More stories

  • in

    Strengthening students’ knowledge and experience in climate and sustainability

    Tackling the climate crisis is central to MIT. Critical to this mission is harnessing the innovation, passion, and expertise of MIT’s talented students, from a variety of disciplines and backgrounds. To help raise this student involvement to the next level, the MIT Climate and Sustainability Consortium (MCSC) recently launched a program that will engage MIT undergraduates in a unique, year-long, interdisciplinary experience both developing and implementing climate and sustainability research projects.

    The MCSC Climate and Sustainability Scholars Program is a way for students to dive deeply and directly into climate and sustainability research, strengthen their skill sets in a variety of climate and sustainability-related areas, build their networks, and continue to embrace and grow their passion.The MCSC Climate and Sustainability Scholars Program is representative of MIT’s ambitious and bold initiatives on climate and sustainability — bringing together faculty and students across MIT to collaborate with industry on developing climate and sustainability solutions in the context of undergraduate education and research.

    The program, open to rising juniors and seniors from all majors and departments, is inspired by MIT’s SuperUROP program. Students will enroll in a year-long class while simultaneously engaging in research. Research projects will be climate- and sustainability-focused and can be on or off campus. The course will be initially facilitated by Desiree Plata, the Gilbert W. Winslow Career Development Professor in Civil and Environmental Engineering, and Elsa Olivetti, the Esther and Harold E. Edgerton Associate Professor in Materials Science and Engineering and MCSC co-director.“Climate and sustainability challenges face real barriers in science, technology, policy, and beyond,” says Plata, who also serves on the MCSC’s Faculty Steering Committee. “We need to motivate an all-hands effort to bring MIT talent to bear on these challenges, and we need to give our students the tools to make tangible benefits within and between their disciplines. This was our goal in designing the MCSC Scholars Program, and it’s what I’m most excited about.”

    The Climate and Sustainability Scholars Program has relevance across all five schools, and the number of places the course is cross-listed continues to grow. As is the broader goal of the MCSC, the Climate and Sustainability Scholars Program aims to amplify and extend MIT’s expertise — through engaging students of all backgrounds and majors, bringing in faculty mentors and instructors from around the Institute, and identifying research opportunities and principal investigators that span disciplines. The student cohort model will also build off of the successful community-building endeavors by the MIT Energy Initiative and Environmental Solutions Initiative, among others, to bring students with similar interests together into an interdisciplinary, problem-solving space.The program’s fall semester will focus on key climate and sustainability topics, such as decarbonization strategies, policy, environmental justice, and quantitative methods for evaluating social and environmental impacts, and humanities-based communication of climate topics, all while students engage in research. Students will simultaneously develop project proposals, participate in a project through MIT’s Undergraduate Research Opportunities Program, and communicate their work using written and oral media. The spring semester’s course will focus on research and experiential activities, and help students communicate their outputs in entrepreneurial or policy activities that would enable the research outcomes to be rapidly scaled for impact.Throughout the program, students will engage with their research mentors, additional mentors drawn from MCSC-affiliated faculty, postdoctoral Impact Fellows, and graduate students — and there will also be opportunities for interaction with representatives of MCSC member companies.“Providing opportunities for students to sharpen the skills and knowledge needed to pioneer solutions for climate change mitigation and adaptation is critical,” says Olivetti. “We are excited that the Climate and Sustainability Scholars Program can contribute to that important mission.” More

  • in

    Looking forward to forecast the risks of a changing climate

    On April 11, MIT announced five multiyear flagship projects in the first-ever Climate Grand Challenges, a new initiative to tackle complex climate problems and deliver breakthrough solutions to the world as quickly as possible. This article is the third in a five-part series highlighting the most promising concepts to emerge from the competition, and the interdisciplinary research teams behind them.

    Extreme weather events that were once considered rare have become noticeably less so, from intensifying hurricane activity in the North Atlantic to wildfires generating massive clouds of ozone-damaging smoke. But current climate models are unprepared when it comes to estimating the risk that these increasingly extreme events pose — and without adequate modeling, governments are left unable to take necessary precautions to protect their communities.

    MIT Department of Earth, Atmospheric and Planetary Science (EAPS) Professor Paul O’Gorman researches this trend by studying how climate affects the atmosphere and incorporating what he learns into climate models to improve their accuracy. One particular focus for O’Gorman has been changes in extreme precipitation and midlatitude storms that hit areas like New England.

    “These extreme events are having a lot of impact, but they’re also difficult to model or study,” he says. Seeing the pressing need for better climate models that can be used to develop preparedness plans and climate change mitigation strategies, O’Gorman and collaborators Kerry Emanuel, the Cecil and Ida Green Professor of Atmospheric Science in EAPS, and Miho Mazereeuw, associate professor in MIT’s Department of Architecture, are leading an interdisciplinary group of scientists, engineers, and designers to tackle this problem with their MIT Climate Grand Challenges flagship project, “Preparing for a new world of weather and climate extremes.”

    “We know already from observations and from climate model predictions that weather and climate extremes are changing and will change more,” O’Gorman says. “The grand challenge is preparing for those changing extremes.”

    Their proposal is one of five flagship projects recently announced by the MIT Climate Grand Challenges initiative — an Institute-wide effort catalyzing novel research and engineering innovations to address the climate crisis. Selected from a field of almost 100 submissions, the team will receive additional funding and exposure to help accelerate and scale their project goals. Other MIT collaborators on the proposal include researchers from the School of Engineering, the School of Architecture and Planning, the Office of Sustainability, the Center for Global Change Science, and the Institute for Data, Systems and Society.

    Weather risk modeling

    Fifteen years ago, Kerry Emanuel developed a simple hurricane model. It was based on physics equations, rather than statistics, and could run in real time, making it useful for modeling risk assessment. Emanuel wondered if similar models could be used for long-term risk assessment of other things, such as changes in extreme weather because of climate change.

    “I discovered, somewhat to my surprise and dismay, that almost all extant estimates of long-term weather risks in the United States are based not on physical models, but on historical statistics of the hazards,” says Emanuel. “The problem with relying on historical records is that they’re too short; while they can help estimate common events, they don’t contain enough information to make predictions for more rare events.”

    Another limitation of weather risk models which rely heavily on statistics: They have a built-in assumption that the climate is static.

    “Historical records rely on the climate at the time they were recorded; they can’t say anything about how hurricanes grow in a warmer climate,” says Emanuel. The models rely on fixed relationships between events; they assume that hurricane activity will stay the same, even while science is showing that warmer temperatures will most likely push typical hurricane activity beyond the tropics and into a much wider band of latitudes.

    As a flagship project, the goal is to eliminate this reliance on the historical record by emphasizing physical principles (e.g., the laws of thermodynamics and fluid mechanics) in next-generation models. The downside to this is that there are many variables that have to be included. Not only are there planetary-scale systems to consider, such as the global circulation of the atmosphere, but there are also small-scale, extremely localized events, like thunderstorms, that influence predictive outcomes.

    Trying to compute all of these at once is costly and time-consuming — and the results often can’t tell you the risk in a specific location. But there is a way to correct for this: “What’s done is to use a global model, and then use a method called downscaling, which tries to infer what would happen on very small scales that aren’t properly resolved by the global model,” explains O’Gorman. The team hopes to improve downscaling techniques so that they can be used to calculate the risk of very rare but impactful weather events.

    Global climate models, or general circulation models (GCMs), Emanuel explains, are constructed a bit like a jungle gym. Like the playground bars, the Earth is sectioned in an interconnected three-dimensional framework — only it’s divided 100 to 200 square kilometers at a time. Each node comprises a set of computations for characteristics like wind, rainfall, atmospheric pressure, and temperature within its bounds; the outputs of each node are connected to its neighbor. This framework is useful for creating a big picture idea of Earth’s climate system, but if you tried to zoom in on a specific location — like, say, to see what’s happening in Miami or Mumbai — the connecting nodes are too far apart to make predictions on anything specific to those areas.

    Scientists work around this problem by using downscaling. They use the same blueprint of the jungle gym, but within the nodes they weave a mesh of smaller features, incorporating equations for things like topography and vegetation or regional meteorological models to fill in the blanks. By creating a finer mesh over smaller areas they can predict local effects without needing to run the entire global model.

    Of course, even this finer-resolution solution has its trade-offs. While we might be able to gain a clearer picture of what’s happening in a specific region by nesting models within models, it can still make for a computing challenge to crunch all that data at once, with the trade-off being expense and time, or predictions that are limited to shorter windows of duration — where GCMs can be run considering decades or centuries, a particularly complex local model may be restricted to predictions on timescales of just a few years at a time.

    “I’m afraid that most of the downscaling at present is brute force, but I think there’s room to do it in better ways,” says Emanuel, who sees the problem of finding new and novel methods of achieving this goal as an intellectual challenge. “I hope that through the Grand Challenges project we might be able to get students, postdocs, and others interested in doing this in a very creative way.”

    Adapting to weather extremes for cities and renewable energy

    Improving climate modeling is more than a scientific exercise in creativity, however. There’s a very real application for models that can accurately forecast risk in localized regions.

    Another problem is that progress in climate modeling has not kept up with the need for climate mitigation plans, especially in some of the most vulnerable communities around the globe.

    “It is critical for stakeholders to have access to this data for their own decision-making process. Every community is composed of a diverse population with diverse needs, and each locality is affected by extreme weather events in unique ways,” says Mazereeuw, the director of the MIT Urban Risk Lab. 

    A key piece of the team’s project is building on partnerships the Urban Risk Lab has developed with several cities to test their models once they have a usable product up and running. The cities were selected based on their vulnerability to increasing extreme weather events, such as tropical cyclones in Broward County, Florida, and Toa Baja, Puerto Rico, and extratropical storms in Boston, Massachusetts, and Cape Town, South Africa.

    In their proposal, the team outlines a variety of deliverables that the cities can ultimately use in their climate change preparations, with ideas such as online interactive platforms and workshops with stakeholders — such as local governments, developers, nonprofits, and residents — to learn directly what specific tools they need for their local communities. By doing so, they can craft plans addressing different scenarios in their region, involving events such as sea-level rise or heat waves, while also providing information and means of developing adaptation strategies for infrastructure under these conditions that will be the most effective and efficient for them.

    “We are acutely aware of the inequity of resources both in mitigating impacts and recovering from disasters. Working with diverse communities through workshops allows us to engage a lot of people, listen, discuss, and collaboratively design solutions,” says Mazereeuw.

    By the end of five years, the team is hoping that they’ll have better risk assessment and preparedness tool kits, not just for the cities that they’re partnering with, but for others as well.

    “MIT is well-positioned to make progress in this area,” says O’Gorman, “and I think it’s an important problem where we can make a difference.” More

  • in

    Leveraging science and technology against the world’s top problems

    Looking back on nearly a half-century at MIT, Richard K. Lester, associate provost and Japan Steel Industry Professor, sees a “somewhat eccentric professional trajectory.”

    But while his path has been irregular, there has been a clearly defined through line, Lester says: the emergence of new science and new technologies, the potential of these developments to shake up the status quo and address some of society’s most consequential problems, and what the outcomes might mean for America’s place in the world.

    Perhaps no assignment in Lester’s portfolio better captures this theme than the new MIT Climate Grand Challenges competition. Spearheaded by Lester and Maria Zuber, MIT vice president for research, and launched at the height of the pandemic in summer 2020, this initiative is designed to mobilize the entire MIT research community around tackling “the really hard, challenging problems currently standing in the way of an effective global response to the climate emergency,” says Lester. “The focus is on those problems where progress requires developing and applying frontier knowledge in the natural and social sciences and cutting-edge technologies. This is the MIT community swinging for the fences in areas where we have a comparative advantage.”This is a passion project for him, not least because it has engaged colleagues from nearly all of MIT’s departments. After nearly 100 initial ideas were submitted by more than 300 faculty, 27 teams were named finalists and received funding to develop comprehensive research and innovation plans in such areas as decarbonizing complex industries; risk forecasting and adaptation; advancing climate equity; and carbon removal, management, and storage. In April, a small subset of this group will become multiyear flagship projects, augmenting the work of existing MIT units that are pursuing climate research. Lester is sunny in the face of these extraordinarily complex problems. “This is a bottom-up effort with exciting proposals, and where the Institute is collectively committed — it’s MIT at its best.”

    Nuclear to the core

    This initiative carries a particular resonance for Lester, who remains deeply engaged in nuclear engineering. “The role of nuclear energy is central and will need to become even more central if we’re to succeed in addressing the climate challenge,” he says. He also acknowledges that for nuclear energy technologies — both fission and fusion — to play a vital role in decarbonizing the economy, they must not just win “in the court of public opinion, but in the marketplace,” he says. “Over the years, my research has sought to elucidate what needs to be done to overcome these obstacles.”

    In fact, Lester has been campaigning for much of his career for a U.S. nuclear innovation agenda, a commitment that takes on increased urgency as the contours of the climate crisis sharpen. He argues for the rapid development and testing of nuclear technologies that can complement the renewable but intermittent energy sources of sun and wind. Whether powerful, large-scale, molten-salt-cooled reactors or small, modular, light water reactors, nuclear batteries or promising new fusion projects, U.S. energy policy must embrace nuclear innovation, says Lester, or risk losing the high-stakes race for a sustainable future.

    Chancing into a discipline

    Lester’s introduction to nuclear science was pure happenstance.

    Born in the English industrial city of Leeds, he grew up in a musical family and played piano, violin, and then viola. “It was a big part of my life,” he says, and for a time, music beckoned as a career. He tumbled into a chemical engineering concentration at Imperial College, London, after taking a job in a chemical factory following high school. “There’s a certain randomness to life, and in my case, it’s reflected in my choice of major, which had a very large impact on my ultimate career.”

    In his second year, Lester talked his way into running a small experiment in the university’s research reactor, on radiation effects in materials. “I got hooked, and began thinking of studying nuclear engineering.” But there were few graduate programs in British universities at the time. Then serendipity struck again. The instructor of Lester’s single humanities course at Imperial had previously taught at MIT, and suggested Lester take a look at the nuclear program there. “I will always be grateful to him (and, indirectly, to MIT’s Humanities program) for opening my eyes to the existence of this institution where I’ve spent my whole adult life,” says Lester.

    He arrived at MIT with the notion of mitigating the harms of nuclear weapons. It was a time when the nuclear arms race “was an existential threat in everyone’s life,” he recalls. He targeted his graduate studies on nuclear proliferation. But he also encountered an electrifying study by MIT meteorologist Jule Charney. “Professor Charney produced one of the first scientific assessments of the effects on climate of increasing CO2 concentrations in the atmosphere, with quantitative estimates that have not fundamentally changed in 40 years.”

    Lester shifted directions. “I came to MIT to work on nuclear security, but stayed in the nuclear field because of the contributions that it can and must make in addressing climate change,” he says.

    Research and policy

    His path forward, Lester believed, would involve applying his science and technology expertise to critical policy problems, grounded in immediate, real-world concerns, and aiming for broad policy impacts. Even as a member of NSE, he joined with colleagues from many MIT departments to study American industrial practices and what was required to make them globally competitive, and then founded MIT’s Industrial Performance Center (IPC). Working at the IPC with interdisciplinary teams of faculty and students on the sources of productivity and innovation, his research took him to many countries at different stages of industrialization, including China, Taiwan, Japan, and Brazil.

    Lester’s wide-ranging work yielded books (including the MIT Press bestseller “Made in America”), advisory positions with governments, corporations, and foundations, and unexpected collaborations. “My interests were always fairly broad, and being at MIT made it possible to team up with world-leading scholars and extraordinary students not just in nuclear engineering, but in many other fields such as political science, economics, and management,” he says.

    Forging cross-disciplinary ties and bringing creative people together around a common goal proved a valuable skill as Lester stepped into positions of ever-greater responsibility at the Institute. He didn’t exactly relish the prospect of a desk job, though. “I religiously avoided administrative roles until I felt I couldn’t keep avoiding them,” he says.

    Today, as associate provost, he tends to MIT’s international activities — a daunting task given increasing scrutiny of research universities’ globe-spanning research partnerships and education of foreign students. But even in the midst of these consuming chores, Lester remains devoted to his home department. “Being a nuclear engineer is a central part of my identity,” he says.

    To students entering the nuclear field nearly 50 years after he did, who are understandably “eager to fix everything that seems wrong immediately,” he has a message: “Be patient. The hard things, the ones that are really worth doing, will take a long time to do.” Putting the climate crisis behind us will take two generations, Lester believes. Current students will start the job, but it will also take the efforts of their children’s generation before it is done.  “So we need you to be energetic and creative, of course, but whatever you do we also need you to be patient and to have ‘stick-to-itiveness’ — and maybe also a moral compass that our generation has lacked.” More

  • in

    Q&A: Climate Grand Challenges finalists on using data and science to forecast climate-related risk

    Note: This is the final article in a four-part interview series featuring the work of the 27 MIT Climate Grand Challenges finalist teams, which received a total of $2.7 million in startup funding to advance their projects. This month, the Institute will name a subset of the finalists as multiyear flagship projects.

    Advances in computation, artificial intelligence, robotics, and data science are enabling a new generation of observational tools and scientific modeling with the potential to produce timely, reliable, and quantitative analysis of future climate risks at a local scale. These projections can increase the accuracy and efficacy of early warning systems, improve emergency planning, and provide actionable information for climate mitigation and adaptation efforts, as human actions continue to change planetary conditions.

    In conversations prepared for MIT News, faculty from four Climate Grand Challenges teams with projects in the competition’s “Using data and science to forecast climate-related risk” category describe the promising new technologies that can help scientists understand the Earth’s climate system on a finer scale than ever before. (The other Climate Grand Challenges research themes include building equity and fairness into climate solutions, removing, managing, and storing greenhouse gases, and decarbonizing complex industries and processes.) The following responses have been edited for length and clarity.

    An observational system that can initiate a climate risk forecasting revolution

    Despite recent technological advances and massive volumes of data, climate forecasts remain highly uncertain. Gaps in observational capabilities create substantial challenges to predicting extreme weather events and establishing effective mitigation and adaptation strategies. R. John Hansman, the T. Wilson Professor of Aeronautics and Astronautics and director of the MIT International Center for Air Transportation, discusses the Stratospheric Airborne Climate Observatory System (SACOS) being developed together with Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), and a team that includes researchers from MIT Lincoln Laboratory and Harvard University.

    Q: How does SACOS reduce uncertainty in climate risk forecasting?

    A: There is a critical need for higher spatial and temporal resolution observations of the climate system than are currently available through remote (satellite or airborne) and surface (in-situ) sensing. We are developing an ensemble of high-endurance, solar-powered aircraft with instrument systems capable of performing months-long climate observing missions that satellites or aircraft alone cannot fulfill. Summer months are ideal for SACOS operations, as many key climate phenomena are active and short night periods reduce the battery mass, vehicle size, and technical risks. These observations hold the potential to inform and predict, allowing emergency planners, policymakers, and the rest of society to better prepare for the changes to come.

    Q: Describe the types of observing missions where SACOS could provide critical improvements.

    A: The demise of the Antarctic Ice Sheet, which is leading to rising sea levels around the world and threatening the displacement of millions of people, is one example. Current sea level forecasts struggle to account for giant fissures that create massive icebergs and cause the Antarctic Ice Sheet to flow more rapidly into the ocean. SACOS can track these fissures to accurately forecast ice slippage and give impacted populations enough time to prepare or evacuate. Elsewhere, widespread droughts cause rampant wildfires and water shortages. SACOS has the ability to monitor soil moisture and humidity in critically dry regions to identify where and when wildfires and droughts are imminent. SACOS also offers the most effective method to measure, track, and predict local ozone depletion over North America, which has resulted in increasingly severe summer thunderstorms.

    Quantifying and managing the risks of sea-level rise

    Prevailing estimates of sea-level rise range from approximately 20 centimeters to 2 meters by the end of the century, with the associated costs on the order of trillions of dollars. The instability of certain portions of the world’s ice sheets creates vast uncertainties, complicating how the world prepares for and responds to these potential changes. EAPS Professor Brent Minchew is leading another Climate Grand Challenges finalist team working on an integrated, multidisciplinary effort to improve the scientific understanding of sea-level rise and provide actionable information and tools to manage the risks it poses.

    Q: What have been the most significant challenges to understanding the potential rates of sea-level rise?

    A: West Antarctica is one of the most remote, inaccessible, and hostile places on Earth — to people and equipment. Thus, opportunities to observe the collapse of the West Antarctic Ice Sheet, which contains enough ice to raise global sea levels by about 3 meters, are limited and current observations crudely resolved. It is essential that we understand how the floating edge of the ice sheets, often called ice shelves, fracture and collapse because they provide critical forces that govern the rate of ice mass loss and can stabilize the West Antarctic Ice Sheet.

    Q: How will your project advance what is currently known about sea-level rise?

    A: We aim to advance global-scale projections of sea-level rise through novel observational technologies and computational models of ice sheet change and to link those predictions to region- to neighborhood-scale estimates of costs and adaptation strategies. To do this, we propose two novel instruments: a first-of-its-kind drone that can fly for months at a time over Antarctica making continuous observations of critical areas and an airdropped seismometer and GPS bundle that can be deployed to vulnerable and hard-to-reach areas of the ice sheet. This technology will provide greater data quality and density and will observe the ice sheet at frequencies that are currently inaccessible — elements that are essential for understanding the physics governing the evolution of the ice sheet and sea-level rise.

    Changing flood risk for coastal communities in the developing world

    Globally, more than 600 million people live in low-elevation coastal areas that face an increasing risk of flooding from sea-level rise. This includes two-thirds of cities with populations of more than 5 million and regions that conduct the vast majority of global trade. Dara Entekhabi, the Bacardi and Stockholm Water Foundations Professor in the Department of Civil and Environmental Engineering and professor in the Department of Earth, Atmospheric, and Planetary Sciences, outlines an interdisciplinary partnership that leverages data and technology to guide short-term and chart long-term adaptation pathways with Miho Mazereeuw, associate professor of architecture and urbanism and director of the Urban Risk Lab in the School of Architecture and Planning, and Danielle Wood, assistant professor in the Program in Media Arts and Sciences and the Department of Aeronautics and Astronautics.

    Q: What is the key problem this program seeks to address?

    A: The accumulated heating of the Earth system due to fossil burning is largely absorbed by the oceans, and the stored heat expands the ocean volume leading to increased base height for tides. When the high tides inundate a city, the condition is referred to as “sunny day” flooding, but the saline waters corrode infrastructure and wreak havoc on daily routines. The danger ahead for many coastal cities in the developing world is the combination of increasing high tide intrusions, coupled with heavy precipitation storm events.

    Q: How will your proposed solutions impact flood risk management?

    A: We are producing detailed risk maps for coastal cities in developing countries using newly available, very high-resolution remote-sensing data from space-borne instruments, as well as historical tides records and regional storm characteristics. Using these datasets, we aim to produce street-by-street risk maps that provide local decision-makers and stakeholders with a way to estimate present and future flood risks. With the model of future tides and probabilistic precipitation events, we can forecast future inundation by a flooding event, decadal changes with various climate-change and sea-level rise projections, and an increase in the likelihood of sunny-day flooding. Working closely with local partners, we will develop toolkits to explore short-term emergency response, as well as long-term mitigation and adaptation techniques in six pilot locations in South and Southeast Asia, Africa, and South America.

    Ocean vital signs

    On average, every person on Earth generates fossil fuel emissions equivalent to an 8-pound bag of carbon, every day. Much of this is absorbed by the ocean, but there is wide variability in the estimates of oceanic absorption, which translates into differences of trillions of dollars in the required cost of mitigation. In the Department of Earth, Atmospheric and Planetary Sciences, Christopher Hill, a principal research engineer specializing in Earth and planetary computational science, works with Ryan Woosley, a principal research scientist focusing on the carbon cycle and ocean acidification. Hill explains that they hope to use artificial intelligence and machine learning to help resolve this uncertainty.

    Q: What is the current state of knowledge on air-sea interactions?

    A: Obtaining specific, accurate field measurements of critical physical, chemical, and biological exchanges between the ocean and the planet have historically entailed expensive science missions with large ship-based infrastructure that leave gaps in real-time data about significant ocean climate processes. Recent advances in highly scalable in-situ autonomous observing and navigation combined with airborne, remote sensing, and machine learning innovations have the potential to transform data gathering, provide more accurate information, and address fundamental scientific questions around air-sea interaction.

    Q: How will your approach accelerate real-time, autonomous surface ocean observing from an experimental research endeavor to a permanent and impactful solution?

    A: Our project seeks to demonstrate how a scalable surface ocean observing network can be launched and operated, and to illustrate how this can reduce uncertainties in estimates of air-sea carbon dioxide exchange. With an initial high-impact goal of substantially eliminating the vast uncertainties that plague our understanding of ocean uptake of carbon dioxide, we will gather critical measurements for improving extended weather and climate forecast models and reducing climate impact uncertainty. The results have the potential to more accurately identify trillions of dollars worth of economic activity. More

  • in

    Ocean vital signs

    Without the ocean, the climate crisis would be even worse than it is. Each year, the ocean absorbs billions of tons of carbon from the atmosphere, preventing warming that greenhouse gas would otherwise cause. Scientists estimate about 25 to 30 percent of all carbon released into the atmosphere by both human and natural sources is absorbed by the ocean.

    “But there’s a lot of uncertainty in that number,” says Ryan Woosley, a marine chemist and a principal research scientist in the Department of Earth, Atmospheric and Planetary Sciences (EAPS) at MIT. Different parts of the ocean take in different amounts of carbon depending on many factors, such as the season and the amount of mixing from storms. Current models of the carbon cycle don’t adequately capture this variation.

    To close the gap, Woosley and a team of other MIT scientists developed a research proposal for the MIT Climate Grand Challenges competition — an Institute-wide campaign to catalyze and fund innovative research addressing the climate crisis. The team’s proposal, “Ocean Vital Signs,” involves sending a fleet of sailing drones to cruise the oceans taking detailed measurements of how much carbon the ocean is really absorbing. Those data would be used to improve the precision of global carbon cycle models and improve researchers’ ability to verify emissions reductions claimed by countries.

    “If we start to enact mitigation strategies—either through removing CO2 from the atmosphere or reducing emissions — we need to know where CO2 is going in order to know how effective they are,” says Woosley. Without more precise models there’s no way to confirm whether observed carbon reductions were thanks to policy and people, or thanks to the ocean.

    “So that’s the trillion-dollar question,” says Woosley. “If countries are spending all this money to reduce emissions, is it enough to matter?”

    In February, the team’s Climate Grand Challenges proposal was named one of 27 finalists out of the almost 100 entries submitted. From among this list of finalists, MIT will announce in April the selection of five flagship projects to receive further funding and support.

    Woosley is leading the team along with Christopher Hill, a principal research engineer in EAPS. The team includes physical and chemical oceanographers, marine microbiologists, biogeochemists, and experts in computational modeling from across the department, in addition to collaborators from the Media Lab and the departments of Mathematics, Aeronautics and Astronautics, and Electrical Engineering and Computer Science.

    Today, data on the flux of carbon dioxide between the air and the oceans are collected in a piecemeal way. Research ships intermittently cruise out to gather data. Some commercial ships are also fitted with sensors. But these present a limited view of the entire ocean, and include biases. For instance, commercial ships usually avoid storms, which can increase the turnover of water exposed to the atmosphere and cause a substantial increase in the amount of carbon absorbed by the ocean.

    “It’s very difficult for us to get to it and measure that,” says Woosley. “But these drones can.”

    If funded, the team’s project would begin by deploying a few drones in a small area to test the technology. The wind-powered drones — made by a California-based company called Saildrone — would autonomously navigate through an area, collecting data on air-sea carbon dioxide flux continuously with solar-powered sensors. This would then scale up to more than 5,000 drone-days’ worth of observations, spread over five years, and in all five ocean basins.

    Those data would be used to feed neural networks to create more precise maps of how much carbon is absorbed by the oceans, shrinking the uncertainties involved in the models. These models would continue to be verified and improved by new data. “The better the models are, the more we can rely on them,” says Woosley. “But we will always need measurements to verify the models.”

    Improved carbon cycle models are relevant beyond climate warming as well. “CO2 is involved in so much of how the world works,” says Woosley. “We’re made of carbon, and all the other organisms and ecosystems are as well. What does the perturbation to the carbon cycle do to these ecosystems?”

    One of the best understood impacts is ocean acidification. Carbon absorbed by the ocean reacts to form an acid. A more acidic ocean can have dire impacts on marine organisms like coral and oysters, whose calcium carbonate shells and skeletons can dissolve in the lower pH. Since the Industrial Revolution, the ocean has become about 30 percent more acidic on average.

    “So while it’s great for us that the oceans have been taking up the CO2, it’s not great for the oceans,” says Woosley. “Knowing how this uptake affects the health of the ocean is important as well.” More

  • in

    Improving predictions of sea level rise for the next century

    When we think of climate change, one of the most dramatic images that comes to mind is the loss of glacial ice. As the Earth warms, these enormous rivers of ice become a casualty of the rising temperatures. But, as ice sheets retreat, they also become an important contributor to one the more dangerous outcomes of climate change: sea-level rise. At MIT, an interdisciplinary team of scientists is determined to improve sea level rise predictions for the next century, in part by taking a closer look at the physics of ice sheets.

    Last month, two research proposals on the topic, led by Brent Minchew, the Cecil and Ida Green Career Development Professor in the Department of Earth, Atmospheric and Planetary Sciences (EAPS), were announced as finalists in the MIT Climate Grand Challenges initiative. Launched in July 2020, Climate Grand Challenges fielded almost 100 project proposals from collaborators across the Institute who heeded the bold charge: to develop research and innovations that will deliver game-changing advances in the world’s efforts to address the climate challenge.

    As finalists, Minchew and his collaborators from the departments of Urban Studies and Planning, Economics, Civil and Environmental Engineering, the Haystack Observatory, and external partners, received $100,000 to develop their research plans. A subset of the 27 proposals tapped as finalists will be announced next month, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    One goal of both Minchew proposals is to more fully understand the most fundamental processes that govern rapid changes in glacial ice, and to use that understanding to build next-generation models that are more predictive of ice sheet behavior as they respond to, and influence, climate change.

    “We need to develop more accurate and computationally efficient models that provide testable projections of sea-level rise over the coming decades. To do so quickly, we want to make better and more frequent observations and learn the physics of ice sheets from these data,” says Minchew. “For example, how much stress do you have to apply to ice before it breaks?”

    Currently, Minchew’s Glacier Dynamics and Remote Sensing group uses satellites to observe the ice sheets on Greenland and Antarctica primarily with interferometric synthetic aperture radar (InSAR). But the data are often collected over long intervals of time, which only gives them “before and after” snapshots of big events. By taking more frequent measurements on shorter time scales, such as hours or days, they can get a more detailed picture of what is happening in the ice.

    “Many of the key unknowns in our projections of what ice sheets are going to look like in the future, and how they’re going to evolve, involve the dynamics of glaciers, or our understanding of how the flow speed and the resistances to flow are related,” says Minchew.

    At the heart of the two proposals is the creation of SACOS, the Stratospheric Airborne Climate Observatory System. The group envisions developing solar-powered drones that can fly in the stratosphere for months at a time, taking more frequent measurements using a new lightweight, low-power radar and other high-resolution instrumentation. They also propose air-dropping sensors directly onto the ice, equipped with seismometers and GPS trackers to measure high-frequency vibrations in the ice and pinpoint the motions of its flow.

    How glaciers contribute to sea level rise

    Current climate models predict an increase in sea levels over the next century, but by just how much is still unclear. Estimates are anywhere from 20 centimeters to two meters, which is a large difference when it comes to enacting policy or mitigation. Minchew points out that response measures will be different, depending on which end of the scale it falls toward. If it’s closer to 20 centimeters, coastal barriers can be built to protect low-level areas. But with higher surges, such measures become too expensive and inefficient to be viable, as entire portions of cities and millions of people would have to be relocated.

    “If we’re looking at a future where we could get more than a meter of sea level rise by the end of the century, then we need to know about that sooner rather than later so that we can start to plan and to do our best to prepare for that scenario,” he says.

    There are two ways glaciers and ice sheets contribute to rising sea levels: direct melting of the ice and accelerated transport of ice to the oceans. In Antarctica, warming waters melt the margins of the ice sheets, which tends to reduce the resistive stresses and allow ice to flow more quickly to the ocean. This thinning can also cause the ice shelves to be more prone to fracture, facilitating the calving of icebergs — events which sometimes cause even further acceleration of ice flow.

    Using data collected by SACOS, Minchew and his group can better understand what material properties in the ice allow for fracturing and calving of icebergs, and build a more complete picture of how ice sheets respond to climate forces. 

    “What I want is to reduce and quantify the uncertainties in projections of sea level rise out to the year 2100,” he says.

    From that more complete picture, the team — which also includes economists, engineers, and urban planning specialists — can work on developing predictive models and methods to help communities and governments estimate the costs associated with sea level rise, develop sound infrastructure strategies, and spur engineering innovation.

    Understanding glacier dynamics

    More frequent radar measurements and the collection of higher-resolution seismic and GPS data will allow Minchew and the team to develop a better understanding of the broad category of glacier dynamics — including calving, an important process in setting the rate of sea level rise which is currently not well understood.  

    “Some of what we’re doing is quite similar to what seismologists do,” he says. “They measure seismic waves following an earthquake, or a volcanic eruption, or things of this nature and use those observations to better understand the mechanisms that govern these phenomena.”

    Air-droppable sensors will help them collect information about ice sheet movement, but this method comes with drawbacks — like installation and maintenance, which is difficult to do out on a massive ice sheet that is moving and melting. Also, the instruments can each only take measurements at a single location. Minchew equates it to a bobber in water: All it can tell you is how the bobber moves as the waves disturb it.

    But by also taking continuous radar measurements from the air, Minchew’s team can collect observations both in space and in time. Instead of just watching the bobber in the water, they can effectively make a movie of the waves propagating out, as well as visualize processes like iceberg calving happening in multiple dimensions.

    Once the bobbers are in place and the movies recorded, the next step is developing machine learning algorithms to help analyze all the new data being collected. While this data-driven kind of discovery has been a hot topic in other fields, this is the first time it has been applied to glacier research.

    “We’ve developed this new methodology to ingest this huge amount of data,” he says, “and from that create an entirely new way of analyzing the system to answer these fundamental and critically important questions.”  More

  • in

    Setting carbon management in stone

    Keeping global temperatures within limits deemed safe by the Intergovernmental Panel on Climate Change means doing more than slashing carbon emissions. It means reversing them.

    “If we want to be anywhere near those limits [of 1.5 or 2 C], then we have to be carbon neutral by 2050, and then carbon negative after that,” says Matěj Peč, a geoscientist and the Victor P. Starr Career Development Assistant Professor in the Department of Earth, Atmospheric, and Planetary Sciences (EAPS).

    Going negative will require finding ways to radically increase the world’s capacity to capture carbon from the atmosphere and put it somewhere where it will not leak back out. Carbon capture and storage projects already suck in tens of million metric tons of carbon each year. But putting a dent in emissions will mean capturing many billions of metric tons more. Today, people emit around 40 billion tons of carbon each year globally, mainly by burning fossil fuels.

    Because of the need for new ideas when it comes to carbon storage, Peč has created a proposal for the MIT Climate Grand Challenges competition — a bold and sweeping effort by the Institute to support paradigm-shifting research and innovation to address the climate crisis. Called the Advanced Carbon Mineralization Initiative, his team’s proposal aims to bring geologists, chemists, and biologists together to make permanently storing carbon underground workable under different geological conditions. That means finding ways to speed-up the process by which carbon pumped underground is turned into rock, or mineralized.

    “That’s what the geology has to offer,” says Peč, who is a lead on the project, along with Ed Boyden, professor of biological engineering, brain and cognitive sciences, and media arts and sciences, and Yogesh Surendranath, professor of chemistry. “You look for the places where you can safely and permanently store these huge volumes of CO2.”

    Peč‘s proposal is one of 27 finalists selected from a pool of almost 100 Climate Grand Challenge proposals submitted by collaborators from across the Institute. Each finalist team received $100,000 to further develop their research proposals. A subset of finalists will be announced in April, making up a portfolio of multiyear “flagship” projects receiving additional funding and support.

    Building industries capable of going carbon negative presents huge technological, economic, environmental, and political challenges. For one, it’s expensive and energy-intensive to capture carbon from the air with existing technologies, which are “hellishly complicated,” says Peč. Much of the carbon capture underway today focuses on more concentrated sources like coal- or gas-burning power plants.

    It’s also difficult to find geologically suitable sites for storage. To keep it in the ground after it has been captured, carbon must either be trapped in airtight reservoirs or turned to stone.

    One of the best places for carbon capture and storage (CCS) is Iceland, where a number of CCS projects are up and running. The island’s volcanic geology helps speed up the mineralization process, as carbon pumped underground interacts with basalt rock at high temperatures. In that ideal setting, says Peč, 95 percent of carbon injected underground is mineralized after just two years — a geological flash.

    But Iceland’s geology is unusual. Elsewhere requires deeper drilling to reach suitable rocks at suitable temperature, which adds costs to already expensive projects. Further, says Peč, there’s not a complete understanding of how different factors influence the speed of mineralization.

    Peč‘s Climate Grand Challenge proposal would study how carbon mineralizes under different conditions, as well as explore ways to make mineralization happen more rapidly by mixing the carbon dioxide with different fluids before injecting it underground. Another idea — and the reason why there are biologists on the team — is to learn from various organisms adept at turning carbon into calcite shells, the same stuff that makes up limestone.

    Two other carbon management proposals, led by EAPS Cecil and Ida Green Professor Bradford Hager, were also selected as Climate Grand Challenge finalists. They focus on both the technologies necessary for capturing and storing gigatons of carbon as well as the logistical challenges involved in such an enormous undertaking.

    That involves everything from choosing suitable sites for storage, to regulatory and environmental issues, as well as how to bring disparate technologies together to improve the whole pipeline. The proposals emphasize CCS systems that can be powered by renewable sources, and can respond dynamically to the needs of different hard-to-decarbonize industries, like concrete and steel production.

    “We need to have an industry that is on the scale of the current oil industry that will not be doing anything but pumping CO2 into storage reservoirs,” says Peč.

    For a problem that involves capturing enormous amounts of gases from the atmosphere and storing it underground, it’s no surprise EAPS researchers are so involved. The Earth sciences have “everything” to offer, says Peč, including the good news that the Earth has more than enough places where carbon might be stored.

    “Basically, the Earth is really, really large,” says Peč. “The reasonably accessible places, which are close to the continents, store somewhere on the order of tens of thousands to hundreds thousands of gigatons of carbon. That’s orders of magnitude more than we need to put back in.” More

  • in

    Q&A: Climate Grand Challenges finalists on accelerating reductions in global greenhouse gas emissions

    This is the second article in a four-part interview series highlighting the work of the 27 MIT Climate Grand Challenges finalists, which received a total of $2.7 million in startup funding to advance their projects. In April, the Institute will name a subset of the finalists as multiyear flagship projects.

    Last month, the Intergovernmental Panel on Climate Change (IPCC), an expert body of the United Nations representing 195 governments, released its latest scientific report on the growing threats posed by climate change, and called for drastic reductions in greenhouse gas emissions to avert the most catastrophic outcomes for humanity and natural ecosystems.

    Bringing the global economy to net-zero carbon dioxide emissions by midcentury is complex and demands new ideas and novel approaches. The first-ever MIT Climate Grand Challenges competition focuses on four problem areas including removing greenhouse gases from the atmosphere and identifying effective, economic solutions for managing and storing these gases. The other Climate Grand Challenges research themes address using data and science to forecast climate-related risk, decarbonizing complex industries and processes, and building equity and fairness into climate solutions.

    In the following conversations prepared for MIT News, faculty from three of the teams working to solve “Removing, managing, and storing greenhouse gases” explain how they are drawing upon geological, biological, chemical, and oceanic processes to develop game-changing techniques for carbon removal, management, and storage. Their responses have been edited for length and clarity.

    Directed evolution of biological carbon fixation

    Agricultural demand is estimated to increase by 50 percent in the coming decades, while climate change is simultaneously projected to drastically reduce crop yield and predictability, requiring a dramatic acceleration of land clearing. Without immediate intervention, this will have dire impacts on wild habitat, rob the livelihoods of hundreds of millions of subsistence farmers, and create hundreds of gigatons of new emissions. Matthew Shoulders, associate professor in the Department of Chemistry, talks about the working group he is leading in partnership with Ed Boyden, the Y. Eva Tan professor of neurotechnology and Howard Hughes Medical Institute investigator at the McGovern Institute for Brain Research, that aims to massively reduce carbon emissions from agriculture by relieving core biochemical bottlenecks in the photosynthetic process using the most sophisticated synthetic biology available to science.

    Q: Describe the two pathways you have identified for improving agricultural productivity and climate resiliency.

    A: First, cyanobacteria grow millions of times faster than plants and dozens of times faster than microalgae. Engineering these cyanobacteria as a source of key food products using synthetic biology will enable food production using less land, in a fundamentally more climate-resilient manner. Second, carbon fixation, or the process by which carbon dioxide is incorporated into organic compounds, is the rate-limiting step of photosynthesis and becomes even less efficient under rising temperatures. Enhancements to Rubisco, the enzyme mediating this central process, will both improve crop yields and provide climate resilience to crops needed by 2050. Our team, led by Robbie Wilson and Max Schubert, has created new directed evolution methods tailored for both strategies, and we have already uncovered promising early results. Applying directed evolution to photosynthesis, carbon fixation, and food production has the potential to usher in a second green revolution.

    Q: What partners will you need to accelerate the development of your solutions?

    A: We have already partnered with leading agriculture institutes with deep experience in plant transformation and field trial capacity, enabling the integration of our improved carbon-dioxide-fixing enzymes into a wide range of crop plants. At the deployment stage, we will be positioned to partner with multiple industry groups to achieve improved agriculture at scale. Partnerships with major seed companies around the world will be key to leverage distribution channels in manufacturing supply chains and networks of farmers, agronomists, and licensed retailers. Support from local governments will also be critical where subsidies for seeds are necessary for farmers to earn a living, such as smallholder and subsistence farming communities. Additionally, our research provides an accessible platform that is capable of enabling and enhancing carbon dioxide sequestration in diverse organisms, extending our sphere of partnership to a wide range of companies interested in industrial microbial applications, including algal and cyanobacterial, and in carbon capture and storage.

    Strategies to reduce atmospheric methane

    One of the most potent greenhouse gases, methane is emitted by a range of human activities and natural processes that include agriculture and waste management, fossil fuel production, and changing land use practices — with no single dominant source. Together with a diverse group of faculty and researchers from the schools of Humanities, Arts, and Social Sciences; Architecture and Planning; Engineering; and Science; plus the MIT Schwarzman College of Computing, Desiree Plata, associate professor in the Department of Civil and Environmental Engineering, is spearheading the MIT Methane Network, an integrated approach to formulating scalable new technologies, business models, and policy solutions for driving down levels of atmospheric methane.

    Q: What is the problem you are trying to solve and why is it a “grand challenge”?

    A: Removing methane from the atmosphere, or stopping it from getting there in the first place, could change the rates of global warming in our lifetimes, saving as much as half a degree of warming by 2050. Methane sources are distributed in space and time and tend to be very dilute, making the removal of methane a challenge that pushes the boundaries of contemporary science and engineering capabilities. Because the primary sources of atmospheric methane are linked to our economy and culture — from clearing wetlands for cultivation to natural gas extraction and dairy and meat production — the social and economic implications of a fundamentally changed methane management system are far-reaching. Nevertheless, these problems are tractable and could significantly reduce the effects of climate change in the near term.

    Q: What is known about the rapid rise in atmospheric methane and what questions remain unanswered?

    A: Tracking atmospheric methane is a challenge in and of itself, but it has become clear that emissions are large, accelerated by human activity, and cause damage right away. While some progress has been made in satellite-based measurements of methane emissions, there is a need to translate that data into actionable solutions. Several key questions remain around improving sensor accuracy and sensor network design to optimize placement, improve response time, and stop leaks with autonomous controls on the ground. Additional questions involve deploying low-level methane oxidation systems and novel catalytic materials at coal mines, dairy barns, and other enriched sources; evaluating the policy strategies and the socioeconomic impacts of new technologies with an eye toward decarbonization pathways; and scaling technology with viable business models that stimulate the economy while reducing greenhouse gas emissions.

    Deploying versatile carbon capture technologies and storage at scale

    There is growing consensus that simply capturing current carbon dioxide emissions is no longer sufficient — it is equally important to target distributed sources such as the oceans and air where carbon dioxide has accumulated from past emissions. Betar Gallant, the American Bureau of Shipping Career Development Associate Professor of Mechanical Engineering, discusses her work with Bradford Hager, the Cecil and Ida Green Professor of Earth Sciences in the Department of Earth, Atmospheric and Planetary Sciences, and T. Alan Hatton, the Ralph Landau Professor of Chemical Engineering and director of the School of Chemical Engineering Practice, to dramatically advance the portfolio of technologies available for carbon capture and permanent storage at scale. (A team led by Assistant Professor Matěj Peč of EAPS is also addressing carbon capture and storage.)

    Q: Carbon capture and storage processes have been around for several decades. What advances are you seeking to make through this project?

    A: Today’s capture paradigms are costly, inefficient, and complex. We seek to address this challenge by developing a new generation of capture technologies that operate using renewable energy inputs, are sufficiently versatile to accommodate emerging industrial demands, are adaptive and responsive to varied societal needs, and can be readily deployed to a wider landscape.

    New approaches will require the redesign of the entire capture process, necessitating basic science and engineering efforts that are broadly interdisciplinary in nature. At the same time, incumbent technologies have been optimized largely for integration with coal- or natural gas-burning power plants. Future applications must shift away from legacy emitters in the power sector towards hard-to-mitigate sectors such as cement, iron and steel, chemical, and hydrogen production. It will become equally important to develop and optimize systems targeted for much lower concentrations of carbon dioxide, such as in oceans or air. Our effort will expand basic science studies as well as human impacts of storage, including how public engagement and education can alter attitudes toward greater acceptance of carbon dioxide geologic storage.

    Q: What are the expected impacts of your proposed solution, both positive and negative?

    A: Renewable energy cannot be deployed rapidly enough everywhere, nor can it supplant all emissions sources, nor can it account for past emissions. Carbon capture and storage (CCS) provides a demonstrated method to address emissions that will undoubtedly occur before the transition to low-carbon energy is completed. CCS can succeed even if other strategies fail. It also allows for developing nations, which may need to adopt renewables over longer timescales, to see equitable economic development while avoiding the most harmful climate impacts. And, CCS enables the future viability of many core industries and transportation modes, many of which do not have clear alternatives before 2050, let alone 2040 or 2030.

    The perceived risks of potential leakage and earthquakes associated with geologic storage can be minimized by choosing suitable geologic formations for storage. Despite CCS providing a well-understood pathway for removing enough of the carbon dioxide already emitted into the atmosphere, some environmentalists vigorously oppose it, fearing that CCS rewards oil companies and disincentivizes the transition away from fossil fuels. We believe that it is more important to keep in mind the necessity of meeting key climate targets for the sake of the planet, and welcome those who can help. More