More stories

  • in

    Nurturing human communities and natural ecosystems

    When she was in 7th grade, Heidi Li and the five other members of the Oyster Gardening Club cultivated hundreds of oysters to help repopulate the Chesapeake Bay. On the day they released the oysters into the bay, the event attracted TV journalists and local officials, including the governor. The attention opened the young Li’s eyes to the ways that a seemingly small effort in her local community could have a real-world impact.

    “I got to see firsthand how we can make change at a grassroots level and how that impacts where we are,” she says.

    Growing up in Howard County, Maryland, Li was constantly surrounded by nature. Her family made frequent trips to the Chesapeake Bay, as it reminded them of her parent’s home in Shandong, China. Li worked to bridge the cultural gap between parents, who grew up in China, and their children, who grew up in the U.S., and attended Chinese school every Sunday for 12 years. These experiences instilled in her a community-oriented mindset, which Li brought with her to MIT, where she now majors in materials science and engineering.

    During her first year, Li pursued a microbiology research project through the Undergraduate Research Opportunities Program (UROP) in the Department of Civil and Environmental Engineering. She studied microbes in aquatic environments, analyzing how the cleanliness of water impacted immunity and behavioral changes of the marine bacteria.

    The experience led her to consider the ways environmental policy affected sustainability efforts. She began applying the problem to energy, asking herself questions such as, “How can you take this specific economic principle and apply it to energy? What has energy policy looked like in the past and how can we tailor that to apply to our current energy system?”

    To explore the intersection of policy and energy, Li participated in the Roosevelt Project, through the Center of Energy and Environmental Policy Research, during the summer after her junior year. The project used case studies targeting specific communities in vulnerable areas to propose methods for a more sustainable future. Li focused on Pittsburgh, Pennsylvania, evaluating the efficiency of an energy transition from natural gas and fossil fuels to carbon-capture, which would mean redistributing the carbon dioxide produced by the coal industry. After traveling to Pittsburgh and interviewing stakeholders in the area, Li watched as local community leaders created physical places for citizens to share their ideas and opinions on the energy transition

    “I watched community leaders create a safe space for people from the surrounding town to share their ideas for entrepreneurship. I saw how important community is and how to create change at a grassroots level,” she says.

    In the summer of 2021, Li pursued an internship through the energy consulting firm Wood Mackenzie, where she looked at technologies that could potentially help with the energy transition from fossil fuels to renewable energy. Her job was to make sure the technology could be implemented efficiently and cost-effectively, optimizing the resources available to the surrounding area. The project allowed Li to engage with industry-based efforts to chart and analyze the technological advancements for various decarbonization scenarios. She hopes to continue looking at both the local, community-based, and external, industry-based, inputs on how economic policy would affect stakeholders.

    On campus, Li is the current president of the Sustainable Energy Alliance (SEA), where she aims to make students more conscious about climate change and their impact on the environment. During summer of her sophomore year, Li chaired a sustainability hackathon for over 200 high school students, where she designed and led the “Protecting Climate Refugees” and “Tackling Environmental Injustice” challenges to inspire students to think about humanitarian efforts for protecting frontline communities.

    “The whole goal of this is to empower students to think about solutions for themselves. Empowering students is really important to show them they can make change and inspire hope in themselves and the people around them,” she says.

    Li also hosted and produced “Open SEAcrets,” a podcast designed to engage MIT students with topics surrounding energy sustainability and provide them with the opportunity to share their opinions on the subject. She sees the podcast as a platform to raise awareness about energy, climate change, and environmental policy, while also inspiring a sense of community with listeners.

    When she is not in the classroom or the lab, Li relaxes by playing volleyball. She joined the Volleyball Club during her first year at MIT, though she has been playing since she was 12. The sport allows her to not only relieve stress, but also have conversations with both undergrads and graduate students, who bring different their backgrounds, interests, and experiences to conversations. The sport has also taught Li about teamwork, trust, and the importance of community in ways that her other experience doesn’t.

    Looking ahead, Li is currently working on a UROP project, called Climate Action Through Education (CATE), that designs climate change curriculum for K-12 grades and aims to show how climate change and energy are integral to peoples’ daily lives. Seeing the energy transition as an interdisciplinary problem, she wants to educate students about the problems of climate change and sustainability using perspectives from math, science, history, and psychology to name a few areas.

    But above all, Li wants to empower younger generations to develop solution-minded approaches to environmentalism. She hopes to give local communities a voice in policy implementation, with the end goal of a more sustainable future for all.

    “Finding a community you really thrive in will allow you to push yourself and be the best version of yourself you can be. I want to take this mindset and create spaces for people and establish and instill this sense of community,” she says. More

  • in

    First-ever Climate Grand Challenges recognizes 27 finalists

    All-carbon buildings, climate-resilient crops, and new tools to improve the prediction of extreme weather events are just a few of the 27 bold, interdisciplinary research projects selected as finalists from a field of almost 100 proposals in the first MIT Climate Grand Challenges competition. Each of the finalist teams received $100,000 to develop a comprehensive research and innovation plan.

    A subset of the finalists will make up a portfolio of multiyear projects that will receive additional funding and other support to develop high-impact, science-based mitigation and adaptation solutions on an accelerated basis. These flagship projects, which will be announced later this spring, will augment the work of the many MIT units already pursuing climate-related research activities.

    “Climate change poses a suite of challenges of immense urgency, complexity and scale. At MIT, we are bringing our particular strengths to bear through our community — a rare concentration of ingenuity and determination, rooted in a vibrant innovation ecosystem,” President L. Rafael Reif says. “Through MIT’s Climate Grand Challenges, we are engaging hundreds of our brilliant faculty and researchers in the search for solutions with enormous potential for impact.”

    The Climate Grand Challenges launched in July 2020 with the goal of mobilizing the entire MIT research community around developing solutions to some of the most complex unsolved problems in emissions reduction, climate change adaptation and resilience, risk forecasting, carbon removal, and understanding the human impacts of climate change.

    An event in April will showcase the flagship projects, bringing together public and private sector partners with the MIT teams to begin assembling the necessary resources for developing, implementing, and scaling these solutions rapidly.

    A whole-of-MIT effort

    Part of a wide array of major climate programs outlined last year in “Fast Forward: MIT’s Climate Action Plan for the Decade,” the Climate Grand Challenges focuses on problems where progress depends on the application of forefront knowledge in the physical, life, and social sciences and the advancement of cutting-edge technologies.

    “We don’t have the luxury of time in responding to the intensifying climate crisis,” says Vice President for Research Maria Zuber, who oversees the implementation of MIT’s climate action plan. “The Climate Grand Challenges are about marshaling the wide and deep knowledge and methods of the MIT community around transformative research that can help accelerate our collective response to climate change.”

    If successful, the solutions will have tangible effects, changing the way people live and work. Examples of these new approaches range from developing cost-competitive long-term energy-storage systems to using drone technologies and artificial intelligence to study the role of the deep ocean in the climate crisis. Many projects also aim to increase the humanistic understanding of these phenomena, recognizing that technological advances alone will not address the widespread impacts of climate change, and a comparable behavioral and cultural shift is needed to stave off future threats.

    “To achieve net-zero emissions later this century we must deploy the tools and technologies we already have,” says Richard Lester, associate provost for international activities. “But we’re still far from having everything needed to get there in ways that are equitable and affordable. Nor do we have the solutions in hand that will allow communities — especially the most vulnerable ones — to adapt to the disruptions that will occur even if the world does get to net-zero. Climate Grand Challenges is creating a new opportunity for the MIT research community to attack some of these hard, unsolved problems, and to engage with partners in industry, government, and the nonprofit sector to accelerate the whole cycle of activities needed to implement solutions at scale.” 

    Selecting the finalist projects

    A 24-person faculty committee convened by Lester and Zuber with members from all five of MIT’s schools and the MIT Schwarzman College of Computing led the planning and initial call for ideas. A smaller group of committee members was charged with evaluating nearly 100 letters of interest, representing 90 percent of MIT departments and ​​involving almost 400 MIT faculty members and senior researchers as well as colleagues from other research institutions.

    “Effectively confronting the climate emergency requires risk taking and sustained investment over a period of many decades,” says Anantha Chandrakasan, dean of the School of Engineering. “We have a responsibility to use our incredible resources and expertise to tackle some of the most challenging problems in climate mitigation and adaptation, and the opportunity to make major advances globally.”

    Lester and Zuber charged a second faculty committee with organizing a rigorous and thorough evaluation of the plans developed by the 27 finalist teams. Drawing on an extensive review process involving international panels of prominent experts, MIT will announce a small group of flagship Grand Challenge projects in April. 

    Each of the 27 finalist teams is addressing one of four broad Grand Challenge problems:

    Building equity and fairness into climate solutions

    Policy innovation and experimentation for effective and equitable climate solutions, led by Abhijit Banerjee, Iqbal Dhaliwal, and Claire Walsh
    Protecting and enhancing natural carbon sinks – Natural Climate and Community Solutions (NCCS), led by John Fernandez, Daniela Rus, and Joann de Zegher
    Reducing group-based disparities in climate adaptation, led by Evan Lieberman, Danielle Wood, and Siqi Zheng
    Reinventing climate change adaptation – The Climate Resilience Early Warning System (CREWSnet), led by John Aldridge and Elfatih Eltahir
    The Deep Listening Project: Communication infrastructure for collaborative adaptation, led by Eric Gordon, Yihyun Lim, and James Paradis
    The Equitable Resilience Framework, led by Janelle Knox-Hayes

    Decarbonizing complex industries and processes

    Carbon >Building, led by Mark Goulthorpe
    Center for Electrification and Decarbonization of Industry, led by Yet-Ming Chiang and Bilge Yildiz
    Decarbonizing and strengthening the global energy infrastructure using nuclear batteries, led by Jacopo Buongiorno
    Emissions reduction through innovation in the textile industry, led by Yuly Fuentes-Medel and Greg Rutledge
    Rapid decarbonization of freight mobility, led by Yossi Sheffi and Matthias Winkenbach
    Revolutionizing agriculture with low-emissions, resilient crops, led by Christopher Voigt
    Solar fuels as a vector for climate change mitigation, led by Yuriy Román-Leshkov and Yogesh Surendranath
    The MIT Low-Carbon Co-Design Institute, led by Audun Botterud, Dharik Mallapragada, and Robert Stoner
    Tough to Decarbonize Transportation, led by Steven Barrett and William Green

    Removing, managing, and storing greenhouse gases

    Demonstrating safe, globally distributed geological CO2 storage at scale, led by Bradford Hager, Howard Herzog, and Ruben Juanes
    Deploying versatile carbon capture technologies and storage at scale, led by Betar Gallant, Bradford Hager, and T. Alan Hatton
    Directed Evolution of Biological Carbon Fixation Working Group at MIT (DEBC-MIT), led by Edward Boyden and Matthew Shoulders
    Managing sources and sinks of carbon in terrestrial and coastal ecosystems, led by Charles Harvey, Tami Lieberman, and Heidi Nepf
    Strategies to Reduce Atmospheric Methane, led by Desiree Plata

    The Advanced Carbon Mineralization Initiative, led by Edward Boyden, Matěj Peč, and Yogesh Surendranath

    Using data and science to forecast climate-related risk

    Bringing computation to the climate challenge, led by Noelle Eckley Selin and Raffaele Ferrari
    Ocean vital signs, led by Christopher Hill and Ryan Woosley
    Preparing for a new world of weather and climate extremes, led by Kerry Emanuel, Miho Mazereeuw, and Paul O’Gorman
    Quantifying and managing the risks of sea-level rise, led by Brent Minchew
    Stratospheric Airborne Climate Observatory System to initiate a climate risk forecasting revolution, led by R. John Hansman and Brent Minchew
    The future of coasts – Changing flood risk for coastal communities in the developing world, led by Dara Entekhabi, Miho Mazereeuw, and Danielle Wood

    To learn more about the MIT Climate Grand Challenges, visit climategrandchallenges.mit.edu. More

  • in

    3 Questions: What a single car can say about traffic

    Vehicle traffic has long defied description. Once measured roughly through visual inspection and traffic cameras, new smartphone crowdsourcing tools are now quantifying traffic far more precisely. This popular method, however, also presents a problem: Accurate measurements require a lot of data and users.

    Meshkat Botshekan, an MIT PhD student in civil and environmental engineering and research assistant at the MIT Concrete Sustainability Hub, has sought to expand on crowdsourcing methods by looking into the physics of traffic. During his time as a doctoral candidate, he has helped develop Carbin, a smartphone-based roadway crowdsourcing tool created by MIT CSHub and the University of Massachusetts Dartmouth, and used its data to offer more insight into the physics of traffic — from the formation of traffic jams to the inference of traffic phase and driving behavior. Here, he explains how recent findings can allow smartphones to infer traffic properties from the measurements of a single vehicle.  

    Q: Numerous navigation apps already measure traffic. Why do we need alternatives?

    A: Traffic characteristics have always been tough to measure. In the past, visual inspection and cameras were used to produce traffic metrics. So, there’s no denying that today’s navigation tools apps offer a superior alternative. Yet even these modern tools have gaps.

    Chief among them is their dependence on spatially distributed user counts: Essentially, these apps tally up their users on road segments to estimate the density of traffic. While this approach may seem adequate, it is both vulnerable to manipulation, as demonstrated in some viral videos, and requires immense quantities of data for reliable estimates. Processing these data is so time- and resource-intensive that, despite their availability, they can’t be used to quantify traffic effectively across a whole road network. As a result, this immense quantity of traffic data isn’t actually optimal for traffic management.

    Q: How could new technologies improve how we measure traffic?

    A: New alternatives have the potential to offer two improvements over existing methods: First, they can extrapolate far more about traffic with far fewer data. Second, they can cost a fraction of the price while offering a far simpler method of data collection. Just like Waze and Google Maps, they rely on crowdsourcing data from users. Yet, they are grounded in the incorporation of high-level statistical physics into data analysis.

    For instance, the Carbin app, which we are developing in collaboration with UMass Dartmouth, applies principles of statistical physics to existing traffic models to entirely forgo the need for user counts. Instead, it can infer traffic density and driver behavior using the input of a smartphone mounted in single vehicle.

    The method at the heart of the app, which was published last fall in Physical Review E, treats vehicles like particles in a many-body system. Just as the behavior of a closed many-body system can be understood through observing the behavior of an individual particle relying on the ergodic theorem of statistical physics, we can characterize traffic through the fluctuations in speed and position of a single vehicle across a road. As a result, we can infer the behavior and density of traffic on a segment of a road.

    As far less data is required, this method is more rapid and makes data management more manageable. But most importantly, it also has the potential to make traffic data less expensive and accessible to those that need it.

    Q: Who are some of the parties that would benefit from new technologies?

    A: More accessible and sophisticated traffic data would benefit more than just drivers seeking smoother, faster routes. It would also enable state and city departments of transportation (DOTs) to make local and collective interventions that advance the critical transportation objectives of equity, safety, and sustainability.

    As a safety solution, new data collection technologies could pinpoint dangerous driving conditions on a much finer scale to inform improved traffic calming measures. And since socially vulnerable communities experience traffic violence disproportionately, these interventions would have the added benefit of addressing pressing equity concerns. 

    There would also be an environmental benefit. DOTs could mitigate vehicle emissions by identifying minute deviations in traffic flow. This would present them with more opportunities to mitigate the idling and congestion that generate excess fuel consumption.  

    As we’ve seen, these three challenges have become increasingly acute, especially in urban areas. Yet, the data needed to address them exists already — and is being gathered by smartphones and telematics devices all over the world. So, to ensure a safer, more sustainable road network, it will be crucial to incorporate these data collection methods into our decision-making. More

  • in

    Investors awaken to the risks of climate change

    Poppy Allonby, a senior financial executive and the former managing director of BlackRock, has been analyzing the link between climate change and investing for more than two decades. “For a lot of that, it was quite lonely,” Allonby said during her December address at the MIT Energy Initiative Fall Colloquium. “There weren’t that many other people looking at this field. And over the last three or four years, that’s completely changed.”

    Increasingly, Allonby said, investors are opening their eyes to the long-term risks of climate change — risks that threaten not only the planet, but also their portfolios. And as more institutional investors come to see climate change as a threat to their beneficiaries, they are taking action to fight it. Still, she cautioned that much more work remains to be done.

    “Various investors are at very different stages in considering climate change,” Allonby said. “Once they realize this is something they need to think about … they need to do a risk assessment, then develop a strategy.” 

    “When you look at different institutions,” she said, “some are just at the very beginning of this journey.”

    A changing landscape

    Although there is a compelling moral case to be made for taking steps to mitigate climate change, Allonby noted that institutional investors such as pension funds are bound by a fiduciary duty to their beneficiaries. That is to say, they are obligated to put their client or member interests ahead of their own.

    “I talk about fiduciary duty, because one of the things that has really changed in the investment space is that more and more investors are beginning to see climate change and climate risk as [impacting] their fiduciary duty,” said Allonby. “That has been a shift. In my mind, it makes total sense. If you’re a long-term investor … and you’re thinking about beneficiaries that need assets over the next 10 or 20 years, and thinking about risks that might materialize — and climate change, in particular — then that makes a lot of sense. But that is not where we were five or 10 years ago.”

    Allonby spent more than 20 years at the multinational investment management corporation BlackRock. For 17 of those years, she was a senior portfolio manager responsible for managing multibillion-dollar funds investing globally in companies across the traditional energy sector, and also those involved in sustainable energy and mitigating climate change. Most recently, she was head of the corporation’s Global Product Group on several continents, where she provided oversight for nearly $1 trillion assets and played a critical role in developing BlackRock’s sustainable product strategy.

    “Where I like to think the finance industry is heading is integration,” she said. “This means thinking holistically about pretty much every decision you make as an investor, and thinking about how climate risk is going to impact that investment. That is a sea change in the mentality around how people invest.”

    Divestment versus engagement

    For many years, activists have pushed for institutions — including MIT — to divest from fossil fuel companies. By keeping fossil fuel companies out of their portfolios, these activists argue, institutions and individuals can exert social, political, and economic pressure on these corporations and help to accelerate the shift to renewable energy.

    However, Allonby argued instead for ongoing engagement with fossil fuel companies, reasoning that this better positions investors to push for change. “My personal view with divesting from oil and gas companies is, that’s not very effective,” Allonby said. “I think there might be examples where you have very specific companies which you don’t think will be involved in the transition [to net zero], and [divestment] might make sense. Or if you’ve got an institutional investor where it is imperative that their investment is entirely aligned with their values — so, certain charities — it might make sense. But if you really care about change, I think you need to keep a seat at the table.”

    In a way, Allonby said, divesting from fossil fuel companies lets leaders at those organizations off the hook, reducing the pressure on them to make meaningful changes to their operations. “Imagine a company that is incredibly polluting and not sustainable, and they have shareholders that are not happy, but they don’t do anything, and those shareholders decide to divest,” she said. “What happens as a result of that, potentially, is the company goes, ‘Oh, that was easy! I didn’t have to do anything, and [the activists] have gone away.’ And potentially, those assets end up being owned by people who care less. So that is a risk, when you think about divestment.”

    Challenges and opportunities         

    Allonby outlined several challenges with climate-focused investing, but also noted a number of opportunities — both for investors looking to make money, and those looking to make a change.

    Among the challenges: For one, some investors simply still need to be convinced that climate change is a problem they should be working to solve. Also, Allonby said, there is a lack both of a formalized methodology and of specialized investment products for climate-focused investing, although she noted that both of these areas are improving. Finally, she said, it remains a challenge to encourage investors to direct capital toward clean-energy projects in developing countries. 

    Investors can both set themselves up for financial success and mitigate climate change, Allonby said, through savvy investments in either distressed or underpriced assets. “If you can buy assets that are discounted or cheaper because people have real concerns about their environmental footprint, then you can work with those companies to improve it and therefore reduce the risk and improve the valuation,” she said.

    Allonby, pointing to the high cost of waterfront property in areas that are vulnerable to rising sea levels, also suggested that the long-term risks of climate change have not been fully priced into many assets. “My view is that we haven’t really gotten our arms around that,” she said. “From a purely investment perspective, that’s also an opportunity.”

    Additionally, Allonby noted the recent rise of ESG funds, which invest with environmental, social, and corporate governance guidelines in mind. Some of these funds, she noted, have outperformed the larger market over the past several years.

    “When we talk about climate change, one has a range of emotions,” Allonby said. “Sometimes it can feel like we’re not making enough progress. And one of the nice things about being here at MIT is that whenever I’m here, I always feel hopeful about the future, and quite hopeful about all of the technologies and work that you are doing to transition energy systems and move things forward. When you look at what’s happening in the financial services sector, there’s still a huge amount to do, but it’s also quite a hopeful story.” More

  • in

    Students dive into research with the MIT Climate and Sustainability Consortium

    Throughout the fall 2021 semester, the MIT Climate and Sustainability Consortium (MCSC) supported several research projects with a climate-and-sustainability topic related to the consortium, through the MIT Undergraduate Research Opportunities Program (UROP). These students, who represent a range of disciplines, had the opportunity to work with MCSC Impact Fellows on topics related directly to the ongoing work and collaborations with MCSC member companies and the broader MIT community, from carbon capture to value-chain resilience to biodegradables. Many of these students are continuing their work this spring semester.

    Hannah Spilman, who is studying chemical engineering, worked with postdoc Glen Junor, an MCSC Impact Fellow, to investigate carbon capture, utilization, and storage (CCUS), with the goal of facilitating CCUS on a gigaton scale, a much larger capacity than what currently exists. “Scientists agree CCUS will be an important tool in combating climate change, but the largest CCUS facility only captures CO2 on a megaton scale, and very few facilities are actually operating,” explains Spilman. 

    Throughout her UROP, she worked on analyzing the currently deployed technology in the CCUS field, using National Carbon Capture Center post-combustion project reports to synthesize the results and outline those technologies. Examining projects like the RTI-NAS experiment, which showcased innovation with carbon capture technology, was especially helpful. “We must first understand where we are, and as we continue to conduct analyses, we will be able to understand the field’s current state and path forward,” she concludes.

    Fellow chemical engineering students Claire Kim and Alfonso Restrepo are working with postdoc and MCSC Impact Fellow Xiangkun (Elvis) Cao, also on investigating CCUS technology. Kim’s focus is on life cycle assessment (LCA), while Restrepo’s focus is on techno-economic assessment (TEA). They have been working together to use the two tools to evaluate multiple CCUS technologies. While LCA and TEA are not new tools themselves, their application in CCUS has not been comprehensively defined and described. “CCUS can play an important role in the flexible, low-carbon energy systems,” says Kim, which was part of the motivation behind her project choice.

    Through TEA, Restrepo has been investigating how various startups and larger companies are incorporating CCUS technology in their processes. “In order to reduce CO2 emissions before it’s too late to act, there is a strong need for resources that effectively evaluate CCUS technology, to understand the effectiveness and viability of emerging technology for future implementation,” he explains. For their next steps, Kim and Restrepo will apply LCA and TEA to the analysis of a specific capture (for example, direct ocean capture) or conversion (for example, CO2-to-fuel conversion) process​ in CCUS.

    Cameron Dougal, a first-year student, and James Santoro, studying management, both worked with postdoc and MCSC Impact Fellow Paloma Gonzalez-Rojas on biodegradable materials. Dougal explored biodegradable packaging film in urban systems. “I have had a longstanding interest in sustainability, with a newer interest in urban planning and design, which motivated me to work on this project,” Dougal says. “Bio-based plastics are a promising step for the future.”

    Dougal spent time conducting internet and print research, as well as speaking with faculty on their relevant work. From these efforts, Dougal has identified important historical context for the current recycling landscape — as well as key case studies and cities around the world to explore further. In addition to conducting more research, Dougal plans to create a summary and statistic sheet.

    Santoro dove into the production angle, working on evaluating the economic viability of the startups that are creating biodegradable materials. “Non-renewable plastics (created with fossil fuels) continue to pollute and irreparably damage our environment,” he says. “As we look for innovative solutions, a key question to answer is how can we determine a more effective way to evaluate the economic viability and probability of success for new startups and technologies creating biodegradable plastics?” The project aims to develop an effective framework to begin to answer this.

    At this point, Santoro has been understanding the overall ecosystem, understanding how these biodegradable materials are developed, and analyzing the economics side of things. He plans to have conversations with company founders, investors, and experts, and identify major challenges for biodegradable technology startups in creating high performance products with attractive unit economics. There is also still a lot to research about new technologies and trends in the industry, the profitability of different products, as well as specific individual companies doing this type of work.

    Tess Buchanan, who is studying materials science and engineering, is working with Katharina Fransen and Sarah Av-Ron, MIT graduate students in the Department of Chemical Engineering, and principal investigator Professor Bradley Olsen, to also explore biodegradables by looking into their development from biomass “This is critical work, given the current plastics sustainability crisis, and the potential of bio-based polymers,” Buchanan says.

    The objective of the project is to explore new sustainable polymers through a biodegradation assay using clear zone growth analysis to yield degradation rates. For next steps, Buchanan is diving into synthesis expansion and using machine learning to understand the relationship between biodegradation and polymer chemistry.

    Kezia Hector, studying chemical engineering, and Tamsin Nottage, a first-year student, working with postdoc and MCSC Impact Fellow Sydney Sroka, explored advancing and establishing sustainable solutions for value chain resilience. Hector’s focus was understanding how wildfires can affect supply chains, specifically identifying sources of economic loss. She reviewed academic literature and news articles, and looked at the Amazon, California, Siberia, and Washington, finding that wildfires cause millions of dollars in damage every year and impact supply chains by cutting off or slowing down freight activity. She will continue to identify ways to make supply chains more resilient and sustainable.

    Nottage focused on the economic impact of typhoons, closely studying Typhoon Mangkhut, a powerful and catastrophic tropical cyclone that caused extensive damages of $593 million in Guam, the Philippines, and South China in September 2018. “As a Bahamian, I’ve witnessed the ferocity of hurricanes and challenges of rebuilding after them,” says Nottage. “I used this project to identify the tropical cyclones that caused the most extensive damage for further investigation.”She compiled the causes of damage and their costs to inform targets of supply chain resiliency reform (shipping, building materials, power supply, etc.). As a next step, Nottage will focus on modeling extreme events like Mangkunt to develop frameworks that companies can learn from and utilize to build more sustainable supply chains in the future.

    Ellie Vaserman, a first-year student working with postdoc and MCSC Impact Fellow Poushali Maji, also explored a topic related to value chains: unlocking circularity across the entire value chain through quality improvement, inclusive policy, and behavior to improve materials recovery. Specifically, her objectives have been to learn more about methods of chemolysis and the viability of their products, to compare methods of chemical recycling of polyethylene terephthalate (PET) using quantitative metrics, and to design qualitative visuals to make the steps in PET chemical recycling processes more understandable.

    To do so, she conducted a literature review to identify main methods of chemolysis that are utilized in the field (and collect data about these methods) and created graphics for some of the more common processes. Moving forward, she hopes to compare the processes using other metrics and research the energy intensity of the monomer purification processes.

    The work of these students, as well as many others, continued over MIT’s Independent Activities Period in January. More

  • in

    Reducing methane emissions at landfills

    The second-largest driver of global warming is methane, a greenhouse gas 28 times more potent than carbon dioxide. Landfills are a major source of methane, which is created when organic material decomposes underground.

    Now a startup that began at MIT is aiming to significantly reduce methane emissions from landfills with a system that requires no extra land, roads, or electric lines to work. The company, Loci Controls, has developed a solar-powered system that optimizes the collection of methane from landfills so more of it can be converted into natural gas.

    At the center of Loci’s (pronounced “low-sigh”) system is a lunchbox-sized device that attaches to methane collection wells, which vacuum the methane up to the surface for processing. The optimal vacuum force changes with factors like atmospheric pressure and temperature. Loci’s system monitors those factors and adjusts the vacuum force at each well far more frequently than is possible with field technicians making manual adjustments.

    “We expect to reduce methane emissions more than any other company in the world over the next five years,” Loci Controls CEO Peter Quigley ’85 says. The company was founded by Melinda Hale Sims SM ’09, PhD ’12 and Andrew Campanella ’05, SM ’13.

    The reason for Quigley’s optimism is the high concentration of landfill methane emissions. Most landfill emissions in the U.S. come from about 1,000 large dumps. Increasing collection of methane at those sites could make a significant dent in the country’s overall emissions.

    In one landfill where Loci’s system was installed, for instance, the company says it increased methane sales at an annual rate of 180,000 metric tons of carbon dioxide equivalent. That’s about the same as removing 40,000 cars from the road for a year.

    Loci’s system is currently installed on wells in 15 different landfills. Quigley says only about 70 of the 1,000 big landfills in the U.S. sell gas profitably. Most of the others burn the gas. But Loci’s team believes increasing public and regulatory pressure will help expands its potential customer base.

    Uncovering a major problem

    The idea for Loci came from a revelation by Sims’ father, serial entrepreneur Michael Hale SM ’85, PhD ’89. The elder Hale was working in wastewater management when he was contacted by a landfill in New York that wanted help using its excess methane gas.

    “He realized if he could help that particular landfill with the problem, it would apply to almost any landfill,” Sims says.

    At the time, Sims was pursuing her PhD in mechanical engineering at MIT and minoring in entrepreneurship.

    Her father didn’t have time to work on the project, but Sims began exploring technology solutions to improve methane capture at landfills in her business classes. The work was unrelated to her PhD, but her advisor, David Hardt, the Ralph E. and Eloise F. Cross Professor in Manufacturing at MIT, was understanding. (Hardt had also served as PhD advisor for Sim’s father, who was, after all, the person to blame for Sim’s new side project.)

    Sims partnered with Andrew Campanella, then a master’s student focused on electrical engineering, and the two went through the delta v summer accelerator program hosted by the Martin Trust Center for MIT Entrepreneurship.

    Quigley was retired but serving on multiple visiting committees at MIT when he began mentoring Loci’s founders. He’d spent his career commercializing reinforced plastic through two companies, one in the high-performance sporting goods industry and the other in oil field services.

    “What captured my imagination was the emissions-reduction opportunity,” Quigley says.

    Methane is generated in landfills when organic waste decomposes. Some landfill operators capture the methane by drilling hundreds of collection wells. The vacuum pressure of those wells needs to be adjusted to maximize the amount of methane collected, but Quigley says technicians can only make those adjustments manually about once a month.

    Loci’s devices monitor gas composition, temperature, and environmental factors like barometric pressure to optimize vacuum power every hour. The data the controllers collect is aggregated in an analytics platform for technicians to monitor remotely. That data can also be used to pinpoint well failure events, such as flooding during rain, and otherwise improve operations to increase the amount of methane captured.

    “We can adjust the valves automatically, but we also have data that allows on-site operators to identify and remedy problems much more quickly,” Quigley explains.

    Furthering a high-impact mission

    Methane capture at landfills is becoming more urgent as improvements in detection technologies are revealing discrepancies between methane emission estimates and reality in the industry. A new airborne methane sensor deployed by NASA, for instance, found that California landfills have been leaking methane at rates as much as six times greater than estimates from the U.S. Environmental Protection Agency. The difference has major implications for the Earth’s atmosphere.

    A reckoning will have to occur to motivate more waste management companies to start collecting methane and to optimize methane capture. That could come in the form of new collection standards or an increased emphasis on methane collection from investors. (Funds controlled by billionaires Bill Gates and Larry Fink are major investors in waste management companies.)

    For now, Loci’s team, including co-founder and current senior advisor Sims, believes it’s on the road to making a meaningful impact under current market conditions.

    “When I was in grad school, the majority of the focus on emissions was on CO2,” Sims says. “I think methane is a really high-impact place to be focused, and I think it’s been underestimated how valuable it could be to apply technology to the industry.” More

  • in

    MIT Energy Initiative launches the Future Energy Systems Center

    The MIT Energy Initiative (MITEI) has launched a new research consortium — the Future Energy Systems Center — to address the climate crisis and the role energy systems can play in solving it. This integrated effort engages researchers from across all of MIT to help the global community reach its goal of net-zero carbon emissions. The center examines the accelerating energy transition and collaborates with industrial leaders to reform the world’s energy systems. The center is part of “Fast Forward: MIT’s Climate Action Plan for the Decade,” MIT’s multi-pronged effort announced last year to address the climate crisis.

    The Future Energy Systems Center investigates the emerging technology, policy, demographics, and economics reshaping the landscape of energy supply and demand. The center conducts integrative analysis of the entire energy system — a holistic approach essential to understanding the cross-sectorial impact of the energy transition.

    “We must act quickly to get to net-zero greenhouse gas emissions. At the same time, we have a billion people around the world with inadequate access, or no access, to electricity — and we need to deliver it to them,” says MITEI Director Robert C. Armstrong, the Chevron Professor of Chemical Engineering. “The Future Energy Systems Center combines MIT’s deep knowledge of energy science and technology with advanced tools for systems analysis to examine how advances in technology and system economics may respond to various policy scenarios.”  

    The overarching focus of the center is integrative analysis of the entire energy system, providing insights into the complex multi-sectorial transformations needed to alter the three major energy-consuming sectors of the economy — transportation, industry, and buildings — in conjunction with three major decarbonization-enabling technologies — electricity, energy storage and low-carbon fuels, and carbon management. “Deep decarbonization of our energy system requires an economy-wide perspective on the technology options, energy flows, materials flows, life-cycle emissions, costs, policies, and socioeconomics consequences,” says Randall Field, the center’s executive director. “A systems approach is essential in enabling cross-disciplinary teams to work collaboratively together to address the existential crisis of climate change.”

    Through techno-economic and systems-oriented research, the center analyzes these important interactions. For example:

    •  Increased reliance on variable renewable energy, such as wind and solar, and greater electrification of transportation, industry, and buildings will require expansion of demand management and other solutions for balancing of electricity supply and demand across these areas.

    •  Likewise, balancing supply and demand will require deploying grid-scale energy storage and converting the electricity to low-carbon fuels (hydrogen and liquid fuels), which can in turn play a vital role in the energy transition for hard-to-decarbonize segments of transportation, industry, and buildings.

    •  Carbon management (carbon dioxide capture from industry point sources and from air and oceans; utilization/conversion to valuable products; transport; storage) will also play a critical role in decarbonizing industry, electricity, and fuels — both as carbon-mitigation and negative-carbon solutions.

    As a member-supported research consortium, the center collaborates with industrial experts and leaders — from both energy’s consumer and supplier sides — to gain insights to help researchers anticipate challenges and opportunities of deploying technology at the scale needed to achieve decarbonization. “The Future Energy Systems Center gives us a powerful way to engage with industry to accelerate the energy transition,” says Armstrong. “Working together, we can better understand how our current technology toolbox can be more effectively put to use now to reduce emissions, and what new technologies and policies will ultimately be needed to reach net-zero.”

    A steering committee, made up of 11 MIT professors and led by Armstrong, selects projects to create a research program with high impact on decarbonization, while leveraging MIT strengths and addressing interests of center members in pragmatic and scalable solutions. “MIT — through our recently released climate action plan — is committed to moving with urgency and speed to help wring carbon dioxide emissions out the global economy to resolve the growing climate crisis,” says Armstrong. “We have no time to waste.”

    The center members to date are: AECI, Analog Devices, Chevron, ConocoPhillips, Copec, Dominion, Duke Energy, Enerjisa, Eneva, Eni, Equinor, Eversource, Exelon, ExxonMobil, Ferrovial, Iberdrola, IHI, National Grid, Raizen, Repsol, Rio Tinto, Shell, Tata Power, Toyota Research Institute, and Washington Gas. More

  • in

    Bringing climate reporting to local newsrooms

    Last summer, Nora Hertel, a reporter for the St. Cloud Times in central Minnesota, visited a farm just northeast of the Twin Cities run by the Native American-led nonprofit Dream of Wild Health. The farm raises a mix of vegetables and flowering plants, and has a particular focus on cultivating rare heirloom varieties. It’s also dealing with severely depleted soil, inherited from previous owners who grew corn on the same land. Hertel had come to learn about the techniques the farm was using to restore its soil, many of which were traditional parts of Indigenous farming practice, including planting cover crops over the winter and incorporating burnt wood and manure into the earth.

    The trip was part of a multi-part reporting project that Hertel undertook as an inaugural fellow in a new program from the MIT Environmental Solutions Initiative (ESI). The ESI Journalism Fellowship was created to help local reporters around the United States connect climate change science and solutions with issues that are already of importance to their audiences — particularly in areas where many people are still unclear or unsure about climate change. For Hertel, that meant visiting 10 farms and forest lands across Minnesota to understand how natural climate solutions are taking shape in her state. The practices she saw at the Dream of Wild Health farm not only helped to restore soil, but also helped slow climate change by taking carbon dioxide out of the air and storing it in soils and plants.

    “There is enthusiasm for natural climate solutions,” Hertel says, but these practices can be expensive and difficult to adopt. She wanted to explain the benefits and the hurdles, especially for farmers and land managers considering new agricultural techniques.

    Hertel produced six news pieces for the St. Cloud Times as part of her project, as well as a six-episode podcast series and two videos. To conclude the series, she ran a public event where 130 attendees — including conventional farmers, regenerative farmers, state senators, the St. Cloud mayor, and other community stakeholders — gathered outside in the 40-degree Fahrenheit cold to discuss carbon markets in Minnesota. The stories were republished in 12 additional outlets, including USA Today, Associated Press, Yahoo News, and US News & World Report. 

    “I had been hoping to write about cover crops and carbon markets for about two years before I pitched my project to ESI,” says Hertel. “I hadn’t been able to take the time and resources with all my other responsibilities. Joining the fellowship allowed me to focus on those topics and dive in deep to understand how much is uncertain and changing in the field right now.”

    Supporting local climate reporting

    In today’s news landscape, local coverage is dwindling, which has major effects on the ways people hear about climate change. At times, the only in-depth climate coverage available is covered by specialty or national publications, which can miss the opportunity to understand the nuances of the communities they are parachuting into.

    “Climate change is or will impact all of us, but many Americans don’t see it as relevant to their lives,” says Laur Hesse Fisher, program director at the ESI, who created and manages the fellowship program. “We’re working to help change that.”

    In this first year of the fellowship, five local journalists were selected from around the country to pursue long-form or serial climate-focused reporting. Fellows received funding and stipends to help them dedicate extra time and resources to their projects. They gathered virtually for workshops and were connected with MIT experts in a variety of relevant fields: scientists such as Adam Schlosser, senior research scientist and deputy director for science research at the MIT Joint Program on the Science and Policy of Global Change; economists and policy experts such as Joshua Hodge, executive director of the MIT Center for Energy and Environmental Policy Research (CEEPR); and journalism experts from the MIT Knight Science Journalism Program.

    Fellows were also given full access to MIT’s extensive library databases and geographic data visualization tools, along with tools focused specifically on climate science and policy like the MIT Socio-Environmental Triage platform and CEEPR’s working papers. All these resources aimed to give the journalism fellows the backing they needed to undertake ambitious projects on climate issues their audiences might otherwise never have known were playing out right in their backyards.

    Stories around the country

    The result was five distinct reporting projects spread across the United States.

    ESI Fellow Tristan Baurick is an environment reporter for the Times Picayune | New Orleans Advocate, Louisiana’s largest newspaper. His multi-part series, “Wind of Change: How the Gulf of Mexico could be the next offshore wind powerhouse,” ran on the front page of the Thanksgiving print edition of the paper. It explores how the state’s offshore oil companies are pivoting to support the emerging wind energy industry, as well as the outcomes of the U.S.’s first offshore wind farm in Rhode Island, which Baurick visited on an extended reporting trip. The series looks at the history of Louisiana, which, despite being a hub for wind engineering technology production, has seen most of that technology exported. “The project relied on experts from the oil and gas industry to introduce the idea of offshore wind energy and the opportunities it could offer the region,” says Baurick. “This approach made readers who are skeptical of climate change and renewable energy let their guard down and consider these topics with a more open mind.”

    Oregon-based environmental journalist Alex Schwartz explored water rights and climate change within the Klamath River Basin for the Herald & News. The result was a five-part digital series that examines the many stakeholders, including Indigenous groups, farmers, fishers, and park managers, who depend on the Klamath River for water even as the region enters a period of extended climate change-induced drought. “The fellowship provided me with financial resources to be able to execute a project at this scale,” says Schwartz. “We never would have been able to take the time off and travel throughout the basin without the support of the fellowship.”

    Melba Newsome is a North Carolina-based independent reporter. Her two-part series for NC Health News focuses on Smithfield’s Foods, whose hog houses continue to have lasting health and environmental implications for majority Black communities in the southeastern part of the state. The series, which has been republished by Indy Weekly, the Daily Yonder, and others, interviews residents and activists to untangle a history of legal battles, neglect, and accusations of environmental racism — while noting that sea-level rise has made the region increasingly vulnerable to dangerous releases of waste from its growing factory farms.

    The final project supported by the fellowship came from Wyoming, famous for its vast outdoors and coal industry. In his three-part series for WyoFile, journalist Dustin Bleizeffer — whose beat shifted from education to energy and climate in part as a result of his fellowship — spoke to local residents to capture their personal experiences of warming temperatures and changing landscapes. “[Of] the people I interviewed and featured in my reporting … all but one are climate skeptics, but they spoke in detail about climate changes they’ve observed, and very eloquently described their concerns,” says Bleizeffer. “I’m still receiving comments and enthusiasm to keep the conversation going.” He also looked at how two Wyoming counties, Gillette and Campbell, are faring through the coal industry’s decline. His series provided a boost to efforts by grassroots organizations and conservation groups that are trying to open “the climate conversation” in the state.

    Lessons for climate conversations

    All five fellows joined ESI for a wrap-up event on Nov. 4, Connecting with Americans on Climate Change, which both showcased their work and gave them the opportunity to publicly discuss ways to engage Americans across the political spectrum on climate change.

    The event was joined by sociologist Arlie Russell Hochschild, author of the bestselling “Strangers in Their Own Land: Anger and Mourning on the American Right,” who had earlier joined the fellows in one of their workshops to offer her own experience engaging with people who feel ill-served by the national media. Her book, which followed members of the Tea Party in Louisiana for five years, illustrates the importance of deep listening to bridging America’s social and political divides. Hochschild applied this insight to climate change in talking with the fellows and event attendees about strategies to understand and respond to local perspectives on what is often framed as a contentious political issue. “Sociology gives us forgiveness; [it] gets blame and guilt out of the picture,” said Hochschild.

    That was an insight echoed by several of the journalism fellows. “I think rural people feel blamed a lot for every problem,” said Schwartz. “If we were to take the carbon footprint of the Klamath River Basin, it would be minuscule compared to any corporation, right? … We have to create that safety net for our communities to be able to bear the brunt of these cascading disasters that are already occurring and are just going to get worse in the future. Focusing on the adaptation side was really helpful in terms of just getting people to talk about climate change.”

    Other fellows had their own strategies for opening conversations about climate change — and by responding to their audiences’ concerns, they did see opportunities for change in their reporting. In Wyoming, Bleizeffer talked about the need to retain young people in the state, and about changes to landscapes residents loved. Newsome emphasized that people need to see climate change as not someone else’s problem — for her audience, it illustrated and exacerbated injustices they were already feeling.

    And Hertel, speaking of the conventional farmers, everyday people, and local government officials featured in her series, left event attendees with one more insight about effective climate reporting. “Don’t expect people to change on a dime,” she said. “You must bring people [along] on the journey.”

    ESI will be opening journalism fellowship applications for its second cohort later this year. Experienced reporters are encouraged to apply. If you are interested in supporting this fellowship or are curious about opportunities for partnerships, please contact Laur Hesse Fisher. More