More stories

  • in

    3 Questions: Tolga Durak on building a safety culture at MIT

    Environment, Health, and Safety Managing Director Tolga Durak heads a team working to build a strong safety culture at the Institute and to implement systems that lead to successful lab and makerspace operations. EHS is also pursuing new opportunities in the areas of safe and sustainable labs and applied makerspace research. 

    Durak holds a BS in mechanical engineering, a MS in industrial and systems engineering, and a PhD in building construction/environmental design and planning. He has over 20 years of experience in engineering and EHS in higher education, having served in such roles as authority having jurisdiction, responsible official, fire marshal, risk manager, radiation safety officer, laser safety officer, safety engineer, project manager, and emergency manager for government agencies, as well as universities with extensive health-care and research facilities.

    Q: What “words of wisdom” regarding lab/shop health and safety would you like to share with the research community? 

    A: EHS staff always strive to help maintain the safety and well-being of the MIT community. When it comes to lab/shop safety or any areas with hazards, first and foremost, we encourage wearing the appropriate personal protective equipment (PPE) when handling potentially hazardous materials. While PPE needs depend on the hazards and the space, common PPE includes safety glasses, lab coats, gloves, clothes that cover your skin, and closed-toe shoes. Shorts and open-toe shoes have no place in the lab/shop setting when hazardous materials are stored or used. Accidents will and do happen. The severity of injuries due to accidental exposures can be minimized when researchers are wearing PPE. Remember, there is only one you!   

    Overall, be aware of your surroundings, be knowledgeable about the hazards of the materials and equipment you are using, and be prepared for the unexpected. Ask yourself, “What’s the worst thing that can happen during this experiment or procedure?” Prepare by doing a thorough risk assessment, ask others who may be knowledgeable for their ideas and help, and standardize procedures where possible. Be prepared to respond appropriately when an emergency arises. 

    Safety in our classrooms, labs, and makerspaces is paramount and requires a collaborative effort. 

    Q: What are the established programs within EHS that students and researchers should be aware of, and what opportunities and challenges do you face trying to advance a healthy safety culture at MIT? 

    A: The EHS program staff in Biosafety, Industrial Hygiene, Environmental Management, Occupational and Construction Safety, and Radiation Protection are ready to assist with risk assessments, chemical safety, physical hazards, hazard-specific training, materials management, and hazardous waste disposal and reuse/recycling. Locally, each department, laboratory, and center has an EHS coordinator, as well as an assigned EHS team, to assist in the implementation of required EHS programs. Each lab/shop also has a designated EHS representative — someone who has local knowledge of your lab/shop and can help you with safety requirements specific to your work area.  

    One of the biggest challenges we face is that due to the decentralized nature of the Institute, no one size fits all when it comes to implementing successful safety practices. We also view this as an opportunity to enhance our safety culture. A strong safety culture is reflected at MIT when all lab and makerspace members are willing to look out for each other, challenge the status quo when necessary, and do the right thing even when no one is looking. In labs/shops with a strong safety culture, faculty and researchers discuss safety topics at group meetings, group members remind each other to wear the appropriate PPE (lab coats, safety glasses, etc.), more experienced team members mentor the newcomers, and riskier operations are reviewed and assessed to make them as safe as possible.  

    Q: Can you describe the new Safe and Sustainable Laboratories (S2L) efforts and the makerspace operational research programs envisioned for the future? 

    A: The MIT EHS Office has a plan for renewing its dedication to sustainability and climate action. We are dedicated to doing our part to promote a research environment that assures the highest level of health and safety but also strives to reduce energy, water, and waste through educating and supporting faculty, students, and researchers. With the goal of integrating sustainability across the lab sector of campus and bridging that with the Institute’s climate action goals, EHS has partnered with the MIT Office of Sustainability, Department of Facilities, vice president for finance, and vice president for campus services and stewardship to relaunch the “green” labs sustainability efforts under a new Safe and Sustainable Labs program.

    Part of that plan is to implement a Sustainable Labs Certification program. The process is designed to be as easy as possible for the lab groups. We are starting with simple actions like promoting the use of equipment timers in certain locations to conserve energy, fume hood/ventilation management, preventative maintenance for ultra-low-temperature freezers, increasing recycling, and helping labs update their central chemical inventory system, which can help forecast MIT’s potential waste streams. 

    EHS has also partnered with Project Manus to build a test-bed lab to study potential health and environmental exposures present in makerspaces as a result of specialized equipment and processes with our new Applied Makerspace Research Initiative.   More

  • in

    Climate modeling confirms historical records showing rise in hurricane activity

    When forecasting how storms may change in the future, it helps to know something about their past. Judging from historical records dating back to the 1850s, hurricanes in the North Atlantic have become more frequent over the last 150 years.

    However, scientists have questioned whether this upward trend is a reflection of reality, or simply an artifact of lopsided record-keeping. If 19th-century storm trackers had access to 21st-century technology, would they have recorded more storms? This inherent uncertainty has kept scientists from relying on storm records, and the patterns within them, for clues to how climate influences storms.

    A new MIT study published today in Nature Communications has used climate modeling, rather than storm records, to reconstruct the history of hurricanes and tropical cyclones around the world. The study finds that North Atlantic hurricanes have indeed increased in frequency over the last 150 years, similar to what historical records have shown.

    In particular, major hurricanes, and hurricanes in general, are more frequent today than in the past. And those that make landfall appear to have grown more powerful, carrying more destructive potential.

    Curiously, while the North Atlantic has seen an overall increase in storm activity, the same trend was not observed in the rest of the world. The study found that the frequency of tropical cyclones globally has not changed significantly in the last 150 years.

    “The evidence does point, as the original historical record did, to long-term increases in North Atlantic hurricane activity, but no significant changes in global hurricane activity,” says study author Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in MIT’s Department of Earth, Atmospheric, and Planetary Sciences. “It certainly will change the interpretation of climate’s effects on hurricanes — that it’s really the regionality of the climate, and that something happened to the North Atlantic that’s different from the rest of the globe. It may have been caused by global warming, which is not necessarily globally uniform.”

    Chance encounters

    The most comprehensive record of tropical cyclones is compiled in a database known as the International Best Track Archive for Climate Stewardship (IBTrACS). This historical record includes modern measurements from satellites and aircraft that date back to the 1940s. The database’s older records are based on reports from ships and islands that happened to be in a storm’s path. These earlier records date back to 1851, and overall the database shows an increase in North Atlantic storm activity over the last 150 years.

    “Nobody disagrees that that’s what the historical record shows,” Emanuel says. “On the other hand, most sensible people don’t really trust the historical record that far back in time.”

    Recently, scientists have used a statistical approach to identify storms that the historical record may have missed. To do so, they consulted all the digitally reconstructed shipping routes in the Atlantic over the last 150 years and mapped these routes over modern-day hurricane tracks. They then estimated the chance that a ship would encounter or entirely miss a hurricane’s presence. This analysis found a significant number of early storms were likely missed in the historical record. Accounting for these missed storms, they concluded that there was a chance that storm activity had not changed over the last 150 years.

    But Emanuel points out that hurricane paths in the 19th century may have looked different from today’s tracks. What’s more, the scientists may have missed key shipping routes in their analysis, as older routes have not yet been digitized.

    “All we know is, if there had been a change (in storm activity), it would not have been detectable, using digitized ship records,” Emanuel says “So I thought, there’s an opportunity to do better, by not using historical data at all.”

    Seeding storms

    Instead, he estimated past hurricane activity using dynamical downscaling — a technique that his group developed and has applied over the last 15 years to study climate’s effect on hurricanes. The technique starts with a coarse global climate simulation and embeds within this model a finer-resolution model that simulates features as small as hurricanes. The combined models are then fed with real-world measurements of atmospheric and ocean conditions. Emanuel then scatters the realistic simulation with hurricane “seeds” and runs the simulation forward in time to see which seeds bloom into full-blown storms.

    For the new study, Emanuel embedded a hurricane model into a climate “reanalysis” — a type of climate model that combines observations from the past with climate simulations to generate accurate reconstructions of past weather patterns and climate conditions. He used a particular subset of climate reanalyses that only accounts for observations collected from the surface — for instance from ships, which have recorded weather conditions and sea surface temperatures consistently since the 1850s, as opposed to from satellites, which only began systematic monitoring in the 1970s.

    “We chose to use this approach to avoid any artificial trends brought about by the introduction of progressively different observations,” Emanuel explains.

    He ran an embedded hurricane model on three different climate reanalyses, simulating tropical cyclones around the world over the past 150 years. Across all three models, he observed “unequivocal increases” in North Atlantic hurricane activity.

    “There’s been this quite large increase in activity in the Atlantic since the mid-19th century, which I didn’t expect to see,” Emanuel says.

    Within this overall rise in storm activity, he also observed a “hurricane drought” — a period during the 1970s and 80s when the number of yearly hurricanes momentarily dropped. This pause in storm activity can also be seen in historical records, and Emanuel’s group proposes a cause: sulfate aerosols, which were byproducts of fossil fuel combustion, likely set off a cascade of climate effects that cooled the North Atlantic and temporarily suppressed hurricane formation.

    “The general trend over the last 150 years was increasing storm activity, interrupted by this hurricane drought,” Emanuel notes. “And at this point, we’re more confident of why there was a hurricane drought than why there is an ongoing, long-term increase in activity that began in the 19th century. That is still a mystery, and it bears on the question of how global warming might affect future Atlantic hurricanes.”

    This research was supported, in part, by the National Science Foundation. More

  • in

    Scientists and musicians tackle climate change together

    Audiences may travel long distances to see their favorite musical acts in concert or to attend large music festivals, which can add to their personal carbon footprint of emissions that are steadily warming the planet. But these same audiences, and the performers they follow, are often quite aware of the dangers of climate change and eager to contribute to ways of curbing those emissions.

    How should the industry reconcile these two perspectives, and how should it harness the enormous influence that musicians have on their fans to help promote action on climate change?

    That was the focus of a wide-ranging discussion on Monday hosted by MIT’s Environmental Solutions Initiative, titled “Artists and scientists together on climate solutions.” The event, which was held live at the Media Lab’s Bartos Theater and streamed online, featured John Fernandez, director of ESI; Dava Newman, director of the Media Lab; Tony McGuinness, a musician with the group Above and Beyond; and Anna Johnson, the sustainability and environment officer at Involved Group, an organization dedicated to embedding sustainability in business operations in the arts and culture fields.

    Fernandez pointed out in opening the discussion that when it comes to influencing people’s attitudes and behavior, changes tend to come about not just through information from a particular field, but rather from a whole culture. “We started thinking about how we might work with artists, how to have scientists and engineers, inventors, and designers working with artists on the challenges that we really need to face,” he said.

    Dealing with the climate change issue, he said, “is not about 2050 or 2100. This is about 2030. This is about this decade. This is about the next two or three years, really shifting that curve” to lowering the world’s greenhouse gas emissions. “It’s not going to be done just with science and engineering,” he added. “It’s got to be done with artists and business and everyone else. It’s not only ‘all of the above’ solutions, it’s ‘all of the above’ people, coming together to solve this problem.”

    Newman, who is also a professor in MIT’s Department of Aeronautics and Astronautics and has served as a NASA deputy administrator, said that while scientists and engineers can produce vast amounts of useful data that clearly demonstrate the dramatic changes the Earth’s climate is undergoing, communicating that information effectively is often a challenge for these specialists. “That data is just the data, but that doesn’t change the hearts and minds,” she said.

    “As scientists, having the data from our satellites, looking down, but also flying airplanes into the atmosphere, … we have the sensors, and then what can we do with it all? … How do we change human behavior? That’s the part I don’t know how to do,” Newman said. “I can have the technology, I can get precision measurements, I can study it, but really at the end of the day, we have to change human behavior, and that is so hard.”

    And that’s where the world of art and music can play a part, she said. “The best way that I know how to do it is with artistic experiences. You can have one moving experience and when you wake up tomorrow, maybe you’re going to do something a little different.” To help generate the compassion and empathy needed to affect behavior positively, she said, “that’s where we turn to the storytellers. We turn to the visionaries.”

    McGuinness, whose electronic music trio has performed for millions of people around the world, said that his own awareness of the urgency of the climate issue came from his passion for scuba diving, and the dramatic changes he has seen over the last two decades. In diving at a coral reef off Palau in the South Pacific, he returned to what had been a lush, brightly colored ecosystem, and found that “immediately when you put your face under the water, you’re looking at the surface of the moon. It was a horrible shock to see this.”

    After this and other similar diving experiences, he said, “I just came away shocked and stunned,” and realizing the kinds of underwater experiences he had enjoyed would no longer exist for his children. After reading more on the subject of global warming,  “that really sort of tipped me over the edge. And I was like, this is probably the most important thing for living beings now. And that’s sort of where I’ve remained ever since.”

    While his group Above and Beyond has performed one song specifically related to global warming, he doesn’t expect that to be the most impactful way of using their influence. Rather, they’re trying to lead by example, he said, by paying more attention to everything from the supply chains of the merchandise sold at concerts to the emissions generated by travel to the concerts. They’re also being selective about concert venues and making an effort to find performance spaces that are making a significant effort to curb their emissions.

    “If people start voting with their wallets,” McGuinness said, “and there are companies that are doing better than others and are doing the right thing, maybe it’ll catch on. I guess that’s what we can hope for.”

    Understanding these kinds of issues, involving supply chains, transportation, and facilities associated within the music industry, has been the focus of much of Johnson’s work, through the organization Involved Group, which has entered into a collaboration with MIT through the Environmental Solutions Initiative. “It’s these kinds of novel partnerships that have so much potential to catalyze the change that we need to see at an incredible pace,” she said. Already, her group has worked with MIT on mapping out where emissions occur throughout the various aspects of the music industry.

    At a recent music festival in London, she said, the group interviewed hundreds of participants, including audience members, band members, and the crew. “We explored people’s level of awareness of the issues around climate change and environmental degradation,” she said. “And what was really interesting was that there was clearly a lot of awareness of the issue across those different stakeholders, and what felt like a real, genuine level of concern and also of motivation, to want to deepen their understanding of what their contribution on a personal level really meant.”

    Working together across the boundaries of different disciplines and areas of expertise could be crucial to winning the battle against global warming, Newman said. “That’s usually how breakthroughs work,” she said. “If we’re really looking to have impact, it’s going to be from teams of people who are trained across the disciplines.” She pointed out that 90 percent of MIT students are also musicians: “It does go together!” she said. “I think going forward, we have to create new academia, new opportunities that are truly multidisciplinary.” More

  • in

    SMART researchers develop method for early detection of bacterial infection in crops

    Researchers from the Disruptive and Sustainable Technologies for Agricultural Precision (DiSTAP) Interdisciplinary Research Group (IRG) ofSingapore-MIT Alliance for Research and Technology (SMART), MIT’s research enterprise in Singapore, and their local collaborators from Temasek Life Sciences Laboratory (TLL), have developed a rapid Raman spectroscopy-based method for detecting and quantifying early bacterial infection in crops. The Raman spectral biomarkers and diagnostic algorithm enable the noninvasive and early diagnosis of bacterial infections in crop plants, which can be critical for the progress of plant disease management and agricultural productivity.

    Due to the increasing demand for global food supply and security, there is a growing need to improve agricultural production systems and increase crop productivity. Globally, bacterial pathogen infection in crop plants is one of the major contributors to agricultural yield losses. Climate change also adds to the problem by accelerating the spread of plant diseases. Hence, developing methods for rapid and early detection of pathogen-infected crops is important to improve plant disease management and reduce crop loss.

    The breakthrough by SMART and TLL researchers offers a faster and more accurate method to detect bacterial infection in crop plants at an earlier stage, as compared to existing techniques. The new results appear in a paper titled “Rapid detection and quantification of plant innate immunity response using Raman spectroscopy” published in the journal Frontiers in Plant Science.

    “The early detection of pathogen-infected crop plants is a significant step to improve plant disease management,” says Chua Nam Hai, DiSTAP co-lead principal investigator, professor, TLL deputy chair, and co-corresponding author. “It will allow the fast and selective removal of pathogen load and curb the further spread of disease to other neighboring crops.”

    Traditionally, plant disease diagnosis involves a simple visual inspection of plants for disease symptoms and severity. “Visual inspection methods are often ineffective, as disease symptoms usually manifest only at relatively later stages of infection, when the pathogen load is already high and reparative measures are limited. Hence, new methods are required for rapid and early detection of bacterial infection. The idea would be akin to having medical tests to identify human diseases at an early stage, instead of waiting for visual symptoms to show, so that early intervention or treatment can be applied,” says MIT Professor Rajeev Ram, who is a DiSTAP principal investigator and co-corresponding author on the paper.

    While existing techniques, such as current molecular detection methods, can detect bacterial infection in plants, they are often limited in their use. Molecular detection methods largely depend on the availability of pathogen-specific gene sequences or antibodies to identify bacterial infection in crops; the implementation is also time-consuming and nonadaptable for on-site field application due to the high cost and bulky equipment required, making it impractical for use in agricultural farms.

    “At DiSTAP, we have developed a quantitative Raman spectroscopy-based algorithm that can help farmers to identify bacterial infection rapidly. The developed diagnostic algorithm makes use of Raman spectral biomarkers and can be easily implemented in cloud-based computing and prediction platforms. It is more effective than existing techniques as it enables accurate identification and early detection of bacterial infection, both of which are crucial to saving crop plants that would otherwise be destroyed,” explains Gajendra Pratap Singh, scientific director and principal investigator at DiSTAP and co-lead author.

    A portable Raman system can be used on farms and provides farmers with an accurate and simple yes-or-no response when used to test for the presence of bacterial infections in crops. The development of this rapid and noninvasive method could improve plant disease management and have a transformative impact on agricultural farms by efficiently reducing agricultural yield loss and increasing productivity.

    “Using the diagnostic algorithm method, we experimented on several edible plants such as choy sum,” says DiSTAP and TLL principal investigator and co-corresponding author Rajani Sarojam. “The results showed that the Raman spectroscopy-based method can swiftly detect and quantify innate immunity response in plants infected with bacterial pathogens. We believe that this technology will be beneficial for agricultural farms to increase their productivity by reducing their yield loss due to plant diseases.”

    The researchers are currently working on the development of high-throughput, custom-made portable or hand-held Raman spectrometers that will allow Raman spectral analysis to be quickly and easily performed on field-grown crops.

    SMART and TLL developed and discovered the diagnostic algorithm and Raman spectral biomarkers. TLL also confirmed and validated the detection method through mutant plants. The research is carried out by SMART and supported by the National Research Foundation of Singapore under its Campus for Research Excellence And Technological Enterprise (CREATE) program.

    SMART was established by MIT and the NRF in 2007. The first entity in CREATE developed by NRF, SMART serves as an intellectual and innovation hub for research interactions between MIT and Singapore, undertaking cutting-edge research projects in areas of interest to both Singapore and MIT. SMART currently comprises an Innovation Center and five IRGs: Antimicrobial Resistance, Critical Analytics for Manufacturing Personalized-Medicine, DiSTAP, Future Urban Mobility, and Low Energy Electronic Systems. SMART research is funded by the NRF under the CREATE program.

    Led by Professor Michael Strano of MIT and Professor Chua Nam Hai of Temasek Lifesciences Laboratory, the DiSTAP program addresses deep problems in food production in Singapore and the world by developing a suite of impactful and novel analytical, genetic, and biomaterial technologies. The goal is to fundamentally change how plant biosynthetic pathways are discovered, monitored, engineered, and ultimately translated to meet the global demand for food and nutrients. Scientists from MIT, TTL, Nanyang Technological University, and National University of Singapore are collaboratively developing new tools for the continuous measurement of important plant metabolites and hormones for novel discovery, deeper understanding and control of plant biosynthetic pathways in ways not yet possible, especially in the context of green leafy vegetables; leveraging these new techniques to engineer plants with highly desirable properties for global food security, including high-yield density production, and drought and pathogen resistance; and applying these technologies to improve urban farming. More

  • in

    Energy hackers give a glimpse of the postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More

  • in

    Energy hackers give a glimpse of a postpandemic future

    After going virtual in 2020, the MIT EnergyHack was back on campus last weekend in a brand-new hybrid format that saw teams participate both in person and virtually from across the globe. While the hybrid format presented new challenges to the organizing team, it also allowed for one of the most diverse and inspiring iterations of the event to date.

    “Organizing a hybrid event was a challenging but important goal in 2021 as we slowly come out of the pandemic, but it was great to realize the benefits of the format this year,” says Kailin Graham, a graduate student in MIT’s Technology and Policy Program and one of the EnergyHack communications directors. “Not only were we able to get students back on campus and taking advantage of those important in-person interactions, but preserving a virtual avenue meant that we were still able to hear brilliant ideas from those around the world who might not have had the opportunity to contribute otherwise, and that’s what the EnergyHack is really about.”

    In fact, of the over 300 participants registered for the event, more than a third participated online, and two of the three grand prize winners participated entirely virtually. Teams of students at any degree level from any institution were welcome, and the event saw an incredible range of backgrounds and expertise, from undergraduates to MBAs, put their heads together to create innovative solutions.

    This year’s event was supported by a host of energy partners both in industry and within MIT. The MIT Energy and Climate Club worked with sponsoring organizations Smartflower, Chargepoint, Edison Energy, Line Vision, Chevron, Shell, and Sterlite Power to develop seven problem statements for hackers, with each judged by representatives form their respective organization. The challenges ranged from envisioning the future of electric vehicle fueling to quantifying the social and environmental benefits of renewable energy projects.

    Hackers had 36 hours to come up with a solution to one challenge, and teams then presented these solutions in a short pitch to a judging panel. Finalists from each challenge progressed to the final judging round to pitch against each other in pursuit of three grand prizes. Team COPrs came in third, receiving $1,000 for their solution to the Line Vision challenge; Crown Joules snagged second place and $1,500 for their approach to the Chargepoint problem; and Feel AMPowered took out first place and $2,000 for their innovative solution to the Smartflower challenge.

    In addition to a new format, this year’s EnergyHack also featured a new emphasis on climate change impacts and the energy transition. According to Arina Khotimsky, co-managing director of EnergyHack 2021, “Moving forward after this year’s rebranding of the MIT Energy and Climate Club, we were hoping to carry this aim to EnergyHack. It was incredibly exciting to have ChargePoint and SmartFlower leading as our Sustainability Circle-tier sponsors and bringing their impactful innovations to the conversations at EnergyHack 2021.”

    To the organizing team, whose members from sophomores to MBAs, this aspect of the event was especially important, and their hope was for the event to inspire a generation of young energy and climate leaders — a hope, according to them, that seems to have been fulfilled.

    “I was floored by the positive feedback we received from hackers, both in-person and virtual, about how much they enjoyed the hackathon,” says Graham. “It’s all thanks to our team of incredibly hardworking organizing directors who made EnergyHack 2021 what it was. It was incredibly rewarding seeing everyone’s impact on the event, and we are looking forward to seeing how it evolves in the future.”­­­ More

  • in

    Timber or steel? Study helps builders reduce carbon footprint of truss structures

    Buildings are a big contributor to global warming, not just in their ongoing operations but in the materials used in their construction. Truss structures — those crisscross arrays of diagonal struts used throughout modern construction, in everything from antenna towers to support beams for large buildings — are typically made of steel or wood or a combination of both. But little quantitative research has been done on how to pick the right materials to minimize these structures’ contribution global warming.

    The “embodied carbon” in a construction material includes the fuel used in the material’s production (for mining and smelting steel, for example, or for felling and processing trees) and in transporting the materials to a site. It also includes the equipment used for the construction itself.

    Now, researchers at MIT have done a detailed analysis and created a set of computational tools to enable architects and engineers to design truss structures in a way that can minimize their embodied carbon while maintaining all needed properties for a given building application. While in general wood produces a much lower carbon footprint, using steel in places where its properties can provide maximum benefit can provide an optimized result, they say.

    The analysis is described in a paper published today in the journal Engineering Structures, by graduate student Ernest Ching and MIT assistant professor of civil and environmental engineering Josephine Carstensen.

    “Construction is a huge greenhouse gas emitter that has kind of been flying under the radar for the past decades,” says Carstensen. But in recent years building designers “are starting to be more focused on how to not just reduce the operating energy associated with building use, but also the important carbon associated with the structure itself.” And that’s where this new analysis comes in.

    The two main options in reducing the carbon emissions associated with truss structures, she says, are substituting materials or changing the structure. However, there has been “surprisingly little work” on tools to help designers figure out emissions-minimizing strategies for a given situation, she says.

    The new system makes use of a technique called topology optimization, which allows for the input of basic parameters, such as the amount of load to be supported and the dimensions of the structure, and can be used to produce designs optimized for different characteristics, such as weight, cost, or, in this case, global warming impact.

    Wood performs very well under forces of compression, but not as well as steel when it comes to tension — that is, a tendency to pull the structure apart. Carstensen says that in general, wood is far better than steel in terms of embedded carbon, so “especially if you have a structure that doesn’t have any tension, then you should definitely only use timber” in order to minimize emissions. One tradeoff is that “the weight of the structure is going to be bigger than it would be with steel,” she says.

    The tools they developed, which were the basis for Ching’s master’s thesis, can be applied at different stages, either in the early planning phase of a structure, or later on in the final stages of a design.

    As an exercise, the team developed a proposal for reengineering several trusses using these optimization tools, and demonstrated that a significant savings in embodied greenhouse gas emissions could be achieved with no loss of performance. While they have shown improvements of at least 10 percent can be achieved, she says those estimates are “not exactly apples to apples” and likely savings could actually be two to three times that.

    “It’s about choosing materials more smartly,” she says, for the specifics of a given application. Often in existing buildings “you will have timber where there’s compression, and where that makes sense, and then it will have really skinny steel members, in tension, where that makes sense. And that’s also what we see in our design solutions that are suggested, but perhaps we can see it even more clearly.” The tools are not ready for commercial use though, she says, because they haven’t yet added a user interface.

    Carstensen sees a trend to increasing use of timber in large construction, which represents an important potential for reducing the world’s overall carbon emissions. “There’s a big interest in the construction industry in mass timber structures, and this speaks right into that area. So, the hope is that this would make inroads into the construction business and actually make a dent in that very large contribution to greenhouse gas emissions.” More

  • in

    The reasons behind lithium-ion batteries’ rapid cost decline

    Lithium-ion batteries, those marvels of lightweight power that have made possible today’s age of handheld electronics and electric vehicles, have plunged in cost since their introduction three decades ago at a rate similar to the drop in solar panel prices, as documented by a study published last March. But what brought about such an astonishing cost decline, of about 97 percent?

    Some of the researchers behind that earlier study have now analyzed what accounted for the extraordinary savings. They found that by far the biggest factor was work on research and development, particularly in chemistry and materials science. This outweighed the gains achieved through economies of scale, though that turned out to be the second-largest category of reductions.

    The new findings are being published today in the journal Energy and Environmental Science, in a paper by MIT postdoc Micah Ziegler, recent graduate student Juhyun Song PhD ’19, and Jessika Trancik, a professor in MIT’s Institute for Data, Systems and Society.

    The findings could be useful for policymakers and planners to help guide spending priorities in order to continue the pathway toward ever-lower costs for this and other crucial energy storage technologies, according to Trancik. Their work suggests that there is still considerable room for further improvement in electrochemical battery technologies, she says.

    The analysis required digging through a variety of sources, since much of the relevant information consists of closely held proprietary business data. “The data collection effort was extensive,” Ziegler says. “We looked at academic articles, industry and government reports, press releases, and specification sheets. We even looked at some legal filings that came out. We had to piece together data from many different sources to get a sense of what was happening.” He says they collected “about 15,000 qualitative and quantitative data points, across 1,000 individual records from approximately 280 references.”

    Data from the earliest times are hardest to access and can have the greatest uncertainties, Trancik says, but by comparing different data sources from the same period they have attempted to account for these uncertainties.

    Overall, she says, “we estimate that the majority of the cost decline, more than 50 percent, came from research-and-development-related activities.” That included both private sector and government-funded research and development, and “the vast majority” of that cost decline within that R&D category came from chemistry and materials research.

    That was an interesting finding, she says, because “there were so many variables that people were working on through very different kinds of efforts,” including the design of the battery cells themselves, their manufacturing systems, supply chains, and so on. “The cost improvement emerged from a diverse set of efforts and many people, and not from the work of only a few individuals.”

    The findings about the importance of investment in R&D were especially significant, Ziegler says, because much of this investment happened after lithium-ion battery technology was commercialized, a stage at which some analysts thought the research contribution would become less significant. Over roughly a 20-year period starting five years after the batteries’ introduction in the early 1990s, he says, “most of the cost reduction still came from R&D. The R&D contribution didn’t end when commercialization began. In fact, it was still the biggest contributor to cost reduction.”

    The study took advantage of an analytical approach that Trancik and her team initially developed to analyze the similarly precipitous drop in costs of silicon solar panels over the last few decades. They also applied the approach to understand the rising costs of nuclear energy. “This is really getting at the fundamental mechanisms of technological change,” she says. “And we can also develop these models looking forward in time, which allows us to uncover the levers that people could use to improve the technology in the future.”

    One advantage of the methodology Trancik and her colleagues have developed, she says, is that it helps to sort out the relative importance of different factors when many variables are changing all at once, which typically happens as a technology improves. “It’s not simply adding up the cost effects of these variables,” she says, “because many of these variables affect many different cost components. There’s this kind of intricate web of dependencies.” But the team’s methodology makes it possible to “look at how that overall cost change can be attributed to those variables, by essentially mapping out that network of dependencies,” she says.

    This can help provide guidance on public spending, private investments, and other incentives. “What are all the things that different decision makers could do?” she asks. “What decisions do they have agency over so that they could improve the technology, which is important in the case of low-carbon technologies, where we’re looking for solutions to climate change and we have limited time and limited resources? The new approach allows us to potentially be a bit more intentional about where we make those investments of time and money.”

    “This paper collects data available in a systematic way to determine changes in the cost components of lithium-ion batteries between 1990-1995 and 2010-2015,” says Laura Diaz Anadon, a professor of climate change policy at Cambridge University, who was not connected to this research. “This period was an important one in the history of the technology, and understanding the evolution of cost components lays the groundwork for future work on mechanisms and could help inform research efforts in other types of batteries.”

    The research was supported by the Alfred P. Sloan Foundation, the Environmental Defense Fund, and the MIT Technology and Policy Program. More