More stories

  • in

    Study measures the psychological toll of wildfires

    Wildfires in Southeast Asia significantly affect peoples’ moods, especially if the fires originate outside a person’s own country, according to a new study.

    The study, which measures sentiment by analyzing large amounts of social media data, helps show the psychological toll of wildfires that result in substantial air pollution, at a time when such fires are becoming a high-profile marker of climate change.  

    “It has a substantial negative impact on people’s subjective well-being,” says Siqi Zheng, an MIT professor and co-author of a new paper detailing the results. “This is a big effect.”

    The magnitude of the effect is about the same as another shift uncovered through large-scale studies of sentiment expressed online: When the weekend ends and the work week starts, people’s online postings reflect a sharp drop in mood. The new study finds that daily exposure to typical wildfire smoke levels in the region produces an equivalently large change in sentiment.

    “People feel anxious or sad when they have to go to work on Monday, and what we find with the fires is that this is, in fact, comparable to a Sunday-to-Monday sentiment drop,” says co-author Rui Du, a former MIT postdoct who is now an economist at Oklahoma State University.

    The paper, “Transboundary Vegetation Fire Smoke and Expressed Sentiment: Evidence from Twitter,” has been published online in the Journal of Environmental Economics and Management.

    The authors are Zheng, who is the STL Champion Professor of Urban and Real Estate Sustainability in the Center for Real Estate and the Department of Urban Studies and Planning at MIT; Du, an assistant professor of economics at Oklahoma State University’s Spears School of Business; Ajkel Mino, of the Department of Data Science and Knowledge Engineering at Maastricht University; and Jianghao Wang, of the Institute of Geographic Sciences and Natural Resources Research at the Chinese Academy of Sciences.

    The research is based on an examination of the events of 2019 in Southeast Asia, in which a huge series of Indonesian wildfires, seemingly related to climate change and deforestation for the palm oil industry, produced a massive amount of haze in the region. The air-quality problems affected seven countries: Brunei, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam.

    To conduct the study, the scholars produced a large-scale analysis of postings from 2019 on X (formerly known as Twitter) to sample public sentiment. The study involved 1,270,927 tweets from 378,300 users who agreed to have their locations made available. The researchers compiled the data with a web crawler program and multilingual natural language processing applications that review the content of tweets and rate them in affective terms based on the vocabulary used. They also used satellite data from NASA and NOAA to create a map of wildfires and haze over time, linking that to the social media data.

    Using this method creates an advantage that regular public-opinion polling does not have: It creates a measurement of mood that is effectively a real-time metric rather than an after-the-fact assessment. Moreover, substantial wind shifts in the region at the time in 2019 essentially randomize which countries were exposed to more haze at various points, making the results less likely to be influenced by other factors.

    The researchers also made a point to disentangle the sentiment change due to wildfire smoke and that due to other factors. After all, people experience mood changes all the time from various natural and socioeconomic events. Wildfires may be correlated with some of them, which makes it hard to tease out the singular effect of the smoke. By comparing only the difference in exposure to wildfire smoke, blown in by wind, within the same locations over time, this study is able to isolate the impact of local wildfire haze on mood, filtering out nonpollution influences.

    “What we are seeing from our estimates is really just the pure causal effect of the transboundary wildfire smoke,” Du says.

    The study also revealed that people living near international borders are much more likely to be upset when affected by wildfire smoke that comes from a neighboring country. When similar conditions originate in their own country, there is a considerably more muted reaction.

    “Notably, individuals do not seem to respond to domestically produced fire plumes,” the authors write in the paper. The small size of many countries in the region, coupled with a fire-prone climate, make this an ongoing source of concern, however.

    “In Southeast Asia this is really a big problem, with small countries clustered together,” Zheng observes.

    Zheng also co-authored a 2022 study using a related methodology to study the impact of the Covid-19 pandemic on the moods of residents in about 100 countries. In that case, the research showed that the global pandemic depressed sentiment about 4.7 times as much as the normal Sunday-to-Monday shift.

    “There was a huge toll of Covid on people’s sentiment, and while the impact of the wildfires was about one-fifth of Covid, that’s still quite large,” Du says.

    In policy terms, Zheng suggests that the global implications of cross-border smoke pollution could give countries a shared incentive to cooperate further. If one country’s fires become another country’s problem, they may all have reason to limit them. Scientists warn of a rising number of wildfires globally, fueled by climate change conditions in which more fires can proliferate, posing a persistent threat across societies.

    “If they don’t work on this collaboratively, it could be damaging to everyone,” Zheng says.

    The research at MIT was supported, in part, by the MIT Sustainable Urbanization Lab. Jianghao Wang was supported by the National Natural Science Foundation of China. More

  • in

    Study: Global deforestation leads to more mercury pollution

    About 10 percent of human-made mercury emissions into the atmosphere each year are the result of global deforestation, according to a new MIT study.

    The world’s vegetation, from the Amazon rainforest to the savannahs of sub-Saharan Africa, acts as a sink that removes the toxic pollutant from the air. However, if the current rate of deforestation remains unchanged or accelerates, the researchers estimate that net mercury emissions will keep increasing.

    “We’ve been overlooking a significant source of mercury, especially in tropical regions,” says Ari Feinberg, a former postdoc in the Institute for Data, Systems, and Society (IDSS) and lead author of the study.

    The researchers’ model shows that the Amazon rainforest plays a particularly important role as a mercury sink, contributing about 30 percent of the global land sink. Curbing Amazon deforestation could thus have a substantial impact on reducing mercury pollution.

    The team also estimates that global reforestation efforts could increase annual mercury uptake by about 5 percent. While this is significant, the researchers emphasize that reforestation alone should not be a substitute for worldwide pollution control efforts.

    “Countries have put a lot of effort into reducing mercury emissions, especially northern industrialized countries, and for very good reason. But 10 percent of the global anthropogenic source is substantial, and there is a potential for that to be even greater in the future. [Addressing these deforestation-related emissions] needs to be part of the solution,” says senior author Noelle Selin, a professor in IDSS and MIT’s Department of Earth, Atmospheric and Planetary Sciences.

    Feinberg and Selin are joined on the paper by co-authors Martin Jiskra, a former Swiss National Science Foundation Ambizione Fellow at the University of Basel; Pasquale Borrelli, a professor at Roma Tre University in Italy; and Jagannath Biswakarma, a postdoc at the Swiss Federal Institute of Aquatic Science and Technology. The paper appears today in Environmental Science and Technology.

    Modeling mercury

    Over the past few decades, scientists have generally focused on studying deforestation as a source of global carbon dioxide emissions. Mercury, a trace element, hasn’t received the same attention, partly because the terrestrial biosphere’s role in the global mercury cycle has only recently been better quantified.

    Plant leaves take up mercury from the atmosphere, in a similar way as they take up carbon dioxide. But unlike carbon dioxide, mercury doesn’t play an essential biological function for plants. Mercury largely stays within a leaf until it falls to the forest floor, where the mercury is absorbed by the soil.

    Mercury becomes a serious concern for humans if it ends up in water bodies, where it can become methylated by microorganisms. Methylmercury, a potent neurotoxin, can be taken up by fish and bioaccumulated through the food chain. This can lead to risky levels of methylmercury in the fish humans eat.

    “In soils, mercury is much more tightly bound than it would be if it were deposited in the ocean. The forests are doing a sort of ecosystem service, in that they are sequestering mercury for longer timescales,” says Feinberg, who is now a postdoc in the Blas Cabrera Institute of Physical Chemistry in Spain.

    In this way, forests reduce the amount of toxic methylmercury in oceans.

    Many studies of mercury focus on industrial sources, like burning fossil fuels, small-scale gold mining, and metal smelting. A global treaty, the 2013 Minamata Convention, calls on nations to reduce human-made emissions. However, it doesn’t directly consider impacts of deforestation.

    The researchers launched their study to fill in that missing piece.

    In past work, they had built a model to probe the role vegetation plays in mercury uptake. Using a series of land use change scenarios, they adjusted the model to quantify the role of deforestation.

    Evaluating emissions

    This chemical transport model tracks mercury from its emissions sources to where it is chemically transformed in the atmosphere and then ultimately to where it is deposited, mainly through rainfall or uptake into forest ecosystems.

    They divided the Earth into eight regions and performed simulations to calculate deforestation emissions factors for each, considering elements like type and density of vegetation, mercury content in soils, and historical land use.

    However, good data for some regions were hard to come by.

    They lacked measurements from tropical Africa or Southeast Asia — two areas that experience heavy deforestation. To get around this gap, they used simpler, offline models to simulate hundreds of scenarios, which helped them improve their estimations of potential uncertainties.

    They also developed a new formulation for mercury emissions from soil. This formulation captures the fact that deforestation reduces leaf area, which increases the amount of sunlight that hits the ground and accelerates the outgassing of mercury from soils.

    The model divides the world into grid squares, each of which is a few hundred square kilometers. By changing land surface and vegetation parameters in certain squares to represent deforestation and reforestation scenarios, the researchers can capture impacts on the mercury cycle.

    Overall, they found that about 200 tons of mercury are emitted to the atmosphere as the result of deforestation, or about 10 percent of total human-made emissions. But in tropical and sub-tropical countries, deforestation emissions represent a higher percentage of total emissions. For example, in Brazil deforestation emissions are 40 percent of total human-made emissions.

    In addition, people often light fires to prepare tropical forested areas for agricultural activities, which causes more emissions by releasing mercury stored by vegetation.

    “If deforestation was a country, it would be the second highest emitting country, after China, which emits around 500 tons of mercury a year,” Feinberg adds.

    And since the Minamata Convention is now addressing primary mercury emissions, scientists can expect deforestation to become a larger fraction of human-made emissions in the future.

    “Policies to protect forests or cut them down have unintended effects beyond their target. It is important to consider the fact that these are systems, and they involve human activities, and we need to understand them better in order to actually solve the problems that we know are out there,” Selin says.

    By providing this first estimate, the team hopes to inspire more research in this area.

    In the future, they want to incorporate more dynamic Earth system models into their analysis, which would enable them to interactively track mercury uptake and better model the timescale of vegetation regrowth.

    “This paper represents an important advance in our understanding of global mercury cycling by quantifying a pathway that has long been suggested but not yet quantified. Much of our research to date has focused on primary anthropogenic emissions — those directly resulting from human activity via coal combustion or mercury-gold amalgam burning in artisanal and small-scale gold mining,” says Jackie Gerson, an assistant professor in the Department of Earth and Environmental Sciences at Michigan State University, who was not involved with this research. “This research shows that deforestation can also result in substantial mercury emissions and needs to be considered both in terms of global mercury models and land management policies. It therefore has the potential to advance our field scientifically as well as to promote policies that reduce mercury emissions via deforestation.

    This work was funded, in part, by the U.S. National Science Foundation, the Swiss National Science Foundation, and Swiss Federal Institute of Aquatic Science and Technology. More

  • in

    Letter to the MIT community: Announcing the Climate Project at MIT

    The following letter was sent to the MIT community today by President Sally Kornbluth.

    Dear members of the MIT community,

    At my inauguration, echoing a sentiment I heard everywhere on my campus listening tour, I called on the people of MIT to come together in new ways to marshal a bold, tenacious response to the run-away crisis of climate change.

    I write with an update on how we’re bringing this vision to life.

    This letter includes several significant announcements – including an accelerated search for faculty leaders and a very substantial commitment of MIT funds – so please read on.

    A Record of MIT Leadership

    Since the late Professor Jule Charney led a 1979 National Academy of Sciences report that foretold the likely risks of global warming, MIT researchers have made pioneering contributions in countless relevant fields. Today, more than 300 faculty, working with their students and research and teaching staff, are engaged in leading-edge work on climate issues. The Institute has also taken important steps to enhance climate education, expand public outreach on climate and decarbonize the campus.

    But – as the community told me loud and clear – this moment demands a different order of speed, ambition, focus and scale.

    The Climate Project at MIT

    After extensive consultation with more than 150 faculty and senior researchers across the Institute – and building on the strengths of Fast Forward: MIT’s Climate Action Plan for the Decade, issued in 2021 – Vice Provost Richard Lester has led us in framing a new approach: the Climate Project at MIT.  

    Representing a compelling new strategy for accelerated, university-led innovation, the Climate Project at MIT will focus our community’s talent and resources on solving critical climate problems with all possible speed – and will connect us with a range of partners to deliver those technological, behavioral and policy solutions to the world.

    As Richard explains in this MIT News 3Q, the Climate Project at MIT is still in its early stages; as it gains new leaders and new allies from academia, industry, philanthropy and government, it will continue to be shaped by their insight and expertise.

    For now, we begin with a new structure and strategy for organizing the work. The Climate Project at MIT will consist of three interlocking elements:

    The Climate Missions
    The Climate Frontier projects
    The Climate HQ

    To learn more about these components, I encourage you to read this summary of the plan (PDF). 

    Recruiting Leaders for the Six Climate Missions

    The central focus will be six Climate Missions – each constituting a cross-disciplinary Institute-wide problem-solving community focused on a strategic area of the climate challenge:

    Decarbonizing Energy and Industry
    Restoring the Atmosphere, Protecting the Land and Oceans
    Empowering Frontline Communities
    Building and Adapting Healthy, Resilient Cities
    Inventing New Policy Approaches
    Wild Cards

    We’re now recruiting an MIT faculty leader for each of these missions – on an accelerated timeline. We welcome any interested faculty member to apply to be a Climate Mission leader or to nominate a colleague. Please submit your CV and statement of interest at climatesearch@mit.edu by February 22.

    You can learn more about the role on the Climate Project’s preliminary webpage. All submissions will be treated as confidential.

    A New Leadership Role, a Search Committee – and Significant MIT Resources

    The Climate Project at MIT is gathering steam – and we will build its momentum with these three important steps.

    1. Vice President for Climate

    To match the prime importance of this work, we have created a new leadership role, reporting to me: Vice President for Climate (VPC). The VPC will oversee the Climate Project at MIT, take the lead on fundraising and implementation, and shape its strategic vision. We are opening the search now and welcome candidates from inside and outside MIT. You may submit your CV and statement of interest in the VPC role at climatesearch@mit.edu. A formal job description will be posted soon.

    2. Climate Search Advisory Committee

    To advise me in selecting the six mission leaders and the VPC, I have appointed the following faculty members to serve on the Climate Search Advisory Committee:

    Richard Lester, Chair
    Daron Acemoglu
    Yet-Ming Chiang
    Penny Chisholm
    Dava Newman
    Ron Rivest
    Susan Solomon
    John Sterman
    Larry Vale
    Rob van der Hilst
    Anne White

    3. $75 million in support from the Institute and MIT Sloan

    And finally: We will jumpstart the Climate Project at MIT with a commitment of $50 million in Institute resources – the largest direct investment the Institute has ever made in funding climate work, and just the beginning of a far more ambitious effort to raise the funds this extraordinary challenge demands. In addition, the Sloan School will contribute $25 million to endow a new climate policy center, to be formally announced in the coming days. Together, these funds will allow for early advances and express the seriousness of our intentions to potential partners around the world.

    *    *    *

    The Climate Project at MIT is ambitious, multifaceted and more complex than I could capture in a letter; I urge you to explore the summary of the plan (PDF) to see where you might fit. There will be a place for everyone, including all of our existing climate-involved DLCs. (And you might enjoy this brief video, which celebrates MIT’s distinctive gift for collaborative problem-solving on a grand scale.)

    At last spring’s inauguration, I said I hoped that, a decade hence, all of us at MIT could take pride in having “helped lead a powerful cross-sector coalition and placed big bets on big solutions, to dramatically accelerate progress against climate change.”

    With your creativity, support and drive, we have every reason to hope that the Climate Project at MIT can make that aspiration real.

    With enthusiasm and anticipation,

    Sally Kornbluth More

  • in

    3 Questions: The Climate Project at MIT

    MIT is preparing a major campus-wide effort to develop technological, behavioral, and policy solutions to some of the toughest problems now impeding an effective global climate response. The Climate Project at MIT, as the new enterprise is known, includes new arrangements for promoting cross-Institute collaborations and new mechanisms for engaging with outside partners to speed the development and implementation of climate solutions.

    MIT News spoke with Richard K. Lester, MIT’s vice provost for international activities, who has helped oversee the development of the project.

    Q: What is the Climate Project at MIT?

    A: In her inaugural address last May, President Kornbluth called on the MIT community to join her in a “bold, tenacious response” to climate change. The Climate Project at MIT is a response to that call. It aims to mobilize every part of MIT to develop, deliver, and scale up practical climate solutions, as quickly as possible.

    Play video

    At MIT, well over 300 of our faculty are already working with their students and research staff members on different aspects of the climate problem. Almost all of our academic departments and more than a score of our interdepartmental labs and centers are involved in some way. What they are doing is remarkable, and this decentralized structure reflects the best traditions of MIT as a “bottom up,” entrepreneurial institution. But, as President Kornbluth said, we must do much more. We must be bolder in our research choices and more creative in how we organize ourselves to work with each other and with our partners. The purpose of the Climate Project is to support our community’s efforts to do bigger things faster in the climate domain. We will have succeeded if our work changes the trajectory of global climate outcomes for the better.

    I want to be clear that the clay is still wet here. The Climate Project will continue to take shape as more members of the MIT community bring their excellence, their energy, and their ambition to bear on the climate challenge. But I believe we have a vision and a framework for accelerating and amplifying MIT’s real-world climate impact, and I know that President Kornbluth is eager to share this progress report with the MIT community now to convey the breadth and ambition of what we’re planning.

    Q: How will the project be organized?

    A: The Climate Project will have three core components: the Climate Missions; their offshoots, the Climate Frontier Projects; and Climate HQ. A new vice president for climate will lead the enterprise.

    Initially there will be six missions, which you can read about in the plan. Each will address a different domain of climate impact where new solutions are required and where a critical mass of research excellence exists at MIT. One such mission, of course, is to decarbonize energy and industry, an area where we estimate that about 150 of our faculty are already working.

    The mission leaders will build multidisciplinary problem-solving communities reaching across the Institute and beyond. Each of these will be charged with roadmapping and assessing progress toward its mission, identifying critical gaps and bottlenecks, and launching applied research projects to accelerate progress where the MIT community and our partners are well-positioned to achieve impactful results. These projects — the climate frontier projects — will benefit from active, professional project management, with clear metrics and milestones. We are in a critical decade for responding to climate change, so it’s important that these research projects move quickly, with an eye on producing real-world results.

    The new Climate HQ will drive the overall vision for the Climate Project and support the work of the missions. We’ve talked about a core focus on impact-driven research, but much is still unknown about the Earth’s physical and biogeochemical systems, and there is also much to be learned about the behavior of the social and political systems that led us to the very difficult situation the world now faces. Climate HQ will support fundamental research in the scientific and humanistic disciplines related to climate, and will promote engagement between these disciplines and the missions. We must also advance climate-related education, led by departments and programs, as well as policy work, public outreach, and more, including an MIT-wide student-centric Climate Corps to elevate climate-related, community-focused service in MIT’s culture.

    Q: Why are partners a key part of this project?

    A: It is important to build strong partners right from the very start for our innovations, inventions, and discoveries to have any prospect of achieving scale. And in many cases, with climate change, it’s all about scale.

    One of the aims of this initiative is to strengthen MIT’s climate “scaffolding” — the people and processes connecting what we do on campus to the practical world of climate impact and response. We can build on MIT’s highly developed infrastructure for translation, innovation, and entrepreneurship, even as we promote other important pathways to scale involving communities, municipalities, and other not-for-profit organizations. Working with all these different organizations will help us build a broad infrastructure to help us get traction in the world. On a related note, the Sloan School of Management will be sharing details in the coming days of an exciting new effort to enhance MIT’s contributions in the climate policy arena.

    MIT is committing $75 million, including $25 million from Sloan, at the outset of the project. But we anticipate developing new partnerships, including philanthropic partnerships, to increase that scope dramatically. More

  • in

    Reflecting on COP28 — and humanity’s progress toward meeting global climate goals

    With 85,000 delegates, the 2023 United Nations climate change conference, known as COP28, was the largest U.N. climate conference in history. It was held at the end of the hottest year in recorded history. And after 12 days of negotiations, from Nov. 30 to Dec. 12, it produced a decision that included, for the first time, language calling for “transitioning away from fossil fuels,” though it stopped short of calling for their complete phase-out.

    U.N. Climate Change Executive Secretary Simon Stiell said the outcome in Dubai, United Arab Emirates, COP28’s host city, signaled “the beginning of the end” of the fossil fuel era. 

    COP stands for “conference of the parties” to the U.N. Framework Convention on Climate Change, held this year for the 28th time. Through the negotiations — and the immense conference and expo that takes place alongside them — a delegation of faculty, students, and staff from MIT was in Dubai to observe the negotiations, present new climate technologies, speak on panels, network, and conduct research.

    On Jan. 17, the MIT Center for International Studies (CIS) hosted a panel discussion with MIT delegates who shared their reflections on the experience. Asking what’s going on at COP is “like saying, ‘What’s going on in the city of Boston today?’” quipped Evan Lieberman, the Total Professor of Political Science and Contemporary Africa, director of CIS, and faculty director of MIT International Science and Technology Initiatives (MISTI). “The value added that all of us can provide for the MIT community is [to share] what we saw firsthand and how we experienced it.” 

    Phase-out, phase down, transition away?

    In the first week of COP28, over 100 countries issued a joint statement that included a call for “the global phase out of unabated fossil fuels.” The question of whether the COP28 decision — dubbed the “UAE Consensus” — would include this phase-out language animated much of the discussion in the days and weeks leading up to COP28. 

    Ultimately, the decision called for “transitioning away from fossil fuels in energy systems, in a just, orderly and equitable manner.” It also called for “accelerating efforts towards the phase down of unabated coal power,” referring to the combustion of coal without efforts to capture and store its emissions.

    In Dubai to observe the negotiations, graduate student Alessandra Fabbri said she was “confronted” by the degree to which semantic differences could impose significant ramifications — for example, when negotiators referred to a “just transition,” or to “developed vs. developing nations” — particularly where evolution in recent scholarship has produced more nuanced understandings of the terms.

    COP28 also marked the conclusion of the first global stocktake, a core component of the 2015 Paris Agreement. The effort every five years to assess the world’s progress in responding to climate change is intended as a basis for encouraging countries to strengthen their climate goals over time, a process often referred to as the Paris Agreement’s “ratchet mechanism.” 

    The technical report of the first global stocktake, published in September 2023, found that while the world has taken actions that have reduced forecasts of future warming, they are not sufficient to meet the goals of the Paris Agreement, which aims to limit global average temperature increase to “well below” 2 degrees Celsius, while pursuing efforts to limit the increase to 1.5 degrees above pre-industrial levels.

    “Despite minor, punctual advancements in climate action, parties are far from being on track to meet the long-term goals of the Paris Agreement,” said Fabbri, a graduate student in the School of Architecture and Planning and a fellow in MIT’s Leventhal Center for Advanced Urbanism. Citing a number of persistent challenges, including some parties’ fears that rapid economic transition may create or exacerbate vulnerabilities, she added, “There is a noted lack of accountability among certain countries in adhering to their commitments and responsibilities under international climate agreements.” 

    Climate and trade

    COP28 was the first climate summit to formally acknowledge the importance of international trade by featuring an official “Trade Day” on Dec. 4. Internationally traded goods account for about a quarter of global greenhouse gas emissions, raising complex questions of accountability and concerns about offshoring of industrial manufacturing, a phenomenon known as “emissions leakage.” Addressing the nexus of climate and trade is therefore considered essential for successful decarbonization, and a growing number of countries are leveraging trade policies — such as carbon fees applied to imported goods — to secure climate benefits. 

    Members of the MIT delegation participated in several related activities, sharing research and informing decision-makers. Catherine Wolfram, professor of applied economics in the MIT Sloan School of Management, and Michael Mehling, deputy director of the MIT Center for Energy and Environmental Policy Research (CEEPR), presented options for international cooperation on such trade policies at side events, including ones hosted by the World Trade Organization and European Parliament. 

    “While COPs are often criticized for highlighting statements that don’t have any bite, they are also tremendous opportunities to get people from around the world who care about climate and think deeply about these issues in one place,” said Wolfram.

    Climate and health

    For the first time in the conference’s nearly 30-year history, COP28 included a thematic “Health Day” that featured talks on the relationship between climate and health. Researchers from MIT’s Abdul Latif Jameel Poverty Action Lab (J-PAL) have been testing policy solutions in this area for years through research funds such as the King Climate Action Initiative (K-CAI). 

    “An important but often-neglected area where climate action can lead to improved health is combating air pollution,” said Andre Zollinger, K-CAI’s senior policy manager. “COP28’s announcement on reducing methane leaks is an important step because action in this area could translate to relatively quick, cost-effective ways to curb climate change while improving air quality, especially for people living near these industrial sites.” K-CAI has an ongoing project in Colorado investigating the use of machine learning to predict leaks and improve the framework for regulating industrial methane emissions, Zollinger noted.

    This was J-PAL’s third time at COP, which Zollinger said typically presented an opportunity for researchers to share new findings and analysis with government partners, nongovernmental organizations, and companies. This year, he said, “We have [also] been working with negotiators in the [Middle East and North Africa] region in the months preceding COP to plug them into the latest evidence on water conservation, on energy access, on different challenging areas of adaptation that could be useful for them during the conference.”

    Sharing knowledge, learning from others

    MIT student Runako Gentles described COP28 as a “springboard” to greater impact. A senior from Jamaica studying civil and environmental engineering, Gentles said it was exciting to introduce himself as an MIT undergraduate to U.N. employees and Jamaican delegates in Dubai. “There’s a lot of talk on mitigation and cutting carbon emissions, but there needs to be much more going into climate adaptation, especially for small-island developing states like those in the Caribbean,” he said. “One of the things I can do, while I still try to finish my degree, is communicate — get the story out there to raise awareness.”

    At an official side event at COP28 hosted by MIT, Pennsylvania State University, and the American Geophysical Union, Maria T. Zuber, MIT’s vice president for research, stressed the importance of opportunities to share knowledge and learn from people around the world.

    “The reason this two-way learning is so important for us is simple: The ideas we come up with in a university setting, whether they’re technological or policy or any other kind of innovations — they only matter in the practical world if they can be put to good use and scaled up,” said Zuber. “And the only way we can know that our work has practical relevance for addressing climate is by working hand-in-hand with communities, industries, governments, and others.”

    Marcela Angel, research program director at the Environmental Solutions Initiative, and Sergey Paltsev, deputy director of MIT’s Joint Program on the Science and Policy of Global Change, also spoke at the event, which was moderated by Bethany Patten, director of policy and engagement for sustainability at the MIT Sloan School of Management.  More

  • in

    MIT researchers map the energy transition’s effects on jobs

    A new analysis by MIT researchers shows the places in the U.S. where jobs are most linked to fossil fuels. The research could help policymakers better identify and support areas affected over time by a switch to renewable energy.

    While many of the places most potentially affected have intensive drilling and mining operations, the study also measures how areas reliant on other industries, such as heavy manufacturing, could experience changes. The research examines the entire U.S. on a county-by-county level.

    “Our result is that you see a higher carbon footprint for jobs in places that drill for oil, mine for coal, and drill for natural gas, which is evident in our maps,” says Christopher Knittel, an economist at the MIT Sloan School of Management and co-author of a new paper detailing the findings. “But you also see high carbon footprints in areas where we do a lot of manufacturing, which is more likely to be missed by policymakers when examining how the transition to a zero-carbon economy will affect jobs.”

    So, while certain U.S. areas known for fossil-fuel production would certainly be affected — including west Texas, the Powder River Basin of Montana and Wyoming, parts of Appalachia, and more — a variety of industrial areas in the Great Plains and Midwest could see employment evolve as well.

    The paper, “Assessing the distribution of employment vulnerability to the energy transition using employment carbon footprints,” is published this week in Proceedings of the National Academy of Sciences. The authors are Kailin Graham, a master’s student in MIT’s Technology and Policy Program and graduate research assistant at MIT’s Center for Energy and Environmental Policy Research; and Knittel, who is the George P. Shultz Professor at MIT Sloan.

    “Our results are unique in that we cover close to the entire U.S. economy and consider the impacts on places that produce fossil fuels but also on places that consume a lot of coal, oil, or natural gas for energy,” says Graham. “This approach gives us a much more complete picture of where communities might be affected and how support should be targeted.”

    Adjusting the targets

    The current study stems from prior research Knittel has conducted, measuring carbon footprints at the household level across the U.S. The new project takes a conceptually related approach, but for jobs in a given county. To conduct the study, the researchers used several data sources measuring energy consumption by businesses, as well as detailed employment data from the U.S. Census Bureau.

    The study takes advantage of changes in energy supply and demand over time to estimate how strongly a full range of jobs, not just those in energy production, are linked to use of fossil fuels. The sectors accounted for in the study comprise 86 percent of U.S. employment, and 94 percent of U.S. emissions apart from the transportation sector.

    The Inflation Reduction Act, passed by Congress and signed into law by President Joe Biden in August 2022, is the first federal legislation seeking to provide an economic buffer for places affected by the transition away from fossil fuels. The act provides expanded tax credits for economic projects located in “energy community” areas — defined largely as places with high fossil-fuel industry employment or tax revenue and with high unemployment. Areas with recently closed or downsized coal mines or power plants also qualify.

    Graham and Knittel measured the “employment carbon footprint” (ECF) of each county in the U.S., producing new results. Out of more than 3,000 counties in the U.S., the researchers found that 124 are at the 90th percentile or above in ECF terms, while not qualifying for Inflation Reduction Act assistance. Another 79 counties are eligible for Inflation Reduction Act assistance, while being in the bottom 20 percent nationally in ECF terms.

    Those may not seem like colossal differences, but the findings identify real communities potentially being left out of federal policy, and highlight the need for new targeting of such programs. The research by Graham and Knittel offers a precise way to assess the industrial composition of U.S. counties, potentially helping to target economic assistance programs.

    “The impact on jobs of the energy transition is not just going to be where oil and natural gas are drilled, it’s going to be all the way up and down the value chain of things we make in the U.S.,” Knittel says. “That’s a more extensive, but still focused, problem.”

    Graham adds: “It’s important that policymakers understand these economy-wide employment impacts. Our aim in providing these data is to help policymakers incorporate these considerations into future policies like the Inflation Reduction Act.”

    Adapting policy

    Graham and Knittel are still evaluating what the best policy measures might be to help places in the U.S. adapt to a move away from fossil fuels.

    “What we haven’t necessarily closed the loop on is the right way to build a policy that takes account of these factors,” Knittel says. “The Inflation Reduction Act is the first policy to think about a [fair] energy transition because it has these subsidies for energy-dependent counties.” But given enough political backing, there may be room for additional policy measures in this area.

    One thing clearly showing through in the study’s data is that many U.S. counties are in a variety of situations, so there may be no one-size-fits-all approach to encouraging economic growth while making a switch to clean energy. What suits west Texas or Wyoming best may not work for more manufacturing-based local economies. And even among primary energy-production areas, there may be distinctions, among those drilling for oil or natural gas and those producing coal, based on the particular economics of those fuels. The study includes in-depth data about each county, characterizing its industrial portfolio, which may help tailor approaches to a range of economic situations.

    “The next step is using this data more specifically to design policies to protect these communities,” Knittel says. More

  • in

    Susan Solomon wins VinFuture Award for Female Innovators

    Lee and Geraldine Martin Professor of Environmental Studies Susan Solomon has been awarded the 2023 VinFuture Award for Female Innovators. Solomon was picked out of almost 1,400 international nominations across four categories for “The discovery of the ozone depletion mechanism in Antarctica, contributing to the establishment of the Montreal Protocol.” The award, which comes with a $500,000 prize, highlights outstanding female researchers and innovators that can serve as role models for aspiring scientists.

    “I’m tremendously humbled by that, and I’ll do my best to live up to it,” says Solomon, who attended the ceremony in Hanoi, Vietnam, on Dec. 20.

    The VinFuture Awards are given annually to “honor scientific research and breakthrough technological innovations that can make a significant difference” according to their site. In addition to Female Innovators, the award has two other special categories, Innovators from Developing Countries and Innovators with Outstanding Achievements in Emerging Fields, as well as their overall grand prize. The awards have been given out by the Vietnam-based VinFuture Foundation since 2021.

    “Countries all around the world are part of scientific progress and innovation, and that a developing country is honoring that is really very lovely,” says Solomon, whose career as an atmospheric chemist has brought her onto the international stage and has shown her firsthand how important developing countries are in crafting global policy.

    In 1986 Solomon led an expedition of 16 scientists to Antarctica to measure the degradation of the ozone layer; she was the only woman on the team. She and her collaborators were able to figure out the atmospheric chemistry of chlorofluorocarbons and other similar chemicals that are now known as ozone-depleting substances. This work became foundational to the creation of the Montreal Protocol, an international agreement that banned damaging chemicals and has allowed the ozone to recover.

    Solomon joined the MIT faculty in 2012 and holds joint appointments in the departments of Chemistry and Earth, Atmospheric and Planetary Sciences. The success of the Montreal Protocol demonstrates the ability for international cooperation to enact effective environmental agreements; Solomon sees it as a blueprint for crafting further policy when it comes to addressing global climate change.

    “Women can do anything, even help save the ozone layer and solve other environmental problems,” she says. “Today’s problem of climate change is for all of us to be involved in solving.” More

  • in

    Faculty, staff, students to evaluate ways to decarbonize MIT’s campus

    With a goal to decarbonize the MIT campus by 2050, the Institute must look at “new ideas, transformed into practical solutions, in record time,” as stated in “Fast Forward: MIT’s Climate Action Plan for the Decade.” This charge calls on the MIT community to explore game-changing and evolving technologies with the potential to move campuses like MIT away from carbon emissions-based energy systems.

    To help meet this tremendous challenge, the Decarbonization Working Group — a new subset of the Climate Nucleus — recently launched. Comprised of appointed MIT faculty, researchers, and students, the working group is leveraging its members’ expertise to meet the charge of exploring and assessing existing and in-development solutions to decarbonize the MIT campus by 2050. The group is specifically charged with informing MIT’s efforts to decarbonize the campus’s district energy system.

    Co-chaired by Director of Sustainability Julie Newman and Department of Architecture Professor Christoph Reinhart, the working group includes members with deep knowledge of low- and zero-carbon technologies and grid-level strategies. In convening the group, Newman and Reinhart sought out members researching these technologies as well as exploring their practical use. “In my work on multiple projects on campus, I have seen how cutting-edge research often relies on energy-intensive equipment,” shares PhD student and group member Ippolyti Dellatolas. “It’s clear how new energy-efficiency strategies and technologies could use campus as a living lab and then broadly deploy these solutions across campus for scalable emissions reductions.” This approach is one of MIT’s strong suits and a recurring theme in its climate action plans — using the MIT campus as a test bed for learning and application. “We seek to study and analyze solutions for our campus, with the understanding that our findings have implications far beyond our campus boundaries,” says Newman.

    The efforts of the working group represent just one part of the multipronged approach to identify ways to decarbonize the MIT campus. The group will work in parallel and at times collaboratively with the team from the Office of the Vice President for Campus Services and Stewardship that is managing the development plan for potential zero-carbon pathways for campus buildings and the district energy system. In May 2023, MIT engaged Affiliated Engineers, Inc. (AEI), to support the Institute’s efforts to identify, evaluate, and model various carbon-reduction strategies and technologies to provide MIT with a series of potential decarbonization pathways. Each of the pathways must demonstrate how to manage the generation of energy and its distribution and use on campus. As MIT explores electrification, a significant challenge will be the availability of resilient clean power from the grid to help generate heat for our campus without reliance on natural gas.

    When the Decarbonization Working Group began work this fall, members took the time to learn more about current systems and baseline information. Beginning this month, members will organize analysis around each of their individual areas of expertise and interest and begin to evaluate existing and emerging carbon reduction technologies. “We are fortunate that there are constantly new ideas and technologies being tested in this space and that we have a committed group of faculty working together to evaluate them,” Newman says. “We are aware that not every technology is the right fit for our unique dense urban campus, and nor are we solving for a zero-carbon campus as an island, but rather in the context of an evolving regional power grid.”

    Supported by funding from the Climate Nucleus, evaluating technologies will include site visits to locations where priority technologies are currently deployed or being tested. These site visits may range from university campuses implementing district geothermal and heat pumps to test sites of deep geothermal or microgrid infrastructure manufacturers. “This is a unique moment for MIT to demonstrate leadership by combining best decarbonization practices, such as retrofitting building systems to achieve deep energy reductions and converting to low-temperature district heating systems with ‘nearly there’ technologies such as deep geothermal, micronuclear, energy storage, and ubiquitous occupancy-driven temperature control,” says Reinhart. “As first adopters, we can find out what works, allowing other campuses to follow us at reduced risks.”

    The findings and recommendations of the working group will be delivered in a report to the community at the end of 2024. There will be opportunities for the MIT community to learn more about MIT’s decarbonization efforts at community events on Jan. 24 and March 14, as well as MIT’s Sustainability Connect forum on Feb. 8. More