inaccuracy occurs very close to the point of the Betz limit that theoretically predicts the maximum performance of a turbine — and therefore is just the desired operating regime for the turbines. “So, we have Betz’s prediction of where we should operate turbines, and within 10 percent of that operational set point that we think maximizes power, the theory completely deteriorates and doesn’t work,” Howland says.Through their modeling, the researchers also found a way to compensate for the original formula’s reliance on a one-dimensional modeling that assumed the rotor was always precisely aligned with the airflow. To do so, they used fundamental equations that were developed to predict the lift of three-dimensional wings for aerospace applications.The researchers derived their new model, which they call a unified momentum model, based on theoretical analysis, and then validated it using computational fluid dynamics modeling. In followup work not yet published, they are doing further validation using wind tunnel and field tests.Fundamental understandingOne interesting outcome of the new formula is that it changes the calculation of the Betz limit, showing that it’s possible to extract a bit more power than the original formula predicted. Although it’s not a significant change — on the order of a few percent — “it’s interesting that now we have a new theory, and the Betz limit that’s been the rule of thumb for a hundred years is actually modified because of the new theory,” Howland says. “And that’s immediately useful.” The new model shows how to maximize power from turbines that are misaligned with the airflow, which the Betz limit cannot account for.The aspects related to controlling both individual turbines and arrays of turbines can be implemented without requiring any modifications to existing hardware in place within wind farms. In fact, this has already happened, based on earlier work from Howland and his collaborators two years ago that dealt with the wake interactions between turbines in a wind farm, and was based on the existing, empirically based formulas.“This breakthrough is a natural extension of our previous work on optimizing utility-scale wind farms,” he says, because in doing that analysis, they saw the shortcomings of the existing methods for analyzing the forces at work and predicting power produced by wind turbines. “Existing modeling using empiricism just wasn’t getting the job done,” he says.In a wind farm, individual turbines will sap some of the energy available to neighboring turbines, because of wake effects. Accurate wake modeling is important both for designing the layout of turbines in a wind farm, and also for the operation of that farm, determining moment to moment how to set the angles and speeds of each turbine in the array.Until now, Howland says, even the operators of wind farms, the manufacturers, and the designers of the turbine blades had no way to predict how much the power output of a turbine would be affected by a given change such as its angle to the wind without using empirical corrections. “That’s because there was no theory for it. So, that’s what we worked on here. Our theory can directly tell you, without any empirical corrections, for the first time, how you should actually operate a wind turbine to maximize its power,” he says.Because the fluid flow regimes are similar, the model also applies to propellers, whether for aircraft or ships, and also for hydrokinetic turbines such as tidal or river turbines. Although they didn’t focus on that aspect in this research, “it’s in the theoretical modeling naturally,” he says.The new theory exists in the form of a set of mathematical formulas that a user could incorporate in their own software, or as an open-source software package that can be freely downloaded from GitHub. “It’s an engineering model developed for fast-running tools for rapid prototyping and control and optimization,” Howland says. “The goal of our modeling is to position the field of wind energy research to move more aggressively in the development of the wind capacity and reliability necessary to respond to climate change.”The work was supported by the National Science Foundation and Siemens Gamesa Renewable Energy. More