More stories

  • in

    Energy storage important to creating affordable, reliable, deeply decarbonized electricity systems

    In deeply decarbonized energy systems utilizing high penetrations of variable renewable energy (VRE), energy storage is needed to keep the lights on and the electricity flowing when the sun isn’t shining and the wind isn’t blowing — when generation from these VRE resources is low or demand is high. The MIT Energy Initiative’s Future of Energy Storage study makes clear the need for energy storage and explores pathways using VRE resources and storage to reach decarbonized electricity systems efficiently by 2050.

    “The Future of Energy Storage,” a new multidisciplinary report from the MIT Energy Initiative (MITEI), urges government investment in sophisticated analytical tools for planning, operation, and regulation of electricity systems in order to deploy and use storage efficiently. Because storage technologies will have the ability to substitute for or complement essentially all other elements of a power system, including generation, transmission, and demand response, these tools will be critical to electricity system designers, operators, and regulators in the future. The study also recommends additional support for complementary staffing and upskilling programs at regulatory agencies at the state and federal levels. 

    Play video

    Why is energy storage so important?

    The MITEI report shows that energy storage makes deep decarbonization of reliable electric power systems affordable. “Fossil fuel power plant operators have traditionally responded to demand for electricity — in any given moment — by adjusting the supply of electricity flowing into the grid,” says MITEI Director Robert Armstrong, the Chevron Professor of Chemical Engineering and chair of the Future of Energy Storage study. “But VRE resources such as wind and solar depend on daily and seasonal variations as well as weather fluctuations; they aren’t always available to be dispatched to follow electricity demand. Our study finds that energy storage can help VRE-dominated electricity systems balance electricity supply and demand while maintaining reliability in a cost-effective manner — that in turn can support the electrification of many end-use activities beyond the electricity sector.”

    The three-year study is designed to help government, industry, and academia chart a path to developing and deploying electrical energy storage technologies as a way of encouraging electrification and decarbonization throughout the economy, while avoiding excessive or inequitable burdens.

    Focusing on three distinct regions of the United States, the study shows the need for a varied approach to energy storage and electricity system design in different parts of the country. Using modeling tools to look out to 2050, the study team also focuses beyond the United States, to emerging market and developing economy (EMDE) countries, particularly as represented by India. The findings highlight the powerful role storage can play in EMDE nations. These countries are expected to see massive growth in electricity demand over the next 30 years, due to rapid overall economic expansion and to increasing adoption of electricity-consuming technologies such as air conditioning. In particular, the study calls attention to the pivotal role battery storage can play in decarbonizing grids in EMDE countries that lack access to low-cost gas and currently rely on coal generation.

    The authors find that investment in VRE combined with storage is favored over new coal generation over the medium and long term in India, although existing coal plants may linger unless forced out by policy measures such as carbon pricing. 

    “Developing countries are a crucial part of the global decarbonization challenge,” says Robert Stoner, the deputy director for science and technology at MITEI and one of the report authors. “Our study shows how they can take advantage of the declining costs of renewables and storage in the coming decades to become climate leaders without sacrificing economic development and modernization.”

    The study examines four kinds of storage technologies: electrochemical, thermal, chemical, and mechanical. Some of these technologies, such as lithium-ion batteries, pumped storage hydro, and some thermal storage options, are proven and available for commercial deployment. The report recommends that the government focus R&D efforts on other storage technologies, which will require further development to be available by 2050 or sooner — among them, projects to advance alternative electrochemical storage technologies that rely on earth-abundant materials. It also suggests government incentives and mechanisms that reward success but don’t interfere with project management. The report calls for the federal government to change some of the rules governing technology demonstration projects to enable more projects on storage. Policies that require cost-sharing in exchange for intellectual property rights, the report argues, discourage the dissemination of knowledge. The report advocates for federal requirements for demonstration projects that share information with other U.S. entities.

    The report says many existing power plants that are being shut down can be converted to useful energy storage facilities by replacing their fossil fuel boilers with thermal storage and new steam generators. This retrofit can be done using commercially available technologies and may be attractive to plant owners and communities — using assets that would otherwise be abandoned as electricity systems decarbonize.  

    The study also looks at hydrogen and concludes that its use for storage will likely depend on the extent to which hydrogen is used in the overall economy. That broad use of hydrogen, the report says, will be driven by future costs of hydrogen production, transportation, and storage — and by the pace of innovation in hydrogen end-use applications. 

    The MITEI study predicts the distribution of hourly wholesale prices or the hourly marginal value of energy will change in deeply decarbonized power systems — with many more hours of very low prices and more hours of high prices compared to today’s wholesale markets. So the report recommends systems adopt retail pricing and retail load management options that reward all consumers for shifting electricity use away from times when high wholesale prices indicate scarcity, to times when low wholesale prices signal abundance. 

    The Future of Energy Storage study is the ninth in MITEI’s “Future of” series, exploring complex and vital issues involving energy and the environment. Previous studies have focused on nuclear power, solar energy, natural gas, geothermal energy, and coal (with capture and sequestration of carbon dioxide emissions), as well as on systems such as the U.S. electric power grid. The Alfred P. Sloan Foundation and the Heising-Simons Foundation provided core funding for MITEI’s Future of Energy Storage study. MITEI members Equinor and Shell provided additional support.  More

  • in

    Solar-powered desalination device wins MIT $100K competition

    The winner of this year’s MIT $100K Entrepreneurship Competition is commercializing a new water desalination technology.

    Nona Desalination says it has developed a device capable of producing enough drinking water for 10 people at half the cost and with 1/10th the power of other water desalination devices. The device is roughly the size and weight of a case of bottled water and is powered by a small solar panel.

    “Our mission is to make portable desalination sustainable and easy,” said Nona CEO and MIT MBA candidate Bruce Crawford in the winning pitch, delivered to an audience in the Kresge Auditorium and online.

    The traditional approach for water desalination relies on a power-intensive process called reverse osmosis. In contrast, Nona uses a technology developed in MIT’s Research Laboratory of Electronics that removes salt and bacteria from seawater using an electrical current.

    “Because we can do all this at super low pressure, we don’t need the high-pressure pump [used in reverse osmosis], so we don’t need a lot of electricity,” says Crawford, who co-founded the company with MIT Research Scientist Junghyo Yoon. “Our device runs on less power than a cell phone charger.”

    The founders cited problems like tropical storms, drought, and infrastructure crises like the one in Flint, Michigan, to underscore that clean water access is not just a problem in developing countries. In Houston, after Hurricane Harvey caused catastrophic flooding in 2017, some residents were advised not to drink their tap water for months.

    The company has already developed a small prototype that produces clean drinking water. With its winnings, Nona will build more prototypes to give to early customers.

    The company plans to sell its first units to sailors before moving into the emergency preparedness space in the U.S., which it estimates to be a $5 billion industry. From there, it hopes to scale globally to help with disaster relief. The technology could also possibly be used for hydrogen production, oil and gas separation, and more.

    The MIT $100K is MIT’s largest entrepreneurship competition. It began in 1989 and is organized by students with support from the Martin Trust Center for MIT Entrepreneurship and the MIT Sloan School of Management. Each team must include at least one current MIT student.

    The second-place $25,000 prize went to Inclusive.ly, a company helping people and organizations create a more inclusive environment.

    The company uses conversational artificial intelligence and natural language processing to detect words and phrases that contain bias, and can measure the level of bias or inclusivity in communication.

    “We’re here to create a world where everyone feels invited to the conversation,” said MBA candidate Yeti Khim, who co-founded the company with fellow MBA candidates Joyce Chen and Priya Bhasin.

    Inclusive.ly can scan a range of communications and make suggestions for improvement. The algorithm can detect discrimination, microaggression, and condescension, and the founders say it analyzes language in a more nuanced way than tools like Grammarly.

    The company is currently developing a plugin for web browsers and is hoping to partner with large enterprise customers later this year. It will work with internal communications like emails as well as external communications like sales and marketing material.

    Inclusive.ly plans to sell to organizations on a subscription model and notes that diversity and inclusion is becoming a higher priority in many companies. Khim cited studies showing that lack of inclusion hinders employee productivity, retention, and recruiting.

    “We could all use a little bit of help to create the most inclusive version of ourselves,” Khim said.

    The third-place prize went to RTMicrofluidics, which is building at-home tests for a range of diseases including strep throat, tuberculosis, and mononucleosis. The test is able to detect a host of bacterial and viral pathogens in saliva and provide accurate test results in less than 30 minutes.

    The audience choice award went to Sparkle, which has developed a molecular dye technology that can illuminate tumors, making them easier to remove during surgery.

    This year’s $100K event was the culmination of a process that began last March, when 60 teams applied for the program. Out of that pool, 20 semifinalists were given additional mentoring and support before eight finalists were selected to pitch.

    The other finalist teams were:

    Astrahl, which is developing high resolution and affordable X-ray systems by integrating nanotechnologies with scintillators;

    Encreto Therapeutics, which is discovering medications to satiate appetite for people with obesity;

    Iridence, which has patented a biomaterial to replace minerals like mica as a way to make the beauty industry more sustainable; and

    Mantel, which is developing a liquid material for more efficient carbon removal that operates at high temperatures. More

  • in

    MIT Climate “Plug-In” highlights first year of progress on MIT’s climate plan

    In a combined in-person and virtual event on Monday, members of the three working groups established last year under MIT’s “Fast Forward” climate action plan reported on the work they’ve been doing to meet the plan’s goals, including reaching zero direct carbon emissions by 2026.

    Introducing the session, Vice President for Research Maria Zuber said that “many universities have climate plans that are inward facing, mostly focused on the direct impacts of their operations on greenhouse gas emissions. And that is really important, but ‘Fast Forward’ is different in that it’s also outward facing — it recognizes climate change as a global crisis.”

    That, she said, “commits us to an all-of-MIT effort to help the world solve the super wicked problem in practice.” That means “helping the world to go as far as it can, as fast as it can, to deploy currently available technologies and policies to reduce greenhouse gas emissions,” while also quickly developing new tools and approaches to deal with the most difficult areas of decarbonization, she said.

    Significant strides have been made in this first year, according to Zuber. The Climate Grand Challenges competition, announced last year as part of the plan, has just announced five flagship projects. “Each of these projects is potentially important in its own right, and is also exemplary of the kinds of bold thinking about climate solutions that the world needs,” she said.

    “We’ve also created new climate-focused institutions within MIT to improve accountability and transparency and to drive action,” Zuber said, including the Climate Nucleus, which comprises heads of labs and departments involved in climate-change work and is led by professors Noelle Selin and Anne White. The “Fast Forward” plan also established three working groups that report to the Climate Nucleus — on climate education, climate policy, and MIT’s carbon footprint — whose members spoke at Monday’s event.

    David McGee, a professor of earth, atmospheric and planetary science, co-director of MIT’s Terrascope program for first-year students, and co-chair of the education working group, said that over the last few years of Terrascope, “we’ve begun focusing much more explicitly on the experiences of, and the knowledge contained within, impacted communities … both for mitigation efforts and how they play out, and also adaptation.” Figuring out how to access the expertise of local communities “in a way that’s not extractive is a challenge that we face,” he added.

    Eduardo Rivera, managing director for MIT International Science and Technology Initiatives (MISTI) programs in several countries and a member of the education team, noted that about 1,000 undergraduates travel each year to work on climate and sustainability challenges. These include, for example, working with a lab in Peru assessing pollution in the Amazon, developing new insulation materials in Germany, developing affordable solar panels in China, working on carbon-capture technology in France or Israel, and many others, Rivera said. These are “unique opportunities to learn about the discipline, where the students can do hands-on work along with the professionals and the scientists in the front lines.” He added that MISTI has just launched a pilot project to help these students “to calculate their carbon footprint, to give them resources, and to understand individual responsibilities and collective responsibilities in this area.”

    Yujie Wang, a graduate student in architecture and an education working group member, said that during her studies she worked on a project focused on protecting biodiversity in Colombia, and also worked with a startup to reduce pesticide use in farming through digital monitoring. In Colombia, she said, she came to appreciate the value of interactions among researchers using satellite data, with local organizations, institutions and officials, to foster collaboration on solving common problems.

    The second panel addressed policy issues, as reflected by the climate policy working group. David Goldston, director of MIT’s Washington office, said “I think policy is totally central, in that for each part of the climate problem, you really can’t make progress without policy.” Part of that, he said, “involves government activities to help communities, and … to make sure the transition [involving the adoption of new technologies] is as equitable as possible.”

    Goldston said “a lot of the progress that’s been made already, whether it’s movement toward solar and wind energy and many other things, has been really prompted by government policy. I think sometimes people see it as a contest, should we be focusing on technology or policy, but I see them as two sides of the same coin. … You can’t get the technology you need into operation without policy tools, and the policy tools won’t have anything to work with unless technology is developed.”

    As for MIT, he said, “I think everybody at MIT who works on any aspect of climate change should be thinking about what’s the policy aspect of it, how could policy help them? How could they help policymakers? I think we need to coordinate better.” The Institute needs to be more strategic, he said, but “that doesn’t mean MIT advocating for specific policies. It means advocating for climate action and injecting a wide range of ideas into the policy arena.”

    Anushree Chaudhari, a student in economics and in urban studies and planning, said she has been learning about the power of negotiations in her work with Professor Larry Susskind. “What we’re currently working on is understanding why there are so many sources of local opposition to scaling renewable energy projects in the U.S.,” she explained. “Even though over 77 percent of the U.S. population actually is in support of renewables, and renewables are actually economically pretty feasible as their costs have come down in the last two decades, there’s still a huge social barrier to having them become the new norm,” she said. She emphasized that a fair and just energy transition will require listening to community stakeholders, including indigenous groups and low-income communities, and understanding why they may oppose utility-scale solar farms and wind farms.

    Joy Jackson, a graduate student in the Technology and Policy Program, said that the implementation of research findings into policy at state, local, and national levels is a “very messy, nonlinear, sort of chaotic process.” One avenue for research to make its way into policy, she said, is through formal processes, such as congressional testimony. But a lot is also informal, as she learned while working as an intern in government offices, where she and her colleagues reached out to professors, researchers, and technical experts of various kinds while in the very early stages of policy development.

    “The good news,” she said, “is there’s a lot of touch points.”

    The third panel featured members of the working group studying ways to reduce MIT’s own carbon footprint. Julie Newman, head of MIT’s Office of Sustainability and co-chair of that group, summed up MIT’s progress toward its stated goal of achieving net zero carbon emissions by 2026. “I can cautiously say we’re on track for that one,” she said. Despite headwinds in the solar industry due to supply chain issues, she said, “we’re well positioned” to meet that near-term target.

    As for working toward the 2050 target of eliminating all direct emissions, she said, it is “quite a challenge.” But under the leadership of Joe Higgins, the vice president for campus services and stewardship, MIT is implementing a number of measures, including deep energy retrofits, investments in high-performance buildings, an extremely efficient central utilities plant, and more.

    She added that MIT is particularly well-positioned in its thinking about scaling its solutions up. “A couple of years ago we approached a handful of local organizations, and over a couple of years have built a consortium to look at large-scale carbon reduction in the world. And it’s a brilliant partnership,” she said, noting that details are still being worked out and will be reported later.

    The work is challenging, because “MIT was built on coal, this campus was not built to get to zero carbon emissions.” Nevertheless, “we think we’re on track” to meet the ambitious goals of the Fast Forward plan, she said. “We’re going to have to have multiple pathways, because we may come to a pathway that may turn out not to be feasible.”

    Jay Dolan, head of facilities development at MIT’s Lincoln Laboratory, said that campus faces extra hurdles compared to the main MIT campus, as it occupies buildings that are owned and maintained by the U.S. Air Force, not MIT. They are still at the data-gathering stage to see what they can do to improve their emissions, he said, and a website they set up to solicit suggestions for reducing their emissions had received 70 suggestions within a few days, which are still being evaluated. “All that enthusiasm, along with the intelligence at the laboratory, is very promising,” he said.

    Peter Jacobson, a graduate student in Leaders for Global Operations, said that in his experience, projects that are most successful start not from a focus on the technology, but from collaborative efforts working with multiple stakeholders. “I think this is exactly why the Climate Nucleus and our working groups are so important here at MIT,” he said. “We need people tasked with thinking at this campus scale, figuring out what the needs and priorities of all the departments are and looking for those synergies, and aligning those needs across both internal and external stakeholders.”

    But, he added, “MIT’s complexity and scale of operations definitely poses unique challenges. Advanced research is energy hungry, and in many cases we don’t have the technology to decarbonize those research processes yet. And we have buildings of varying ages with varying stages of investment.” In addition, MIT has “a lot of people that it needs to feed, and that need to travel and commute, so that poses additional and different challenges.”

    Asked what individuals can do to help MIT in this process, Newman said, “Begin to leverage and figure out how you connect your research to informing our thinking on campus. We have channels for that.”

    Noelle Selin, co-chair of MIT’s climate nucleus and moderator of the third panel, said in conclusion “we’re really looking for your input into all of these working groups and all of these efforts. This is a whole of campus effort. It’s a whole of world effort to address the climate challenge. So, please get in touch and use this as a call to action.” More

  • in

    MIT expands research collaboration with Commonwealth Fusion Systems to build net energy fusion machine, SPARC

    MIT’s Plasma Science and Fusion Center (PSFC) will substantially expand its fusion energy research and education activities under a new five-year agreement with Institute spinout Commonwealth Fusion Systems (CFS).

    “This expanded relationship puts MIT and PSFC in a prime position to be an even stronger academic leader that can help deliver the research and education needs of the burgeoning fusion energy industry, in part by utilizing the world’s first burning plasma and net energy fusion machine, SPARC,” says PSFC director Dennis Whyte. “CFS will build SPARC and develop a commercial fusion product, while MIT PSFC will focus on its core mission of cutting-edge research and education.”

    Commercial fusion energy has the potential to play a significant role in combating climate change, and there is a concurrent increase in interest from the energy sector, governments, and foundations. The new agreement, administered by the MIT Energy Initiative (MITEI), where CFS is a startup member, will help PSFC expand its fusion technology efforts with a wider variety of sponsors. The collaboration enables rapid execution at scale and technology transfer into the commercial sector as soon as possible.

    This new agreement doubles CFS’ financial commitment to PSFC, enabling greater recruitment and support of students, staff, and faculty. “We’ll significantly increase the number of graduate students and postdocs, and just as important they will be working on a more diverse set of fusion science and technology topics,” notes Whyte. It extends the collaboration between PSFC and CFS that resulted in numerous advances toward fusion power plants, including last fall’s demonstration of a high-temperature superconducting (HTS) fusion electromagnet with record-setting field strength of 20 tesla.

    The combined magnetic fusion efforts at PSFC will surpass those in place during the operations of the pioneering Alcator C-Mod tokamak device that operated from 1993 to 2016. This increase in activity reflects a moment when multiple fusion energy technologies are seeing rapidly accelerating development worldwide, and the emergence of a new fusion energy industry that would require thousands of trained people.

    MITEI director Robert Armstrong adds, “Our goal from the beginning was to create a membership model that would allow startups who have specific research challenges to leverage the MITEI ecosystem, including MIT faculty, students, and other MITEI members. The team at the PSFC and MITEI have worked seamlessly to support CFS, and we are excited for this next phase of the relationship.”

    PSFC is supporting CFS’ efforts toward realizing the SPARC fusion platform, which facilitates rapid development and refinement of elements (including HTS magnets) needed to build ARC, a compact, modular, high-field fusion power plant that would set the stage for commercial fusion energy production. The concepts originated in Whyte’s nuclear science and engineering class 22.63 (Principles of Fusion Engineering) and have been carried forward by students and PSFC staff, many of whom helped found CFS; the new activity will expand research into advanced technologies for the envisioned pilot plant.

    “This has been an incredibly effective collaboration that has resulted in a major breakthrough for commercial fusion with the successful demonstration of revolutionary fusion magnet technology that will enable the world’s first commercially relevant net energy fusion device, SPARC, currently under construction,” says Bob Mumgaard SM ’15, PhD ’15, CEO of Commonwealth Fusion Systems. “We look forward to this next phase in the collaboration with MIT as we tackle the critical research challenges ahead for the next steps toward fusion power plant development.”

    In the push for commercial fusion energy, the next five years are critical, requiring intensive work on materials longevity, heat transfer, fuel recycling, maintenance, and other crucial aspects of power plant development. It will need innovation from almost every engineering discipline. “Having great teams working now, it will cut the time needed to move from SPARC to ARC, and really unleash the creativity. And the thing MIT does so well is cut across disciplines,” says Whyte.

    “To address the climate crisis, the world needs to deploy existing clean energy solutions as widely and as quickly as possible, while at the same time developing new technologies — and our goal is that those new technologies will include fusion power,” says Maria T. Zuber, MIT’s vice president for research. “To make new climate solutions a reality, we need focused, sustained collaborations like the one between MIT and Commonwealth Fusion Systems. Delivering fusion power onto the grid is a monumental challenge, and the combined capabilities of these two organizations are what the challenge demands.”

    On a strategic level, climate change and the imperative need for widely implementable carbon-free energy have helped orient the PSFC team toward scalability. “Building one or 10 fusion plants doesn’t make a difference — we have to build thousands,” says Whyte. “The design decisions we make will impact the ability to do that down the road. The real enemy here is time, and we want to remove as many impediments as possible and commit to funding a new generation of scientific leaders. Those are critically important in a field with as much interdisciplinary integration as fusion.” More

  • in

    Absent legislative victory, the president can still meet US climate goals

    The most recent United Nations climate change report indicates that without significant action to mitigate global warming, the extent and magnitude of climate impacts — from floods to droughts to the spread of disease — could outpace the world’s ability to adapt to them. The latest effort to introduce meaningful climate legislation in the United States Congress, the Build Back Better bill, has stalled. The climate package in that bill — $555 billion in funding for climate resilience and clean energy — aims to reduce U.S. greenhouse gas emissions by about 50 percent below 2005 levels by 2030, the nation’s current Paris Agreement pledge. With prospects of passing a standalone climate package in the Senate far from assured, is there another pathway to fulfilling that pledge?

    Recent detailed legal analysis shows that there is at least one viable option for the United States to achieve the 2030 target without legislative action. Under Section 115 on International Air Pollution of the Clean Air Act, the U.S. Environmental Protection Agency (EPA) could assign emissions targets to the states that collectively meet the national goal. The president could simply issue an executive order to empower the EPA to do just that. But would that be prudent?

    A new study led by researchers at the MIT Joint Program on the Science and Policy of Global Change explores how, under a federally coordinated carbon dioxide emissions cap-and-trade program aligned with the U.S. Paris Agreement pledge and implemented through Section 115 of the Clean Air Act, the EPA might allocate emissions cuts among states. Recognizing that the Biden or any future administration considering this strategy would need to carefully weigh its benefits against its potential political risks, the study highlights the policy’s net economic benefits to the nation.

    The researchers calculate those net benefits by combining the estimated total cost of carbon dioxide emissions reduction under the policy with the corresponding estimated expenditures that would be avoided as a result of the policy’s implementation — expenditures on health care due to particulate air pollution, and on society at large due to climate impacts.

    Assessing three carbon dioxide emissions allocation strategies (each with legal precedent) for implementing Section 115 to return cap-and-trade program revenue to the states and distribute it to state residents on an equal per-capita basis, the study finds that at the national level, the economic net benefits are substantial, ranging from $70 to $150 billion in 2030. The results appear in the journal Environmental Research Letters.

    “Our findings not only show significant net gains to the U.S. economy under a national emissions policy implemented through the Clean Air Act’s Section 115,” says Mei Yuan, a research scientist at the MIT Joint Program and lead author of the study. “They also show the policy impact on consumer costs may differ across states depending on the choice of allocation strategy.”

    The national price on carbon needed to achieve the policy’s emissions target, as well as the policy’s ultimate cost to consumers, are substantially lower than those found in studies a decade earlier, although in line with other recent studies. The researchers speculate that this is largely due to ongoing expansion of ambitious state policies in the electricity sector and declining renewable energy costs. The policy is also progressive, consistent with earlier studies, in that equal lump-sum distribution of allowance revenue to state residents generally leads to net benefits to lower-income households. Regional disparities in consumer costs can be moderated by the allocation of allowances among states.

    State-by-state emissions estimates for the study are derived from MIT’s U.S. Regional Energy Policy model, with electricity sector detail of the Renewable Energy Development System model developed by the U.S. National Renewable Energy Laboratory; air quality benefits are estimated using U.S. EPA and other models; and the climate benefits estimate is based on the social cost of carbon, the U.S. federal government’s assessment of the economic damages that would result from emitting one additional ton of carbon dioxide into the atmosphere (currently $51/ton, adjusted for inflation). 

    “In addition to illustrating the economic, health, and climate benefits of a Section 115 implementation, our study underscores the advantages of a policy that imposes a uniform carbon price across all economic sectors,” says John Reilly, former co-director of the MIT Joint Program and a study co-author. “A national carbon price would serve as a major incentive for all sectors to decarbonize.” More

  • in

    How can we reduce the carbon footprint of global computing?

    The voracious appetite for energy from the world’s computers and communications technology presents a clear threat for the globe’s warming climate. That was the blunt assessment from presenters in the intensive two-day Climate Implications of Computing and Communications workshop held on March 3 and 4, hosted by MIT’s Climate and Sustainability Consortium (MCSC), MIT-IBM Watson AI Lab, and the Schwarzman College of Computing.

    The virtual event featured rich discussions and highlighted opportunities for collaboration among an interdisciplinary group of MIT faculty and researchers and industry leaders across multiple sectors — underscoring the power of academia and industry coming together.

    “If we continue with the existing trajectory of compute energy, by 2040, we are supposed to hit the world’s energy production capacity. The increase in compute energy and demand has been increasing at a much faster rate than the world energy production capacity increase,” said Bilge Yildiz, the Breene M. Kerr Professor in the MIT departments of Nuclear Science and Engineering and Materials Science and Engineering, one of the workshop’s 18 presenters. This computing energy projection draws from the Semiconductor Research Corporations’s decadal report.To cite just one example: Information and communications technology already account for more than 2 percent of global energy demand, which is on a par with the aviation industries emissions from fuel.“We are the very beginning of this data-driven world. We really need to start thinking about this and act now,” said presenter Evgeni Gousev, senior director at Qualcomm.  Innovative energy-efficiency optionsTo that end, the workshop presentations explored a host of energy-efficiency options, including specialized chip design, data center architecture, better algorithms, hardware modifications, and changes in consumer behavior. Industry leaders from AMD, Ericsson, Google, IBM, iRobot, NVIDIA, Qualcomm, Tertill, Texas Instruments, and Verizon outlined their companies’ energy-saving programs, while experts from across MIT provided insight into current research that could yield more efficient computing.Panel topics ranged from “Custom hardware for efficient computing” to “Hardware for new architectures” to “Algorithms for efficient computing,” among others.

    Visual representation of the conversation during the workshop session entitled “Energy Efficient Systems.”

    Image: Haley McDevitt

    Previous item
    Next item

    The goal, said Yildiz, is to improve energy efficiency associated with computing by more than a million-fold.“I think part of the answer of how we make computing much more sustainable has to do with specialized architectures that have very high level of utilization,” said Darío Gil, IBM senior vice president and director of research, who stressed that solutions should be as “elegant” as possible.  For example, Gil illustrated an innovative chip design that uses vertical stacking to reduce the distance data has to travel, and thus reduces energy consumption. Surprisingly, more effective use of tape — a traditional medium for primary data storage — combined with specialized hard drives (HDD), can yield a dramatic savings in carbon dioxide emissions.Gil and presenters Bill Dally, chief scientist and senior vice president of research of NVIDIA; Ahmad Bahai, CTO of Texas Instruments; and others zeroed in on storage. Gil compared data to a floating iceberg in which we can have fast access to the “hot data” of the smaller visible part while the “cold data,” the large underwater mass, represents data that tolerates higher latency. Think about digital photo storage, Gil said. “Honestly, are you really retrieving all of those photographs on a continuous basis?” Storage systems should provide an optimized mix of of HDD for hot data and tape for cold data based on data access patterns.Bahai stressed the significant energy saving gained from segmenting standby and full processing. “We need to learn how to do nothing better,” he said. Dally spoke of mimicking the way our brain wakes up from a deep sleep, “We can wake [computers] up much faster, so we don’t need to keep them running in full speed.”Several workshop presenters spoke of a focus on “sparsity,” a matrix in which most of the elements are zero, as a way to improve efficiency in neural networks. Or as Dally said, “Never put off till tomorrow, where you could put off forever,” explaining efficiency is not “getting the most information with the fewest bits. It’s doing the most with the least energy.”Holistic and multidisciplinary approaches“We need both efficient algorithms and efficient hardware, and sometimes we need to co-design both the algorithm and the hardware for efficient computing,” said Song Han, a panel moderator and assistant professor in the Department of Electrical Engineering and Computer Science (EECS) at MIT.Some presenters were optimistic about innovations already underway. According to Ericsson’s research, as much as 15 percent of the carbon emissions globally can be reduced through the use of existing solutions, noted Mats Pellbäck Scharp, head of sustainability at Ericsson. For example, GPUs are more efficient than CPUs for AI, and the progression from 3G to 5G networks boosts energy savings.“5G is the most energy efficient standard ever,” said Scharp. “We can build 5G without increasing energy consumption.”Companies such as Google are optimizing energy use at their data centers through improved design, technology, and renewable energy. “Five of our data centers around the globe are operating near or above 90 percent carbon-free energy,” said Jeff Dean, Google’s senior fellow and senior vice president of Google Research.Yet, pointing to the possible slowdown in the doubling of transistors in an integrated circuit — or Moore’s Law — “We need new approaches to meet this compute demand,” said Sam Naffziger, AMD senior vice president, corporate fellow, and product technology architect. Naffziger spoke of addressing performance “overkill.” For example, “we’re finding in the gaming and machine learning space we can make use of lower-precision math to deliver an image that looks just as good with 16-bit computations as with 32-bit computations, and instead of legacy 32b math to train AI networks, we can use lower-energy 8b or 16b computations.”

    Visual representation of the conversation during the workshop session entitled “Wireless, networked, and distributed systems.”

    Image: Haley McDevitt

    Previous item
    Next item

    Other presenters singled out compute at the edge as a prime energy hog.“We also have to change the devices that are put in our customers’ hands,” said Heidi Hemmer, senior vice president of engineering at Verizon. As we think about how we use energy, it is common to jump to data centers — but it really starts at the device itself, and the energy that the devices use. Then, we can think about home web routers, distributed networks, the data centers, and the hubs. “The devices are actually the least energy-efficient out of that,” concluded Hemmer.Some presenters had different perspectives. Several called for developing dedicated silicon chipsets for efficiency. However, panel moderator Muriel Medard, the Cecil H. Green Professor in EECS, described research at MIT, Boston University, and Maynooth University on the GRAND (Guessing Random Additive Noise Decoding) chip, saying, “rather than having obsolescence of chips as the new codes come in and in different standards, you can use one chip for all codes.”Whatever the chip or new algorithm, Helen Greiner, CEO of Tertill (a weeding robot) and co-founder of iRobot, emphasized that to get products to market, “We have to learn to go away from wanting to get the absolute latest and greatest, the most advanced processor that usually is more expensive.” She added, “I like to say robot demos are a dime a dozen, but robot products are very infrequent.”Greiner emphasized consumers can play a role in pushing for more energy-efficient products — just as drivers began to demand electric cars.Dean also sees an environmental role for the end user.“We have enabled our cloud customers to select which cloud region they want to run their computation in, and they can decide how important it is that they have a low carbon footprint,” he said, also citing other interfaces that might allow consumers to decide which air flights are more efficient or what impact installing a solar panel on their home would have.However, Scharp said, “Prolonging the life of your smartphone or tablet is really the best climate action you can do if you want to reduce your digital carbon footprint.”Facing increasing demandsDespite their optimism, the presenters acknowledged the world faces increasing compute demand from machine learning, AI, gaming, and especially, blockchain. Panel moderator Vivienne Sze, associate professor in EECS, noted the conundrum.“We can do a great job in making computing and communication really efficient. But there is this tendency that once things are very efficient, people use more of it, and this might result in an overall increase in the usage of these technologies, which will then increase our overall carbon footprint,” Sze said.Presenters saw great potential in academic/industry partnerships, particularly from research efforts on the academic side. “By combining these two forces together, you can really amplify the impact,” concluded Gousev.Presenters at the Climate Implications of Computing and Communications workshop also included: Joel Emer, professor of the practice in EECS at MIT; David Perreault, the Joseph F. and Nancy P. Keithley Professor of EECS at MIT; Jesús del Alamo, MIT Donner Professor and professor of electrical engineering in EECS at MIT; Heike Riel, IBM Fellow and head science and technology at IBM; and Takashi Ando, principal research staff member at IBM Research. The recorded workshop sessions are available on YouTube. More

  • in

    Given what we know, how do we live now?

    To truly engage the climate crisis, as so many at MIT are doing, can be daunting and draining. But it need not be lonely. Building collective insight and companionship for this undertaking is the aim of the Council on the Uncertain Human Future (CUHF), an international network launched at Clark University in 2014 and active at MIT since 2020.

    Gathering together in council circles of 8-12 people, MIT community members make space to examine — and even to transform — their questions and concerns about climate change. Through a practice of intentional conversation in small groups, the council calls participants to reflect on our human interdependence with each other and the natural world, and on where we are in both social and planetary terms. It urges exploration of how we got here and what that means, and culminates by asking: Given what we know, how do we live now?

    Origins

    CUHF developed gradually in conversations between co-founders Sarah Buie and Diana Chapman Walsh, who met when they were, respectively, the director of Clark’s Higgins School of Humanities and the president of Wellesley College. Buie asked Walsh to keynote a Ford-funded Difficult Dialogues initiative in 2006. In the years and conversations that followed, they concluded that the most difficult dialogue wasn’t happening: an honest engagement with the realities and implications of a rapidly heating planet Earth.

    With social scientist Susi Moser, they chose the practice of council, a blend of both modern and traditional dialogic forms, and began with a cohort of 12 environmental leaders willing to examine the gravest implications of climate change in a supportive setting — what Walsh calls “a kind of container for a deep dive into dark waters.” That original circle met in three long weekends over 2014 and continues today as the original CUHF Steady Council.

    Taking root at MIT

    Since then, the Council on the Uncertain Human Future has grown into an international network, with circles at universities, research centers, and other communities across the United States and in Scotland and Kathmandu. The practice took root at MIT (where Walsh is a life member emerita of the MIT Corporation) in 2020.

    Leadership and communications teams in the MIT School of Humanities, Arts and Social Sciences (SHASS) Office of the Dean and the Environmental Solutions Initiative (ESI) recognized the need the council could meet on a campus buzzing with research and initiatives aimed at improving the health of the planet. Joining forces with the council leadership, the two MIT groups collaborated to launch the program at MIT, inviting participants from across the institute, and sharing information on the MIT Climate Portal. Intentional conversations

    “The council gives the MIT community the kind of deep discourse that is so necessary to face climate change and a rapidly changing world,” says ESI director and professor of architecture John Fernández. “These conversations open an opportunity to create a new kind of breakthrough of mindsets. It’s a rare chance to pause and ask: Are we doing the things we should be doing, given MIT’s mission to the nation and the world, and given the challenges facing us?”

    As the CUHF practice spreads, agendas expand to acknowledge changing times; the group produces films and collections of readings, curates an online resource site, and convenes international Zoom events for members on a range of topics, many of which interact with climate, including racism and Covid-19. But its core activity remains the same: an intentional, probing conversation over time. There are no preconceived objectives, only a few simple guidelines: speak briefly, authentically, and spontaneously, moving around the circle; listen with attention and receptivity; observe confidentiality. “Through this process of honest speaking and listening, insight arises and trustworthy community is built,” says Buie.

    While these meetings were held in person before 2020, the full council experience pivoted to Zoom at the start of the pandemic with two-hour discussions forming an arc over a period of five weeks. Sessions begin with a call for participants to slow down and breathe, grounding themselves for the conversation. The convener offers a series of questions that elicit spontaneous responses, concerns, and observations; later, they invite visioning of new possibilities. Inviting emergent possibility

    While the process may yield tangible outcomes — for example, a curriculum initiative at Clark called A New Earth Conversation — its greatest value, according to Buie, “is the collective listening, acknowledgment, and emergent possibility it invites. Given the profound cultural misunderstandings and misalignments behind it, climate breakdown defies normative approaches to ‘problem-solving.’ The Council enables us to live into the uncertainty with more awareness, humility, curiosity, and compassion. Participants feel the change; they return to their work and lives differently, and less alone.”

    Roughly 60 faculty and staff from across MIT, all engaged in climate-related work, have participated so far in council circles. The 2021 edition of the Institute’s Climate Action Plan provides for the expansion of councils at MIT to deepen humanistic understanding of the climate crisis. The conversations are also a space for engaging with how the climate crisis is related to what the plan calls “the imperative of justice” and “the intertwined problems of equity and economic transition.”

    Reflecting on the growth of the council’s humanistic practice at MIT, Agustín Rayo, professor of philosophy and the Kenan Sahin Dean of MIT SHASS, says: “The council conversations about the future of our species and the planet are an invaluable contribution to MIT’s ‘whole-campus’ focus on the climate crisis.”

    Growing the council at MIT means broadening participation. Postdocs will join a new circle this fall, with opportunities for student involvement soon to follow. More than a third of MIT’s prior council participants have continued with monthly Steady Council meetings, which sometimes reference recent events while deepening the council practice at MIT. The session in December 2021, for example, began with reports from MIT community members who had attended the COP26 UN climate change conference in Glasgow, then broke into council circles to engage the questions raised.

    Cognitive leaps

    The MIT Steady Council is organized by Curt Newton, director of MIT OpenCourseWare and an early contributor to the online platform that became the Institute’s Climate Portal. Newton sees a productive tension between MIT’s culture of problem-solving and the council’s call for participants to slow down and question the paradigms in which they operate. “It can feel wrong, or at least unfamiliar, to put ourselves in a mode where we’re not trying to create an agenda and an action plan,” he says. “To get us to step back from that and think together about the biggest picture before we allow ourselves to be pulled into that solution mindset  — it’s a necessary experiment for places like MIT.”

    Over the past decade, Newton says, he has searched for ways to direct his energies toward environmental issues “with one foot firmly planted at MIT and one foot out in the world.” The silo-busting personal connections he’s made with colleagues through the council have empowered him “to show up with my full climate self at work.”

    Walsh finds it especially promising to see CUHF taking root at MIT, “a place of intensity, collaboration, and high ideals, where the most stunning breakthroughs occur when someone takes a step back, stops the action, changes the trajectory for a time and begins asking new questions that challenge received wisdom.” She sees council as a communal practice that encourages those cognitive leaps. “If ever there were a moment in history that cried out for a paradigm shift,” she says, “surely this is it.”

    Funding for the Council on the Uncertain Human Future comes from the Christopher Reynolds Foundation and the Kaiser Family Foundation.

    Prepared by MIT SHASS CommunicationsEditorial team: Nicole Estvanik Taylor and Emily Hiestand More

  • in

    Five MIT PhD students awarded 2022 J-WAFS fellowships for water and food solutions

    The Abdul Latif Jameel Water and Food Systems Lab (J-WAFS) recently announced the selection of its 2022-23 cohort of graduate fellows. Two students were named Rasikbhai L. Meswani Fellows for Water Solutions and three students were named J-WAFS Graduate Student Fellows. All five fellows will receive full tuition and a stipend for one semester, and J-WAFS will support the students throughout the 2022-23 academic year by providing networking, mentorship, and opportunities to showcase their research.

    New this year, fellowship nominations were open not only to students pursuing water research, but food-related research as well. The five students selected were chosen for their commitment to solutions-based research that aims to alleviate problems such as water supply or purification, food security, or agriculture. Their projects exemplify the wide range of research that J-WAFS supports, from enhancing nutrition through improved methods to deliver micronutrients to developing high-performance drip irrigation technology. The strong applicant pool reflects the passion MIT students have to address the water and food crises currently facing the planet.

    “This year’s fellows are drawn from a dynamic and engaged community across the Institute whose creativity and ingenuity are pushing forward transformational water and food solutions,” says J-WAFS executive director Renee J. Robins. “We congratulate these students as we recognize their outstanding achievements and their promise as up-and-coming leaders in global water and food sectors.”

    2022-23 Rasikbhai L. Meswani Fellows for Water SolutionsThe Rasikbhai L. Meswani Fellowship for Water Solutions is a fellowship for students pursuing water-related research at MIT. The Rasikbhai L. Meswani Fellowship for Water Solutions was made possible by a generous gift from Elina and Nikhil Meswani and family.

    Aditya Ghodgaonkar is a PhD candidate in the Department of Mechanical Engineering at MIT, where he works in the Global Engineering and Research (GEAR) Lab under Professor Amos Winter. Ghodgaonkar received a bachelor’s degree in mechanical engineering from the RV College of Engineering in India. He then moved to the United States and received a master’s degree in mechanical engineering from Purdue University.Ghodgaonkar is currently designing hydraulic components for drip irrigation that could support the development of water-efficient irrigation systems that are off-grid, inexpensive, and low-maintenance. He has focused on designing drip irrigation emitters that are resistant to clogging, seeking inspiration about flow regulation from marine fauna such as manta rays, as well as turbomachinery concepts. Ghodgaonkar notes that clogging is currently an expensive technical challenge to diagnose, mitigate, and resolve. With an eye on hundreds of millions of farms in developing countries, he aims to bring the benefits of irrigation technology to even the poorest farmers.Outside of his research, Ghodgaonkar is a mentor in MIT Makerworks and has been a teaching assistant for classes such as 2.007 (Design and Manufacturing I). He also helped organize the annual MIT Water Summit last fall.

    Devashish Gokhale is a PhD candidate advised by Professor Patrick Doyle in the Department of Chemical Engineering. He received a bachelor’s degree in chemical engineering from the Indian Institute of Technology Madras, where he researched fluid flow in energy-efficient pumps. Gokhale’s commitment to global water security stemmed from his experience growing up in India, where water sources are threatened by population growth, industrialization, and climate change.As a researcher in the Doyle group, Devashish is developing sustainable and reusable materials for water treatment, with a focus on the elimination of emerging contaminants and other micropollutants from water through cost-effective processes. Many of these contaminants are carcinogens or endocrine disruptors, posing significant threats to both humans and animals. His advisor notes that Devashish was the first researcher in the Doyle group to work on water purification, bringing his passion for the topic to the lab.Gokhale’s research won an award for potential scalability in last year’s J-WAFS World Water Day competition. He also serves as the lecture series chair in the MIT Water Club.

    2022-23 J-WAFS Graduate Student FellowsThe J-WAFS Fellowship for Water and Food Solutions is funded by the J-WAFS Research Affiliate Program, which offers companies the opportunity to collaborate with MIT on water and food research. A portion of each research affiliate’s fees supports this fellowship. The program is central to J-WAFS’ efforts to engage across sector and disciplinary boundaries in solving real-world problems. Currently, there are two J-WAFS Research Affiliates: Xylem, Inc., a water technology company, and GoAigua, a company leading the digital transformation of the water industry.

    James Zhang is a PhD candidate in the Department of Mechanical Engineering at MIT, where he has worked in the NanoEngineering Laboratory with Professor Gang Chen since 2019. As an undergraduate at Carnegie Mellon University, he double majored in mechanical engineering and engineering public policy. He then received a master’s degree in mechanical engineering from MIT. In addition to working in the NanoEngineering Laboratory, James has also worked in the Zhao Laboratory and in the Boriskina Research Group at MIT.Zhang is developing a technology that uses light-induced evaporation to clean water. He is currently investigating the fundamental properties of how light interacts with brackish water surfaces. With strong theoretical as well as experimental components, his research could lead to innovations in desalinating brackish water at high energy efficiencies. Outside of his research, Zhang has served as a student moderator for the MIT International Colloquia on Thermal Innovations.

    Katharina Fransen is a PhD candidate advised by Professor Bradley Olsen in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Minnesota, where she was involved in the Society of Women Engineers. Fransen is motivated by the challenge of protecting the most vulnerable global communities from the large quantities of plastic waste associated with traditional food packaging materials. As a researcher in the Olsen Lab, Fransen is developing new plastics that are biologically-based and biodegradable, so they can degrade in the environment instead of polluting communities with plastic waste. These polymers are also optimized for food packaging applications to keep food fresher for longer, preventing food waste.Outside of her research, Fransen is involved in Diversity in Chemical Engineering as the coordinator for the graduate application mentorship program for underrepresented groups. She is also an active member of Graduate Womxn in ChemE and mentors an Undergraduate Research Opportunities Program student.

    Linzixuan (Rhoda) Zhang is a PhD candidate advised by Professor Robert Langer and Ana Jaklenec in the Department of Chemical Engineering at MIT. She received a bachelor’s degree in chemical engineering from the University of Illinois at Urbana-Champaign, where she researched how to genetically engineer microorganisms for the efficient production of advanced biofuels and chemicals.Zhang is currently developing a micronutrient delivery platform that fortifies foods with essential vitamins and nutrients. She has helped develop a group of biodegradable polymers that can stabilize micronutrients under harsh conditions, enabling local food companies to fortify food with essential vitamins. This work aims to tackle a hidden crisis in low- and middle-income countries, where a chronic lack of essential micronutrients affects an estimated 2 billion people.Zhang is also working on the development of self-boosting vaccines to promote more widespread vaccine access and serves as a research mentor in the Langer Lab. More